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Abstract

We present an interior point method for semidefinite programming where the semidefinite
constraints on a matrix X are formulated as nonnegative constraints on d[1](X), . . . , d[n] (X)
obtained from the LDLT factorization X = LDiag(d[1](X), . . . , d[n] (X))LT . The approach
was first proposed by Fletcher who also provided analytic expressions for the derivatives of the
factors in terms of X and the approach was subsequently utilized in an interior point algorithm
by Benson and Vanderbei. However, the evaluation of first and second derivatives of d[i] (X)
has been a bottleneck in such an algorithm. In this paper, we: (i) derive formulae for the
first and second derivatives of d[i] (X) that are efficient and numerically stable to compute,
(ii) show that the LDLT based search direction can be viewed in the standard framework
of interior point methods for semidefinite programs with comparable computational cost per
iteration, (iii) characterize the central path, and (iv) analyze the numerical conditioning of
the linear system arising in the algorithm. We provide detailed numerical results on 79 SDP
instances from the SDPLIB test set.
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LDLT DIRECTION INTERIOR POINT METHOD FOR
SEMIDEFINITE PROGRAMMING*

ARVIND U. RAGHUNATHAN® AND LORENZ. T. BIEGLER?

Abstract. We present an interior point method for semidefinite programming where the semidef-
inite constraints on a matrix X are formulated as nonnegative constraints on dy)(X), ... dp,(X)
obtained from the LDL” factorization X = LDiag(d[1)(X)...., d[n]{X))LT. The approach was first

proposed by Fletcher [15] who also provided analytic expressions for the derivatives of the factors in
terms of X and the approach was subsequently utilized in an interior point algorithm by Benson and
Vanderbei [6]. However, the evaluation of first and second derivatives of d[,-](/\’) has been a bottle-
neck in such an algorithm. In this paper, we: (i) derive formulae for the first and second derivatives
of d[i](X) that are efficient and numerically stable to compute, (ii) show that the LDLT based
search direction can be viewed in the standard framework of interior point methods for semidefinite
programs with comparable computational cost per iteration, (iii) characterize the central path, and
(iv) analyze the numerical conditioning of the linear system arising in the algorithm. We provide
detailed numerical results on 79 SDP instances from the SDPLIB test set.
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1. Introduction. In this paper we are interested in the solution of semidefinite
programs (SDPs) of the form

min C' e X
Xesn

(1) st A(X) =b
X=0

where S" denotes the set of n x n symmetric matrices, ¢ € §", A : §* — R™,
b € R™ are input data, Ae B = 31" | 37" | A B is the trace inner product for
symmetric matrices with A;;) denoting the (i,7)th entry of matrix A and > denotes
the positive semidefinite constraint on X. The linear map A performs the following
linear transformation, X — (A, eX,..., A, ¢ X) where A, € S" is the kth constraint
matrix.

The seminal work of Alizadeh [1] and Nesterov and Nemirovskii [35] laid the
foundation for the development of theory and algorithms for SDPs. Interior point
algorithms for SDPs generate search directions at each iteration by solving the lin-
earization of the following system [48]:

C+A*(N)-8=0
(2) AX)=b
Hp(XS) = pl,

where, A* : R™ — S§" is the adjoint of the linear map A defined as A*(\) =
Ty ’\IHA"'-* Alx) denotes the kth element of vector A, S = 0 € S" is the multi-
plier matrix for the positive semidefinite constraint, I,, € R"*"™ the identity matrix,
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2 ARVIND U. RAGHUNATHAN AND LORENZ T. BIEGLER
Hp is the symmetrization operation defined as

1
(3) Hp(Y) := “ (PYP !+ (PYPHT)

for P € R™*"™ an invertible matrix and g > 0 the barrier parameter. The interior point
algorithms eventually drive p to 0, thus recovering an optimal solution to (1). The
interior point algorithms for SDPs give rise to different search directions based on the
symmetrization operator (choice of P) employed for the complementarity constraints.
The three important directions and their respective choices for P are: the AHO
direction [2] with P = I,,, the HKM direction [23, 25, 30] with P = X2 (or S2) and

_1
NT direction [36] with P = (X I(X2§X3)"1X %) *. We refer the interested reader
to the survey article on search directions in SDP by Todd [42]. A comprehensive
collection of theory, algorithms and applications can also be found in Monteiro [31],
Wolkowicz et al. [46] and in Anjos and Lasserre [4].

An alternate formulation to (1), first proposed by Fletcher [15], is

min C'e X
Xesn

(4) s.t. A(X) =b
d[?I(X) > O0VE =T 005

where d[;)(X) is the ith diagonal entry of the diagonal matrix D in the LDLT fac-
torization [19] of X and L € R"*" is unit lower triangular. The LDLT factorization
is uniquely defined only for X = 0 € S", i.e. X is positive definite. Fletcher [15]
assumed that the rank of the solution was known and the data matrices had been
permuted so that the solution matrix can be parameterized as

¥ — Lii(X) Opx(n—p)] [ Dy (X) pr(n.—p)} [Lu(X)T Loy (X)T
L?.] (X) I'n—p O(ri—p)xp D2(X) O(H,—p))(p I-n.—;p

where p is the rank of X at the solution, L (X) is unit lower triangular and D¢ (X) is
diagonal with positive entries. Substituting this parameterization in (4) and replacing
the inequalities with Dy(X) = 0 yields the formulation in [15]. Analytical expressions
were derived for the first and second derivatives of Dy(X). Fletcher [15] proposed
an active-set based sequential quadratic programming (SQP) algorithm with exact
derivatives to solve (4). Globalization of the algorithm was achieved using the exact
¢, penalty function and limited computational results were reported. Benson and
Vanderbei [6] considered the solution of (4) using an interior point algorithm for
nonlinear programs. The anthors used the expressions derived in [15] to provide
exact first and second derivative information to the interior point algorithm. Limited
numerical results were provided on small instances. The cost of evaluating the first and
second derivatives of d;(X) as provided in [15] are prohibitive and this also affected
the solution times of the search direction computation. However, no analysis of the
approach or its relation to standard interior point methods for SDPs was presented.
A related approach proposed by Burer, Monteiro and Zhang [10] replaced the matrix
X by nonnegativity constraints on the diagonal of the lower triangular matrix I
in the Cholesky factorization X = Li* [19]. They also derived gradient formulas
for the objective of the resulting nonlinear program. Encouraging numerical results
were presented for a first-order interior point method using this transformation in [9].
Burer [8], Srijungtongsiri and Vavasis [40], and Dahl et al. [12] presented efficient
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procedures for computing the first and second derivatives of the barrier function based
on the LDL™T factorization and the sparsity in the problem data. However, these
approaches do not employ the formulation in (4).

1.1. Focus of the paper and our contributions. In this paper we study the
solution of SDP (1) through the LDL?T formulation in (4). As mentioned earlier,
Fletcher [15] derived derivative expressions for d(;(X) but these require the inverse
of principal submatrices of X and several matrix-vector products. This can be com-
putationally expensive and result in round-off error. To address this, we provide an
elegant derivation of the first and second derivatives of d;(X), the ith element of
d(X), that is efficient and numerically stable to evaluate in §3. This derivation allows
us to view the first-order stationary conditions of LDLT formulation as a new search
direction for SDP. Using the first derivative expressions, we show that the interior
point method for LDLY formulation (4) satisfies the following equations

C+ A*(\) — L(X) TDiag(2)L(X)™' = 0
(5) AX)=b

where z > 0 € R" are the multipliers, z[;; denotes the ith element of vector z, and
L(X) is the unit lower triangular matrix in the LDL” factorization of X. Using
the derived expressions for the second derivative of d;(X), we show in §4 that the
Newton step for (5) can be computed in a manner identical to standard SDP interior
point algorithms. In particular, we show that the computational cost per iteration
is the same as the NT direction [36]. We also show that the Newton step for (5) is
well defined for all points in the interior of the feasible region, i.e. d};(X),z; > 0.
Further, even though (5) involves the inverse of L(X) we never require this as part of
the step computation.

From (2) and (5), we have that the multiplier matrix S can be identified with
L(X) TDiag(z)L(X)~!. In fact this representation of S can be viewed as an UDUT
factorization of S where U(S) = L(X)~7T is unit upper triangular. With this choice
it is also readily verified that if D(X)Diag(z) = al, for a € R then matrices X and
S commute, i.e. XS = SX. It is well known that matrices X, 5 € S’ commute if and
only if X and S have the same set of eigenvectors. The identification of multiplier
matrix as S = L(X ) TDiag(z)L(X) ! restates that commutative property in terms
of the LDLT, UDUT factorizations of X and S, respectively. We prove this in §2.
We provide precise correspondence between the solutions of standard formulation and
LDL™ formulation in §5. We establish a homeomorphism between the central paths
of the LDL™ direction and the central path defined for XS = pul,, in §5.

We provide a characterization of the ill-conditioning of the Schur complement
matrix in the LDLT direction. In particular, we show that the linear equations
defining the Newton step for the LDL” formulation are equivalent to a lifted linear
system for all points in the interior of the feasible region. Under primal and dual
nondegeneracy assumptions, we also establish the non-singularity of the lifted linear
system at the solution to SDP. The nondegeneracy conditions were first stated by
Alizadeh, Haeberly and Overton [3] using the spectral decomposition of matrices. We
derive the primal and dual nondegeneracy conditions for SDPs based on the LDLT
factorization. Under the nondegeneracy assumptions, we show that the conditioning
of Schur complement matrix is similar to that for the AHO direction [2].

We present an interior point algorithm using the LDL” direction and provide
detailed numerical results on the performance of the approach on the SDPLIB [7] test
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set. A comparison of the performance of the LDLT direction against the standard
SDP directions and SDP solvers is also presented.

1.2. Organization of the paper. The rest of the paper is organized as fol-
lows. We begin by providing a brief description of the LDL” factorization in §2. §3
presents computational formulae for the first and second derivatives of d;(X) and
establishes that the formulation (4) is a convex program. §4 presents the interior point
algorithm corresponding to (4) and the step computation. §5 presents the correspon-
dence between solutions to the LDLT formulation and the standard SDP formulation.
Uniqueness and existence of the central path are also established. §6 characterizes the
conditioning of the Schur complement matrix. Numerical implementation and results
are described in §7 followed by conclusions in §8.

1.3. Notation. We denote by R, R, R, . the set of real, nonnegative real, pos-
itive real numbers, respectively, and by R"™ the set of n x 1 vectors endowed with
standard inner product and Euclidean norm (|| - ||). The set of n x n symmetric ma-
trices is denoted by §", and (S ) §" | denotes the set of symmetric positive (semi-)
definite matrices. For a matrix A € 8", A = 0 and A > 0 respectively denote the
positive semi-definiteness and positive definiteness of A. For a vector a, af; denotes
the ith component of a and for a matrix A, Aj;;) denotes the (4, j)th entry of A. The
ith row and column of matrix A are denoted by A and A[l.,-_], respectively. The
space S" is endowed with the trace inner product Ae B = 3700 | 370 | A By for
A, B e S" and ||Al|p = vV A e A denotes the Frobenius norm. For a matrix A € R"*",
[[A]l denotes the Euclidean norm. For a matrix A € S{; +» the LDL” factorization
of the matrix will be denoted by A = L(A)D(A)L(A)" where L(A) is unit lower
triangular and D(A) = 0 is diagonal. We will also refer to L(A), D(A) as the LDLT
factors of A. The argument A in L(A), D(A) is suppressed when the dependence is
clear from the context. The kronecker product between matrices A, B € S™ is denoted
as A® B. Given A € R"™™", vec(A) € R"™ *! is a vector resulting from column-wise
stacking of A and mat(-) denotes the reverse operation that takes a vector of R x1
to R"*", Note that mat(vec(A)) = A. For a vector a € R", Diag(a) € R"*" is a
diagonal matrix with (Diag(a)) i) = a(i)- For a matrix A e R"™" diag(A) e R" isa

vector with (diag(A))[ﬂ = Ay For two vectors a,b € R", a o b denotes the element-
wise multiplication and a o~ b with by;) # 0 denotes element-wise division. For two
matrices A, B € S", Ao B denotes the element-wise multiplication and A o~ B with
B{.,-J—] # 0 denotes element-wise division. The vector ¢; € R™ denotes the ith unit
vector and [, € R"*™ denotes the identity matrix.

2. LDLT Factorization. In this section, we review the LDLT factorization for
positive definite matrices and also show that such a factorization exists even when the
matrix is only positive semidefinite. We begin with the following result on existence of
the LDLT factorization for positive definite matrices from Golub and Van Loan [19].

LemMMA 2.1. Given X € S | the matriz can be factorized uniquely as X = LDLT
where L is unit lower triangular and D is diagonal, positive definite matriz.

We introduce a partitioning of the matrices X and the factors L, D,
(6)
Xio1 @m ok Lioy 0io1xa % Di1 Op-px1 *
X=|2f X[,;,-] w|, L= | IF 1 #[, D= [01x@-1) d[,-_] *
*

il ]
* * #* * * * * *
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where X;, L;,D; € R¥*? are the ith principal minor of X, L, D, respectively and
xi,l; € R"™1, The LDLT procedure from [19] is presented in Algorithm 1. Since L is

Algorithm 1 LDL" Factorization
input X € 87
Set L[ll] = 1, d[]_] = Xl_“]
fori=2,...,ndo
Set D;_; = Diag(dlll, . ,d[?-_l])
Compute l; = D"\ L\ z;, dpyy = Xpia) — 17 Dyl
end for
return Factors L - unit lower triangular, d - diagonal of D

unit lower triangular, it follows that L; is also unit lower triangular. Hence,
(7) X;=L;D;LY.

The relation in (7) implies that L;, D; are the LDLT factors of X;. Using the notation
in (6) it can be easily verified that

-1 =
@) L7l = [L;j:l O(i—ll)x]] - [ flriill—l O(i—ll}xl] Vi=1,...,n.
=t Ly

i

Substituting ¢ = n in (8) yields L~'. Further, we denote by X1, D' € R™*" the
lifting of the i x i-matrices X; ', D;' € R™? to n x n-matrices. The lifted matrices

X_i-_l._D?.__ Lfori=1,..., n are given by

o = i (n—i == -1 o g
(9) X?_—l == [0 Xg" . @ O”(I(H_“) . ] . D:l = |:D D‘I - Otxl("_n | jl
(n—i)xi (n—i)x(n—i) (n—i)xi (n—i)x(n—i)

The inverse of X; can be expressed using (7) as
(10) X7 = (LDIT) = LTD7ALY = X =L-TD !

where the implication follows from (6), (8) and (9).

In the case of positive semidefinite matrices, we can still define a LDLT factor-
ization. However, the unit lower triangular matrix is not unique. The lemma below
characterizes the existence of such a decomposition. We do not provide a complete
algorithm but only existence of such a decomposition. The following is a modification
of Theorem 10.9 in Higham [24]. The uniqueness claims in Lemma 2.2(a) are our con-
tribution. We also note that Benson and Vanderbei [6, Theorem 1(b)] only claimed
that D is unique but did not provide a proof.

LEMMA 2.2, Suppose X € S with rank(X) = p.

(a) There exists a unit lower triangular matriz L and diagonal matriz with nonneg-
ative entries D such that X = LDLT. Further, D is unique and L is unique
fO?' D[ﬁ_l > 0.

(b) There exists a permutation matriz II such that

nr'xn=LbL”

L1 with L = [L“ Opx(”_"’)] D= [ Dy 0y (n—p)
Lo Log O-p)xp Om—p)x(n—p)
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where Ly € RP*P, Loy € RO=P)X(n=P) gre unit lower triangular, Ly, € R—P)xp
and Dy = 0 € RP*? is diagonal. Further, Liy, Loy, Dy are unique for the specified
permutation matriz I1.

Proof. Refer to Appendix A. ]

REMARK 2.1. The factorizations in the section have all been stated in terms of
unit lower triangular matrices. However, these can be stated equivalently in terms of
unit upper triangular matrices. In other words, Lemmas 2.1 and 2.2 can be restated
as showing existence of unit upper triangular matriz U and diagonal matriz D such
that X = UDUT. For the case of positive definite matrices, the loop in Algorithm 1
will be executed in reverse starting from element X,

We establish certain properties of the matrices X, S that satisfy X.S = ul,. The
lemma below relates the LDLT factorization of X to the UDUT factorization of S.

LEMMA 2.3. Suppose p > 0, X S e S”Pt+ and X = L(X)D(X)L(X)T. Then
XS = ul, if and only if S = U(S)D(S)U(S)T where U(S) = L(X)~T and D(X)D(S)
= ply,. Further, U(S) is unique.

Proof. Refer to Appendix B. a

Lemma 2.3 reveals a nice dual relationship in the LDLT factorization of X and
the UDUT factorization of S for all XS = ul, with g > 0. While the unit lower
triangular factor is unique for g > 0, it is not necessarily so in the case of p = 0.
However, we show next that we can still define a factorization.

LeMMA 2.4. Suppose X, S € 8. Then, XS = 0 if and only if there exist unit
lower triangular matriz L(X) such that X = L(X)D(X)L(X)T and S = U(S)D(S)
U(S)T with U(S) = L(X)™T and D(X)D(S) = 0.

Proof. Refer to Appendix C. 0

3. First and Second Derivatives of d};;(X). In section 3.1, we present an
elegant derivation of the first and second derivatives of d[f](X ). The derivative ex-
pressions provided here are equivalent to those in Fletcher [15] and Benson and Van-
derbei [6]. We also show that the functions dj;(X) are concave on S' , and hence,
prove that the LDLT formulation (4) is convex in Theorem 3.3. Benson and Van-
derbei [6, Theorem 3] showed that the Hessian of d;(X) is negative semidefinite for
X € 8% .. Finally, we also derive an expression for the action of the Hessian of the
Lagrangian on a symmetric matrix. The expressions in [6] required the computation
of several inner products involving inverses of principal minors and their summation
to compute even an element of the Hessian of the Lagrangian. This is susceptible to
numerical errors especially when approaching the solution to the SDP. In this sense,
our derivative expressions are computationally stable. In fact, as we show in the next
section, inversion of the principal minors is not necessary for computing the Newton
step.

3.1. Expressions for Vyd;(X), V'f\,d[.é](X). We start here by recalling the
definition of matrix derivatives [37]. Given a function g(X) : 8" — R, the first
derivative of g at X is denoted by the linear map Vxg(X) : §* — S" satisfying

(12a) i X+ AX) —g(X) — Vxg(X) e AX]

= 0.
lAX]—0 [IAX]|
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The second derivative of g at X is denoted by the linear map V%c g(X): 8" —» sn*
satisfying

N v — mat (72
(12b) - |[Vxg(X + AX) — Vxg(X) — mat (Vi g(X)vec(AX))|| o
lax]-0 lAX]|

Following the definitions in (12), the first and second derivatives of In(det(X)) w.r.t.
X (see for e.g. [37]) are

VxIn(det(X)) = X!, V% In(det(X)) = -X"t® X1
Hence, by the definition of X; (6), the derivatives of In(det(X;)) w.r.t. X; are
Vx; In(det(X;)) = X; ', V5, In(det(X;)) = -X; ' ® X\

The derivatives of In(det(X;)) w.r.t. X can be expressed as

——

(13) Vx In(det(X:)) = X, V2 In(det(X:)) = —X; ' ® X; !
To verify this, note that,

Vx, In(det(X;)) @« AX; =VxIn(det(X;)) e AX
(V%, In(det(X;))AX;) e AX; = (Vi In(det(X;))AX) e AX

where AXj; is the ith principal minor of AX.
From the unit lower triangularity of L; and diagonality of D;, we have that

det(X;) = det(L; D;LT) = det(L;) det(D;) det(LT) = H dy)-

=1
This provides us with the key observation

det(X;)

mV'ﬁ=2,....ﬂ

(14) dpy)(X) = det(X1), dp)(X) =

that simplifies the derivation of the expressions for the gradient and Hessian of d; (X ).
We are ready to present the derivation of the gradient and Hessian of d;)(X).

LEMMA 3.1. Let X € S7, and X = L(X)D(X)L(X)T. Then,
Vdy(X) = dpy(X) X7t = LT (e1eT)L! = eeT
Vg (X) = dgy (X) (5(?1 - )?:ﬂ) = L T(eieT) L' Vi=2,...,n
where e; € R" is the unit vector with 1 at the ith component and zero otherwise.
Proof. Since dj;)(X) = X[yy) (refer Algorithm 1),
Vix,dpy(X) = 1= dpy (X)X

—

= Vdy(X) =dy(X)X{ ' =L Terel L™ = ere]
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where the implication follows from (9) and (10). Consider i > 2. Taking logarithms on
both sides of (14), In(d};) (X)) = In(det(X;)) —In(det(X;-1)), and then differentiating
once obtain

Vindp(X) = Vin(det(X;)) — VIn(det(X;_1))
1 _ i1 Fel
WV(IM(X) = X:’ X:’—l
— Vd(X) = di(X) (X;‘ s X.j_‘l).
where the second equality follows from (13). Substituting (10) into the above yields

Vi (X) = dig(X)L~T (D71 = D) 17! = LT (esel )L

completing the proof. a
We now present the derivation of the second derivatives of d[i](X ).

LEMMA 3.2. Let X € S7, and X = L(X)D(X)L(X)T. Then,
V2 (X) =0
(16) V2 (X) = —d(X) (X7 ® X1 - dig(X) (X @ X7)
+2d(X) (X O X)) Vi=2,...,n

Proof. From Lemma 3.1, we have that Vd[;)(X) is constant and hence, V’“’d[ 1(X)
= 0. For the case of i > 2, consider taking two derivatives of (14)

V2In(dp;(X)) = VZIn(det(X;)) — V? In(det(X;_1))
1 N -1 & ¥-1
—V (WWIM(X)) =-(xeoxM) + (XA o x)

1 1
= g0 4 ~ gy (Ve (X) ® Vi (X))

= (X-s_l ® X-e_l) + (X:;_—11 ®X;'_—11)
where the second equality follows from the substitution of (13). The last equality
follows from substitution of expression for the first derivative from (15). Distribut-
ing terms in the kronecker product on the left hand side of the fourth equality and
rearranging yields the claim in (16). O

THEOREM 3.3. The optimization problem in (1) is convez.

Proof. The convexity of linear constraint in (4) is obvious. We focus on the
feasible set defined by the inequality constraints, § = {X | d;(X) = 0} in the rest of
the proof. We show that for any X,V € int(S§) =S8, the following inequality holds

(17) (f-[v;}(Y) < d[,-] (X)+ Vd[?-_] (X)e (Y - X)
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which proves concavity of d(;;(X) for X € int(S). This proves the convexity of int(S).
The convexity of S follows since the set S is the closure of int(S).

The remainder of the proof shows that (17) holds. Let D(X), L(X) and D(Y),
L(Y) be the unique LDLT factorizations for X and Y, respectively, by Lemma 2.1.
Substituting this into the the right hand side of (17) obtain,

diy (X) + Vdp (X) o (Y = X) = djy(X) + (L(X) Teie] L(X)™") o (Y — X)
=dp;(X) + (eie]) o (L(X)T'YL(X)™" = D(X)) = (ese]) o (L(X)T'YL(X)™T)

= (eje] ) o (L(X)'L(Y) D(Y)L(V)TL(X)™ ") = Z dijy(Y)(eie} ) o (LijLi )
—L i=1
=Y dy(NLiy= > dyn(V)LE; +dyY) 2 dy(Y)
j=1

J=lg#i

where the first equality follows from Lemma 3.1, the second equality from the in-
variance of trace inner product under cyclic permutations, the third equality from
el'D(X)e; = djjj(X), the fourth equality from the substitution of LDLT factoriza-
tion of Y, the fifth equality from diagonality of D(Y'), the sixth equality from the
simplification of trace inner product and the final equality follows by noting that
L = L(X)7'L(Y) is also unit lower triangular and d(;(Y) > 0 for all j = 1,...,n.
Thus, (17) holds for X,Y € int(S) and the claim follows. O

To close this section, we also derive an expression for the action of the Hessian of
the Lagrangian on a matrix. This will be used in the derivation of the Newton step
for the LDLT formulation in §4.1.

LEMMA 3.4. For X € S, let X = LDL™ denote the LDL factorization of X .
Then, for any z € R" and any symmetric matric G € S"
(18)
mat (— Z z[.‘-]vzd[;] (X)'uer:(G)) =L ((K — Diag(z 07 d)) o (L_IGL—T)) £t
i=1

z[nlﬂx(i.JH
where Kjjj) = —————".
B dmingi,g)

Proof. The matrix )Er ! can be expressed using (15) as
X7t = X7 + (1/dgg) LT eseT L.
The Hessian expression in (16) for i > 2 can then be simplified as
V2d(X) = ~LTe;eTL ' ® X7\ — X% ® L TeieT L1,

Substituting this expression for the Hessian of d;(X) into the Hessian of the La-
grangian and using the identity mat((A @ B)vec(G)) = BGA for A, B € S" we have
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that
mat (— Z z[,-_Ivzdl,-] (X)VCC(G))
i=1
= 2 (L TeeT L GX L + XA GL Teiel L)
i=2
=3 2L [ el (L'GL-T) D, + D, (L'GLT) eqef | L

=G

Tt

=LT| ) zg(eie] GD7Y + D\ Geel) | L7

i=2 -
en
LT (sz@ 5 ég')) g1
f=2

where we have used V2d dpyy( (X ) = 0 in the first equality. The second equality follows

by the substitution of X 1 from (10), and the third equality from collecting terms
and rearranging. The matrix G; satisfies

G
H-1 Zh
Gi =ee! TGD}, = e;e! G(E d[;](’;(’;)— (E d[z} )

0 otherwise.

In other words, é,— is a matrix in which only the first i — 1 elements of the ith row are
possibly non-zero. Thus,

r 0 Z[z Zn-1] Z[n] 7
P dn Ldn 4
2] n—1 M
n dp ¢ diz) dpz)
> z(Gi+Gf) = oG
i=2 Zn=-1] Zln-1] Zn]
dp) dpa : din-1]
L dp dpy din_1] 0 i

= (K — Diag(z0 ' d))oG.

Substituting the above in (19) yields the claim. O

4. Interior Point Method. The classical barrier formulation for SDP in (4) is

min C' e X — ;LZ In(d;; (X))

i=1

st. AX)=b

(20)
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where 1 > 0 is the barrier parameter. Since the determinant of X is det(X) =
[T, dj;y(X), the barrier term in (20) is the standard self-concordant barrier function
for positive semidefinite matrices [35]. Introducing dual variables zj; for u/d;(X),
the primal-dual first-order stationary conditions for (20) can be written as

n

i=1
(21b) AX)=b

Substituting the expression for Vd;(X) in (21) yields precisely the form in (5) as
alluded to in §1.

Interior point algorithms for SDPs compute a search direction by solving the
linearization of the first order stationary conditions such as in (2). The choice of
P (the third equation in (2)) leads to different directions. Further, the choice also
dictates if the resulting direction satisfies properties such as primal-dual symmetry,
scale invariance and uniqueness of the search direction; refer to [43] for a discussion.

For the LDL™T direction, there is no such ambiguity in the choice of the step
direction; refer to the complementarity constraints in (21c). Given an iterate (X, A, z)
with X > 0,z > 0 (possibly infeasible for (21a),(21b)), the interior point algorithm
for the LDLT formulation computes the search direction by solving a linearization of
the equations in (21). The linear system for computing the step (AX, A\, Az) is
(22a)

n n
i=1 1=1

A(AX) =7y
Vi=1,...,n
with Rg,rp, 7. defined as
Ri= —C—A" N+ 2yVdy(X), rp,= b—AX),
(22b) i=1

and r. = pl, — D(X)z

where 1,, € R" is a vector of all ones. Interior point algorithms employ block Gaussian
elimination to: (i) eliminate the dual variables for the semidefinite constraint using
the linearized complementarity constraint (the third equation in (22a)), (ii) eliminate
the primal variables using the dual stationary conditions (first equation in (22a)), and
finally, (iii) obtain a reduced system in the dual variables using the equality constraints
in the SDP. We also employ the block Gaussian elimination strategy to form the Schur
complement system and also describe an efficient method for computing the Schur
complement.

The remainder of the section is organized as follows. §4.1 describes the block
Gaussian elimination to compute the step. We also prove that the linear system leads
to a unique search direction. A comparison of the LDL” formulation with the existing
SDP search directions is presented in §4.2.

4.1. Block Gaussian Elimination of the Linear System. Suppose that
di(X), 25 > 0 for all i. As a first step, we eliminate Azp; using the last equation
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in (22a) as

Telil _ _ %0

(23) 820 = 30 (%)~ dy(X)

Substituting for Az from (23) into the first equation in (22a) results in,

mat (— Z z[i]vgd[,‘_] (X)VC(:(AX))

i=1

(24) + A*(AN) + i (Vd(X) e AX)Vd; (X)

(i)
diy (X)

Ra+ Z d[ 1 Vd[q X) = Rqg + L~ TDiag(r. o1 d(X))L™1.

The simplification on the right hand side of (24) is due to (15). The left hand side
of (24) can be simplified using (18) as

mat( Zz[ V2 (X)vec(AX) ) +Zd 2l )(Vd[](X)oAX)Vd[.,-](X)
i=1 []

= — lhag(z o o T T
25) = U7 (K ~Disg(z0™ d)) o (L7 AXL™T)) L™

(eTLIAXL Te;)L Te;el L1
Z “ dy; 1(X) ) '
= L—T (K o(L7'AXL™T)) L~

Substituting the simplification above into the left hand side of (24), multiplying on
the left and right by LT and L respectively we obtain

(26) K o AX + A*(AX) = LTRyL + Diag(r. o~ d)
where AX , ,2{, A* are defined as,
AX =L 'AXLT
A;=LTA;LYj=1,....m
(27) AAX) = (Al o AX,...,Apne AX)

T

A (AN =Y Ar 4.

The reduced system obtained by eliminating Az can be written using (26) and the
scaled quantities in (27) as
K o AX + A*(AX) = LTRyL + Diag(re o~ d)

28 .
=) ADX) =1,

where we have used A(AX) = A(AX), which holds since Aje AX = (LTA;L) »
(LTIAXL™T) = (A;LL 1) e (AXL TLT) = Aj e AX. The linear system in (28) can
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Az _ |Ta
Ax| = |y
where 74 = vec (LT R4L + Diag (r. o=1 d)), A € R™*™ ywith KU-] = vec(ﬁj)T, and

Ar = vec(&i’). For all X = 0,z > 0 the matrix Diag(vec(K)) is positive definite
and invertible. The Schur complement matrix M is defined as

be cast in a matrix form as

(29)

Diag(vec(K)) AT
A 0

(30) M = ADiag(vec(K)) *AT.

If AT has full column rank of m, then the Schur complement matrix M is nonsingular.
The search direction (A, Az) can be computed as

AX= M (J&Diag(vec(f())—'ﬁ, - r,,)
(31) = .
Az = Diag(vec(K))™! (Fd _ A7 AA) .

The step AX is obtained as L 111at(5?¢:)LT and Az from substituting in (23). Algo-
rithm 2 summarizes the step computation in the LDLT formulation. Observe that in
the algorithm only the evaluation of R; requires the computation of L~!. However,
the step computation only uses LT RyL which can be obtained without computing
L. Thus, the step computation of LDLT direction can be performed without in-
verting the lower triangular factor of X. The theorem states the main properties of
the LDLT step computation.

THEOREM 4.1. If the constraint matrices {Ay, ..., Ay} are linearly independent
and X = 0,z > 0, then ADiag(vec(K)) 'AT is positive definite and the search
direction (AX, AN, Az) is unique and AX is symmetric.

Proof. Since X = 0.z > 0, Diag(vec(K)) is positive definite. Further, 74, A are
vectorizations of symmetric matrices and the matrix K is also symmetric. Thus, it is
casily verified that mat(Ax) is also symmetric. From the linear independence of A;’s
and non-singularity of L, we have that AT has full column rank of m. Combining this
with the positive definiteness of Diag(vec(K)). we have that ADiag(vec(K)) 'AT is
positive definite. Hence, A\ is unique and so also, Az. Consequently, AX is also
unique while the symmetry of AX follows from earlier arguments. The uniqueness of
Az follows from (23), and uniqueness of AX and AM. o

4.2. Comparison with AHO, HKM, NT Directions. We derive the com-
putational complexity of the LDLT direction based on Toh [44, Appendix A]. Let
Ay, = Uy + UT where Uy, is upper triangular. Then, A = (LTU,L) + (L7UL)T can
be computed in n® 4+ n? flops. The product of upper triangular matrices LTUy, can
be computed in n®/3 flops while the product of upper and lower triangular matrices
LTULL can be computed in 2n3/3 flops (refer [44, Appendix A]). The addition of
LTUL and (LTULL)T requires another n? flops. The computation of B requires n?
flops. The (k. I)-entry of Schur complement matrix M, = K[k,]ﬁ[{] can be computed
in n? flops since it is an inner product of two vectors of length n?. All elements of the
Schur complement matrix can be computed in %m(m + 1) - n? flops since the matrix

M (30) is symmetric, given A.B. The computation of Schur complement matrix
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Algorithm 2 Step computation for the LDLT formulation.
input (X, ), z) € ST, xR™ xR%
Compute LTR4L, T'p, Te using (22h)
Compute:
e 7q = vec (LT R4L + Diag(r. o~' d))
o K with Ky = H[[—frff Vil=1,...,n
e A;=LTA;L,Bj=A;j0 ' KVj=1...,m
Set AT = [vec(ﬁl) i vec(ﬁm)], BT = [vec(gl) —_— vcc(ém)}

Compute: M = ABT, 7 = Bry

Solve:

o AA=M"1F—-rp,)

o Az = (?-’d o~ vee(K) — ]FE“!TA}\)

e AX = Lmat(Az)LT

o Az = (rc —zo dia.g(mat(gx))) o ld
return Step (AX, AN Az) € S" x R™ x §"

requires (0.5m*n? + m(n® + n?)) flops or (0.5m*n? + mn?) flops ignoring the lower
order mn? term. Thus, the total computation cost is identical to that for the NT
direction and lower than the HKM., AHO directions. We summarize the properties
of the different directions in Table 1. The computational complexity for AHO, HKM
and NT directions are from [44, Table 1] and the rest of the information is from Todd,
Toh and Tiitiineii [43, Table 1].

Table 1: Summary of SDP search directions.

Directions | Primal-dual Scale Uniquely Computational
symmetry | invariance | defined Directions complexity
LDLT no 1no yes mn® + 0.5m>n?
AHO yes 1no no 4mn® + m?n?
HEKM no ves yes 2mn® + m*n®
NT ves ves ves mn® + 0.5m*n*

The computational complexities reported in Table 1 assume that the data matri-
ces Ay are dense. In the case of sparse matrices, HKM and NT directions can exploit
the sparsity [16] to further reduce the computational cost. Fujisawa, Kojima and
Nakata [16] described different approaches for reducing the flops involved in comput-
ing the elements of the Schur complement matrix. In particular, the most efficient
approach in [16] required that the elements of the Schur complement were of the form
My = (EAF) e A; with the matrices E, F' being dense. The LDLT direction does
not satisfy this form (refer (30)). The AHO direction also has a form similar to the
LDLT direction and is limited in its ability to exploit sparsity. Thus, the LDLT
direction also suffers from this limitation. However, the matrix completion techniques
introduced in Fukuda et al. [17] provide an alternate approach to exploiting sparsity
and have been shown to reduce the computational times of SDP algorithms [34, 47].
We believe that the computations in the LDLT direction will benefit from exploiting
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the matrix completion techniques and will be explored in a separate study.

A direction for SDP is said to be primal-dual symmetric [42] if the same direction
is generated when the method is applied to the primal and dual formulations of the
SDP (1). The directions in the primal formulation are in the space " x R™ x R™. On
the other hand, the directions in the dual formulation will be in the space R" xR™ xS§".
Due to the incompatibility of the direction dimensions for the corresponding variables,
the LDLT direction is not primal-dual symmetric (refer Table 1).

A direction for SDP is said to be scale invariant if the scaling of the data ma-
trices C, Ax by an invertible matrix Q as QCQT,QAQ" results in the step being
transformed from (AX,AX AS) to (Q"TAXQ™', AN\, QASQT). The LDLT direc-
tion does not have this property when @ is allowed to be a general matrix. If we
restrict the matrix @ to be unit upper triangular, then the scale invariance property
does hold for the LDLT direction. We refer the interested reader to Appendix D for
details on this derivation.

5. Central Path. The central path in the LDL” formulation is the set

(32) (X", M, 2%) € S, x R™ x R" (X, MM, 21) satisfies (5)
M - .
’ . ++ ++ for some p i

It is well known that the central path for the standard SDP formulation in (2) is
unique. We show the analogous result for the LDLT formulation by exhibiting a
homeomorphism between the solutions to (2) and (21). In the rest of the section
when referring to (2), we assume that P = I, in the symmetrization operator Hp(:).
Then, Hp(XS) = (XS + SX) and

%(XS +8X)=pul, <> XS=4ul,

since X, S share the eigenvectors.

THEOREM 5.1. Suppose pp >0, X* € 8%, and X' = LED*(LM)T. The following
are true.
(i) (XH*, M, S*) e S}, xR™ xS, solves (2) if and only if (X#*, M, 2*) € ST x
R™ x R, solves (21) where Diag(z") = (L*)T SHLF.
(ii) The central path in (32), if it exists, is unique.
Proof. Consider (i). From Lemma 3.1, we have that

> 2V (X*) = (L*) T Diag(2")(L*) 7.
i=1
Lemma 2.3 yields that X#*S* = pl, <= DHzM = pul,, S* = (L"‘)“"r Diag(z*)
(L*)~! and the claim follows.
Consider (ii). The central path for the formulation in (2), with P = I,,, is the set

(33) {(XH, M, 8") |C +A*(A) — 8* =0, A(X*) =band X*S¥ = ul, }.

Kojima, Shindoh and Hara [25] have shown the existence and uniqueness of (33),
provided there exists a point (X, A, 5) € 87, x R™ x §7 , that satisfies primal and
dual feasibility, i.e.

X,5>0,C+A*(A\) =S5 =0, and A(X) =b.
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The claim in (i) establishes a homeomorphism between the central path (32) of the
LDLT formulation and the central path defined by (33). From Theorem 4.1, we have
that the Newton step computation in (22a) is unique under linear independence of
{Ax} for all (X, A, z) €S, x R™ xR, . Hence, the Jacobian of (21) is nonsingular
at all points on the central path. The claim on the uniqueness of the central path
follows from the application of the implicit function theorem. O

Given the central path in (32), it is reasonable to ask whether the central path
can be extended to g = 0 and if so, does the path possess analytic properties. Such
questions have been the subject of much investigation for the standard formulation (2)
by [1]1 13, 18, 21, 22, 26, 27, 28, 33]. Given the homeomorphism between the solutions
of (2) and (21), we believe that the results for (2) can be extended to the LDLT
formulation. One of the main difficulties is that the derivative for d;;;(X) for X € S%
are not defined. We set aside a full analysis for a future study. We close the section
with the following remark.

REMARK 5.1. A key requirement for the limit of lim,,_o (X", XM, 2/*) to satisfy (5)
with =0 is that

(34) lin}} L(X"y=1L"°, lin}) U(C + A* (M) =U°, and (L°)TU° = I,.
p— =+
If the above is true, then it can be readily seen that

limﬂ(X“, M2 if it exists is a solution of (5) for p = 0.
‘H'.—)‘

However, L° is not unique since the solution X* of SDP (1) is typically only positive
semidefinite. The conditions in (34) impose certain limiting behavior on both L(X")
and U(C + A*(A)). This is indeed restrictive and is unclear if this can be expected
to hold in practice for general SDPs.

6. Conditioning of the Schur Complement Matrix. In this section, we
investigate the conditioning of the Schur complement matrix (30) of the LDLT direc-
tion. We need to define certain regularity properties of the solution to the SDP (1)
which will be stated in the context of the LDLT factorization. The interested reader
is referred to Appendix E and F for the equivalence of these conditions to those
originally provided in Alizadeh, Haeberly and Overton [3].

For the purposes of the analysis in this section, we make the following assumptions
on the optimal solution (X™*, A\*, z*) to the SDP (4) satisfying the conditions in (5).
Assumptions
(Al) (X, z*) satisfy strict complementarity and X* has rank p with L*, D* as given
in (11) with

dyj 2+ 2 djpy > dpyy) = -+ =djp =0

?],l]d {] :zril T Z[*pf < z[*p-{_]] Einan S zf;.l]-

(A2) X* is primal nondegenerate, i.e.

{l(%;)u (A%

M
are linearly independent,
(AE)M On—pxn—p} }k=l

where A% = (L*)TA,L*, ()11 € S, ()21 € R*P*P refer to the subblocks consistent
with the notation in (11).
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(A3) (A*, (L*)"TDiag(z*)(L*)™") is dual nondegenerate, i.e.

{(;{};)n}m | span sP.

Assumptions (A2) and (A3) have been shown to be generic in [3. Definition 19].
Informally, a property is said to be generic for an SDP if it holds in a measure
theoretic-sense for almost all instances of the SDP, where an instance is defined by
(C, A, b). Assumptions (A1)-(A3) render the solution unique, which we state next.

THEOREM 6.1. Suppose that (A2)-(A3) hold. Then the optimal solution (X* \*,
2*) to (1) is unique. In addition, if (A1) holds then there exists a unique L* for
which (5) holds.

Proof. Uniqueness of multipliers (A*,z*) and X* follow from Lemma E.2 and
Lemma F.2, respectively. Suppose L* is not unique and that there exists L° #£ L*

such that (5) is satisfied. From (52a) in the proof of Lemma F.2

L*#L° = Ljy # Ly

i _ [@)~T —(L:I)—'f‘(Lgl)f'j(Lagr"]
(35a) =T = [0(n~p}><p (L35)7" R
(Lo)—T — [(LTI)_T _(L;l)_T(LEI)T(Lg2)_T:|
0(n—p)xp (ng)hT '

Uniqueness of (A*, z*) and satisfaction of (5) with L* and L° imply that
(35b) (L*)~TDiag(s*)(L*)~! = (L°)~TDiag(s*)(L°)~" (= §).
The equality in (35b) can be simplified using Assumption (Al) as
(L*)""Diag(0, ..., 0, 20, 15+ -+ 2y ) (L) 7!

=(L°)~"Diag(0,...,0, 2541y -+ 20 )(L°) 7

3 n|

(35¢)

From (35a) and (35¢), we have that the matrix S* in (35b) has two UDUT fac-
torizations. Further, the upper triangular factors differ in the columns that corre-
spond to nonzero diagonal entries (2, 4, - Zly)), contradicting Lemma 2.2. Hence,

L3, = L3, proving that L* is unique. g

To analyze the conditioning of the Schur complement matrix, we will focus on the
scaled transformation of the linear system in (22a). Substituting the expression for the
Hessian of Lagrangian (18) into (22a) and using the definition of scaled quantities (27),
we obtain

(K — Diag(z 07" d)) o AX + A*(A)) —Diag(Az) = LTR4L
(30) AEX) .
2o diag(AX) + dolAz=r.

where we have used Vd;)(X) e AX = (L Teje] L7') e AX = el L'AXL Te; =
KX ii]- Defining the matrices Dg and Zx by

(37) DK[,-_j] = {J’-[“lin(-ﬁ?_")], ZK[ij] = Z[max(i,j)] W€ have that K = Z o ! Dy
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Using Dy and Zg, the linear system in (36) can be equivalently represented in a
lifted space as

A (AN — AZ = LTR4L
(38) A(AX) =7
Zr6 AX +DgoAZ =R,

where R. = Diag(r.). We have introduced AZ € S" as an unknown in (38) in the
place of Az, We show the equivalence between (36) and (38), and relate AZ and Az
in the following. Since R. = Diag(r.), the third equation in (38) can be equivalently
written as

{diag(ZK ) o diag(AX) + diag(Dx) o diag(AZ) = 7.

Z (i BX (i) + Drpij) AZ5) = 06 # j
(37) zo diag(gj() +doAv=r,
- laz= Diag(Av) — (K — Diag(z 0~ ' d)) 0 AX

where Av represents the diagonal elements in AZ. The above equivalence can be used
to replace the third equation in (38). Further, the variable AZ in the first equation
of (38) can be eliminated to obtain a linear system in (E}Z’ , AN, Av) that is identical
0 (36). Thus, the step computation in (38) is equivalent to the computation in (22a)
for all X = 0,z > 0. We state this in the following without proof for brevity.

LEMMA 6.2. Suppose X >~ 0,z > 0. Then (.E)?,AA,AZ) solves (36) if and only
if (AX,ANAZ) solves (38) with diag(AZ) = Az.

We show in the remainder of the section that system in (38) is nonsingular in the
limit. Note that this does not imply that the system in (22a) is nonsingular. However,
the proof techniques used in showing non-singularity of (38) mirror those used for the
AHO direction in [2]. This serves as a precursor to obtaining results on conditioning
of the Schur complement matrix.

We first consider the structure of the matrices Zy, Dy,

(39)
2t -y A dyp dpy o+ dpp dpy
Zg 2t 21 2w dyy dyg -+ dpg  dp
Zg = : D= ¢ iy :
Zn-1] 2n-1 "7 Zn-1] Zn] dpy dpp - dip-1y dp-y
Zn]  Zn] 2] Zn] dpy dg - dip-yy dp)

Under (A1), we have that Zj, and Dj; have the following block-structure

* \T * * T
(40 ze— g2 By [ 5
21 22 21 F(n—p)x(n-p)
where D}, € RP*P, 7%, € R(n-p)x(n=p) px 7+ € R(=P)XP g]| having element-
wise positive entries. The form of the step computation in (38) bears resemblance to
that of standard interior point methods. In particular, this is similar to the AHO-
direction Hp(XS) = (XS + SX) presented in Alizadeh, Haeberly and Overton [2].
The precise correspondence between the LDLT and AHO directions is provided in
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Table 2: Relating the quantities in the LDLT and AHO directions.

| LDLT |  AHO
AX | (Z)TTAX(LY)T | (@1)TAXQ*
A'k (L*)TA;‘-L* (Q*)TA};Q*
(Zic )i Zfmax(i.j)] 2wy +uty)
(Dkis fonini, )] 2\l + A

Table 2. We refer the interested reader to Appendix G for details on the AHO
direction. In Table 2, Q* is the matrix composed of eigenvectors for X*, and AE}I, w[*z.]
are the eigenvalues for X* and the multiplier matrix S* (= (L*)~TDiag(z*)(L*)™1),
respectively. Observe that the non-zero block structure of Zj, D}, in (40) for the
LDLT method is identical to that for the AHO direction. The rest of quantities
in (38) are non-singular transformations of the quantities in the step computation of
AHO direction. Hence, the arguments in the proof of [2, Theorem 3.1] can be invoked
to obtain the main result on the conditioning of the linear system.

THEOREM 6.3. Suppose (A1)-(A3) hold at solution (X*, N, z*) to SDP (4). Then
the linear system in (38) is well-conditioned at the solution. Let M" be the Schur
complement matriz (30) defined on the central path (X" M, z"). Then

1
lim (pM") exists and has rank —p(p + 1).
p—=+0 2
If. in addition, m > %p(p +1) >0, then

cond(M") >

=l

for some constant ¢ > 0, where cond(-) denotes the condition number of matriz.

Proof. Tt can be verified that the arguments in proof of [2, Theorem 3.1] carry
over to the linear system in (38) to yield that

A(AN) - AZ =0
(41) A(AX) =0) = (AX,ANAZ)=0.
ZyoAX + D} oAZ=0

This proves the claim on the linear system in (38). Since dﬁ]zﬁ] = u holds on the
central path, then K = 2,001/ @hmin(ey) = 1/ (dfyydfy))- Hence,

pM* o = Al o ((d“(d")T) o ﬁ;‘) = Ale (Diag(dﬂ)ﬁmiag(d“)) — AL X" e A XM

which is identical to the AHO direction. The remaining claims on the Schur comple-
ment matrix follow from Theorems 4.1 and 4.2 in [2]. O

7. Implementation & Results. The standard interior point algorithms for
SDPs compute a step by solving a linearization of (2). The nonlinearity in the step
computation is restricted to the complementarity conditions. It is typically easy to
satisfy the dual stationary (the first equation in (2)) and primal feasibility within a
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Algorithm 3 LDL"-based Interior Point Method (LDLT)

1: Let € € (0,1) be a desired convergence tolerance.

2: Let v = (X% A% 2%) be an initial iterate with X° = 0,z" > 0.

3: Choose {4, x,7} C (0,1).

4: Set [ = 0.

5: repeat

6: Set k=0.

7: repeat

8: Compute AvF = (AX* ANF, Az¥) as described in Algorithm 2.

9: Set af = { ""'“(_(er)_l‘ﬁxk) if imax (_(Xk)_lAXk) >0 where
P 1 otherwise '
Omax(—(X*¥)"TAX*)  denotes the largest eigenvalue of the matrix
—((X*¥)~rAXk).
T s k 1.k
10: Set aff := max (-Azf/2f, ) i - (_Azi*']/zm) >0
1 otherwise.
11: Set vFt1 = (X* + ab AXK AF + ok ANF, 2K 4 o AZF).
12: Set k=k+ 1.
13:  until 8(v*; ) < kpt
14:  Set p'tt = oput.
15:  Set v(p') = v*, v° = v(y!).

16: Setl=1+1
17: until O(v(p'~1);0) < e
18: return wv(p'~')

few iterations of the interior point method. The remaining iterations of the algorithm
are spent in converging on the complementarity constraints.

The LDL™ formulation (21) results in nonlinearity in the dual stationarity condi-
tions and the complementarity conditions (the third equation of (21)). As a result, the
LDLT formulation typically satisfies the dual stationarity conditions only in the limit.
In this sense, the LDLT formulation has similarity to the classical barrier formula-
tion for SDPs. Unlike the standard formulation, the dual variables are restricted to a
space in which the primal variables X and multiplier matrix L(X)~ 7 Diag(z)L(X)™!
conform to a specific structure.

We implemented an infeasible interior point algorithm employing a monotone up-
date strategy for the barrier parameter p. The interior point algorithm is summarized
in Algorithm 3. For the sake of brevity, we denote by v := (X, A, z) € 87, xR™ xR} |
and ®(v; u) = 0 the first-order stationary conditions in (5). The termination criterion
in the algorithm is defined as

1y 1 |z — pl
(42) f(v;p) := max (||vcar:(D2 LTR4LD?)||co) lIrpllcos 1iE{nlla.)(n} (%))

where Rg, 7y, 7. are as defined in (22b). The particular scaling of R, is motivated
by our analysis of the central path in the limit; refer Remark 5.1. The scaling of
LTR4L by D* removes the need for L(X (1))~T to converge to U(C + A*(A(u))) in
the limit. The scaling used in the complementarity term was observed in our numerical
experiments to be beneficial in aiding convergence on ill-conditioned SDPs.
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The computations of the quantities u;‘;, aﬁ in Lines 9 and 10 follow the standard

techniques described in [43]. The choices of a;;, ak ensures that

Xt (1 =) X% =0and 25 > (1=7)2F > 0.

The inversion of X* in the computation of a;’:‘; is not necessary. Instead, one can
equivalently compute the largest eigenvalue of (D"')_%mat(&v)(D“)_% where Az is
defined in (31) and D* is the diagonal matrix in the LDL? factorization of X*. Thus,
in our implementations we never invert L(X").

The convergence analysis of interior point methods typically require the iterates
to lie in a neighborhood around the central path [32]. However, computational exper-
iments with SDPT3 [45] have demonstrated that such restrictions are not necessary
for good practical performance. Our computational experiments have also shown that
the imposition of a neighborhood around the central path was not necessary.

The results are obtained using the following values for the parameters in the
algorithm: d = 0.5, k = 0.5, 7 = 0.95 and ¢ = 1075, The initial value of barrier
parameter was p” = 1 and the initial iterates were set as X° = 1,,2° = u%1,,
and \° = —(AA*)"' A (C — Diag(z°)). The choice of A’ minimizes ||C + A*()\) —
Diag(z")| r and is also referred to as the least-squares multiplier estimate.

Algorithm 3 was implemented in MATLAB R2014a and executed on a Linux
machine with 3.20 GHz Intel(R) Core(TM) i7-3930K processor and 32 GB RAM. We
tested the algorithm on 79 of the SPDLIB instances [7] available at http://euler.nmt.
edu/~brian/sdplib/sdplib.html. To compare the performance of the LDLT direction
against the standard SDP directions, we also implemented infeasible interior point
algorithms based on:

e primal barrier direction and monotone update strategy for barrier parameter
(Barrier). The primal barrier direction does not use the dual variables z in
the algorithm and the termination condition for the algorithm was modified
as

0(v; 1) := max (|lvec(DFLT(C + A"(W)LD = ula)oo, Irplle ) -

where v = (X, A).
e HKM direction and monotone update strategy for barrier parameter (HKM).
The termination condition for the algorithm was

6(v; 1) = max (vec(C + A" (A) = S)lloos lIrpllocs |(X @ 8)/n — ).

where v = (X, A, 5).
e HKM direction and predictor-corrector based update strategy for barrier pa-
rameter (HKMPC). The predictor step and centering parameter were computed
as described in Algorithm NT-PC-QR of [43].
In our implementations, we scaled the constraint matrices A; and right hand side
b; by 1/||vec(A;)| - The objective matrix C' was scaled by 1/||vec(C')||~. SDPT3 and
SeDuMi also implement similar constraint scaling strategies. We also implemented
iterative refinement [29] to address inaccurate solutions of the linear system (31) when
computing AX. Iterative refinement was invoked whenever the error in satisfaction
of the linear system was greater than 107'° and was limited to a maximum of 10
refinement steps. SDPT3, for example, also employs iterative refinement.
Table 3 presents the number of problems solved by our implementations of the
SDP algorithms at different convergence tolerances. We have also included the perfor-
mance of the state-of-the-art SDP codes SeDuMi [41] and SDPT3 [45]. From Table 3,
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Table 3: Number of problems solved by each algorithm on the test set of 79 SDPLIB
problems for different convergence tolerances.

¢ | Barrier | LDL" | HKM | HKMPC | SeDuMi | SDPT3
10-° 46 58 62 64 45 65
10—° 54 67 | 66 78 59 71
1G4 56 74 | 73 78 70 74

it is clear that the barrier algorithm performs worse than the other algorithms. At a
tolerance of € = 107°%, LDLT (Algorithm 3) solved 58 instances while HKM and HKMPC
solved 62 and 64 instances, respectively. The number of instances solved by HKMPC
is comparable to that of SDPT3. On the other hand, SeDuMi solved only 45 of the
instances. At a relaxed tolerance of ¢ = 107°, LDLT and HKM solved 67 and 66 in-
stances, respectively, while HKMPC solved all but one of the instances. Once again the
performance of LDLT is better than that of SeDuMi which solved only 59 instances
while SDPT3 solved 71 instances.

Detailed results on the performance of LDLT, HKM, HKMPC and SDPT3 are provided
in Table 4 of Appendix H. A careful reading of the results will demonstrate to the
reader that HKMPC and SDPT3 require far fewer iterations for convergence than LDL®
and HKM. To compare the performance of algorithms we employ performance profiles,
introduced by Dolan and Moré [14]. Figure 1(a) plots the performance profiles of the
algorithms - LDLT, HKM, HKMPC, and SDPT3. The performance measure 74(7) in the
vertical axis of Figure 1(a) is computed as follows. Let it(i.s) denote the number of
iterations taken by algorithm s to solve problem instance ¢. Then, the quantity r4(7)
is computed as
= 2|i]
ny min it(i, s')
where n, denotes the number of problem instances. For an algorithm s, r4(7) repre-
sents the fraction of problem instances that are solved by algorithm s within a factor
7 of the fewest number of iterations taken among all algorithms on that problem.
From Figure 1(a) it is clear that HKMPC, and SDPT3 require the fewest number of
iterations on most problems. However, it is not possible to draw conclusions on the
relative performance of other algorithms. We refer the interested reader to Gould and
Scott [20] for a discussion on the limitations of performance profiles.

In order to better understand the relative performance of LDLT and HKM. Fig-
ure 1(b) plots the performance profiles of just these two algorithms. From Table 3
and Figure 1(b), it is clear that the performance of the LDLT is comparable to that of
the HKM. Figures 2(a) and 2(b) plots performance profiles in terms of time taken by
the algorithms. The profiles show a similar trend to that for iterations. The superior
performance of HKMPC is attributable entirely to the adaptive barrier strategy of the
predictor-corrector algorithm. This is consistent with the existing understanding of
the practical performance of interior point algorithms. The adaptive barrier strategy
of the predictor-corrector algorithm generates search directions that are close to the
central path, while also making significant progress towards the solution of the SDP.
We believe such a strategy will benefit the LDLT algorithm since the stepsize a* in
the initial iterations is curtailed to ensure that iterates do not violate the inequality
constraints dp;)(X), z; > 0. However, it is unclear how to extend this to the LDLT
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(a) Comparing iterations taken by LDLT, HKM, (b) Comparing iterations taken by LDLT, and
HKMPC, SeDuMi, and SDPTS3. HKM.

Fig. 1: Performance profiles comparing iterations taken by different algorithms. The
convergence tolerance was set to 1076,

(a) Comparing computational time taken by (b) Comparing computational time taken by
LDL", HKM, HKMPC, SeDuMi, and SDPT3. LDLT, and HKM.

Fig. 2: Performance profiles comparing computational time taken by different algo-
rithms. The convergence tolerance was set to 1076,

algorithm given the nonlinearity in the dual stationary conditions.

8. Conclusions. We presented an interior point algorithm based on the LDL”
formulation for SDPs. The contributions of the paper can be summarized as: (i)
derivation of the first and second derivative formulae for the SDPs that are efficient
to compute; (i) presentation of the LDLT formulation in the context of standard
interior point framework with comparable work per iteration; (iii) existence of the
central path; and (iv) conditioning of the Schur complement matrix that arises in the
step computation. The numerical results on SDPLIB problems clearly motivate the
need to develop adaptive barrier strategies to improve the numerical performance.
We also believe the dual formulation can exploit sparsity more effectively than the
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primal formulation. We will explore these in a subsequent study.

Appendix A. Proof of Lemma 2.2.

Consider the statement in (a). Following Higham [24, Theorem 10.9(a)], we
have there exists an upper triangular matrix such that X = RTR. The Cholesky
factorization without pivoting described in [24, § 10.3] yields an upper triangular
matrix R in which the ith row of R is zero whenever R;; = 0. Defining the lower
triangular matrix L = RT, unit lower triangular matrix L and diagonal matrix D as

Lyia/Lyin for i > §,Liin >0 _
L[”] — { [JI/E[JJ] or 1 ‘ J [74] and D[ﬁ] —— Lfii]
[ij] otherwise.

T . T = =T T

f=1 i:D (34 >0 ER) >0

We will prove uniqueness of D by contradiction. Suppose L/, D' are also LDLT
factors of X with D # D' and that X is only positive semidefinite. In the following,
we will show that L, = LE_I-] and D;;) = Diﬁ] sequentially for each i starting from 1.

(i) Consider i = 1. From the definition of the LDL™ factorization, X (. = Dyyy Ly
= DjyyLiy) and Ly = Ljyy = 1 we have that Dyyy) = Djyy). Further if
Dyyy) > 0, then Ly = Li'll' Thus the claim holds for i = 1.

(ii) Fori = 2, consider the matrix X (?) = X—D[u}L[,l}L'[}jl] = X_Dfll}Lf-ll(LE'll)T'
By the definition of the LDLT factorization

2 - d i - ! ! x T
X® =% "Dy LijLiy =Y Dy Lia(Lig™
Jj=2 =2

From (i), we have that first row and column of X is zero. Among the terms
involved in the summations on the right hand side, the term for j = 2 is the
only contributor to the second row and column of X}, We can repeat the
same argument in (i) for the second column of the matrix X 2) and show that
D[zg] = DIETZ] and L[g] = LEQ] if D[gg] > 0,'

(iii) For all other i > 3, consider the matrix X () = X3 D[_jj]L[,j]Lrjl. The first
i — 1 rows and columns of X¥) are zero. The same arguments can be repeated
for X9 to show that the claim holds for Dy;; and L.

This proves the claim on the uniqueness.

Consider (b). From Higham [24, Theorem 10.9(b)] there exists a permutation II

such that
Ry Ryo

" X1 = RTR with R =
0(-:!.—;1})(;1 0(-:1—:1}:-((1:—;1)

and Ry; € RP*P, R15 € RP*("=P) unique, Ry, upper triangular with positive diagonal
elements. Define the matrices Dy, L1, Loy as

Dyjij = (Rupg)® Lu = R\ D; 2, Loy = R3D; ®

where D is diagonal. The claim in (b) can be shown to hold for the above choice of
Dy, Ly1, Loy and any choice of an unit lower triangular matrix for Los.

Appendix B. Proof of Lemma 2.3.
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Consider the if part of the statement. Then,

X8 = L(X)D(X)L(X)"L(X)"TD(S)L(X)™' = L(X)D(X)D(S)L(X)™!
= L(X) (L) L(X) ™" = ply

which proves the claim. To prove the only if part, suppose X S = ul,,. Since X € 8§ ,
the matrix can be factorized as X = L(X)D(X)L(X)T with D(X) > 0. Hence,

XS=upl, = S=pX""'=pL(X)"TDX)'L(X)

Thus, D(S) = uD(X)~! = 0 which proves the only if part of the statement. The
uniqueness of U(S) follows by the same argument as uniqueness of L(X) (refer
Lemma 2.1).

Appendix C. Proof of Lemma 2.4.

The if part of the claim is straightforward. Consider the only if part of the claim.
We have that there exist factorizations X = LD(X)LT and S = UD(S)U7 satisfying
Lemma 2.2(a). We assume without loss of generality that
(43a)

L. = e; for i such that D(X)[ﬁ] =0 and Uy = e; for j such that D(S) 0.

i) =
Consider the statement XS = (. Substituting the factorization and left-multiplying
by L~! and right-multiplying by U~7 we obtain

XS=0 = DX)LTUD(S)=0.
\_v_l
=Y

Since LT, U are both unit upper triangular the matrix Y is also upper triangular and
satisfies

(43b) Yij) = 0ifi>j
D(X);yD(S); J.]LEJ-]U[, j] otherwise.

Since
,D(X)[1;‘,,_]D(S)[”_I =0ifi=3j
(430) },[ij] =)=

T .y 2
L{yUpy =0if i < j, D(X) ;4 D(S) ;> 0

lid

and Y = 0 leads to D(X)D(S) = 0. The matrix LU is unit upper triangular. If
the matrix satisfies (LTU )[,-ﬂ = 0 for all i < j, then LTU = I,, and we have that
L(X) = U(S)"T, proving the claim. In the following, we will construct matrices L
(unit lower triangular) and U (unit upper triangular) satisfying the properties

(43d) LTU =L"0, X = (LL™)D(X)(LL™)", and § = (UUHD(S)UT)".
This allows to define L(X) = LL™!, U(S) = UU™" as factors of X, S satisfying
L(X)TU(8) = (LL Y WU = L-TWLTU)0 = L T(LTO)T ! =1,

which proves the claim.
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In the rest of the proof we construct L,U satisfying (43d). From (43c), we
have that the possible nonzeros in L7U correspond to 4, such that D(X )[ii] =0

or D(S)

upper triangular matrix U as

= 0. Accordingly, define the unit lower triangular matrix L and unit

ei if D(X);; >0 ej if D(S);;, >0

(43¢) Ly = U =4 .
L (LTU)E‘Q,] otherwise ] L™"(L"U), otherwise.

In other words the matrices f), U set the columns that are unique in the factorization
of X, S (refer Lemma 2.2(a)) to unit vectors. Using (43e), it can be verified that

lifi=y

0ifi>j

0ifi <y, D(X)MD(S)[J.J.] >0
(L"U)yy if D(X)y; = 0 or D(S) ;= 0.

(L0 = — U =1T0

Therefore, the first part of (43d) is satisfied. Further, L1, U1 satisfy

> O, (i_lli)[l] =€, — i_li[l] =€ (4:>36) (i_l)[,i] =€

— (Li/_l)[.i] = L[-i]

Vi D(X)[Z.i]

(43f)
. PSR f 1 (43¢)
Vji:D(S)y; >0.U )y =¢; = U WUy =¢; = (U ) =¢

= (UU )y = Upy

where in the above we have have used the identity (A_lA)[_Z-] = ¢; for any non-singular
matrix A, which follows from A™1A = I,. Thus, the unique columns in L, U (refer to
Lemma 2.2(a)) are retained as such in LL~, UU ™!, respectively. Hence,

F— - - A (43f)
(LL~YD(X)(LL YT = Z D(X)y(LL DL =X
i:D(X)[ii]>0
r— - o A (43f)
and (UUT)D(S)UU " = " D(S),,,(UT ") y(UU N, ="
j:D(S)[jj]>0

Thus, we have constructed L, U satisfying (43d) which completes the proof.

Appendix D. Discussion on Scale Invariance of LDL” Direction.
Suppose the data matrices C, 4; in the SDP (1) are scaled as UCUT, UA;UT
where U is an unit upper triangular matrix. We represent the scaled problem as

min (UCUT) e W
Wwesn
(44) st. (UA;UT) e W = b Vji=1,...,m
W = 0.
The goal of this section is to show: If (AX, AN, Az) is the LDLT direction for the

SDP in (1) at an iterate (X, \, z), then (U"TAXUL, AN, Az) is the LDLY direction
for the SDP in (44) at an iterate (U-T XU ), 2).
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Observe that for every X € S, that is feasible to the SDP in (1), W =
U-TXU-! € s1, is feasible to the SDP in (44). Further, if L, D are the LDL”
factors for such an X, then U~TL, D are the LDLT factors for W = U-TXU~!, Let
(AX, AN Az) denote the LDLT direction for the SDP in (1) at the iterate (X, A, z).
It can be readily verified that the residuals for the scaled SDP in (44) at an iterate
(U-TXU™1, ), 2) have the following relation to those defined in (22b)

Ra(W,\,z) = URUT,
?‘;,("V, A: ‘3) = Tp'.'
and r.(W, A, z) = r..

The linear system for computing the LDLT direction (AW, A, Az) for the SDP
in (44) is

(45a)
mat (— > 2 v‘zd[,-](W)vec(AW)) FUA(ANUT =Y AzyVdy(W) = URUT
=1 i=1
AUTAWU) =17y
Zm(Vd[,-;(u’-) . A””) +d[ ](W’)QZ[ ] = Teli]
Vi=1,

where we have used the identities 2 ANGUA;UT = UA*(ANUT and (UA;UT) @
j_

AW = Aje (U TAWU). The steps outlined in §4.1 can be repeated to compute the

LDLT direction for (44). The key difference is that the occurrences of L in §4.1 should

be replaced by U~T L. The step Az in (-l.:"m) can be obtained as

Te [i]

di(X) ﬂ'[](X)

(451’)) AZM = (V(ITM ”’) AW)

Substituting for Az from (45b) into the first equation in (45a) results in
(45¢)

i=1

mat (- > z[.,;]Vr"d[ﬁ](W)vec(AIfl")) = UR4UT + UL TDiag(r. o~ d)L'UT

where the left hand side can be simplified as
(45d)

mat (—24”v d iy (W)vec( AW)) Z [“ (w[,v;(wy AW)Vdp (W)

i=1 =1

=ULT (Ko (L7'WTAWUL™T)) L ‘UT.
Note again that the simplification follows from replacing occurrences of L~ and L~7
in (25) with L='U7 and UL™T respectively. Substituting the simplification above
into the left hand side of (45¢), multiplying on the left and right by LTU~' and
U~TL respectively we obtain
(45¢€) Ko AW + /T"(A,\) = LTR4L + Diag(r, o' d)

where AW = L™'UTAWUL™T and A, A* are defined in (27). The reduced system
obtained by eliminating Az can be written using (45¢) and the scaled quantities in (27)
as

K o AW + A*(A)) = LT RyL + Diag(r. o~ d)

45f o
Sl AAW) =1,
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A visual comparison of (28) and (45f) shows that AX = AW. In other words,
AW = U TAXU and substituting in (45b) allows to verify that the step Az is
identical to the one obtained in (23). Thus, scaling the data matrices C, A; by an

unit upper triangular matrix U results in the LDLT direction being transformed from
(AX, AN Az) to (U"TAXUL AN A2).

Appendix E. Discussion on Primal Nondegeneracy.

The primal nondegeneracy conditions are presented in terms of tangent spaces of
semidefinite manifolds. In particular, we are interested in the following manifold of
fixed rank, say p, symmetric, semidefinite matrices

M, ={X" € S"|rank(X") = p} and M =St N M,

where p for instance represents the rank of the solution to the SDP. Arnold [5] and
Shapiro and Fan [39] derive the tangent space at X € M, in terms of the spectral
decomposition of X. In the context of SDPs, it is sufficient to consider X € M;{ .
Further, we assume without loss of generality that X € M;‘ satisfies

(46) dpy(X) 2 -+ = dp)(X) > dppyy(X) = -+ = dpp(X) = 0.

The tangent space to M), at X € M;‘ can be defined by the linear equations [38,
Eq. (23)],

(47) TXZ{X'ES"\v?X'vj:0V1§i§j§n—p}

where v1,...,v,—p is a basis for the null space of the matrix X. A basis for the null
space of matrix X € ./\/l;)|r can be obtained as follows. Let L, D denote the LDL”
factors of X. Then XL Te; = LDe; 0 for all j =(p+1),...,n where e; € R" is
the unit vector. Hence, a basis for the null space of X is

(48) (1 o v = LX) T [eprr 0 en].

It also follows from (48) that v/ X'v; =0 = el ,L7'X'L™"e,; = 0. Thus, at
X € M the tangent space is

E F
me={z] |2
FT 0(np)x(n—p)

EeSP Fe RPX(""’)} .

Under the trace inner product for symmetric matrices, the space orthogonal to the
tangent space Tx is

0 0 _
TL {LT [ pXp px(n P)} L~
0(n—p)xp G

G e S”p}

Further, define the set N as the null space of the equality constraints
N=A{X"eS"|AyeX'=0Vk=1,...,m}

and the space orthogonal to N is

(49) Nt = {Y

Y = iakAk } .
k=1
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From [3], X is said to be primal nondegenerate if X is feasible to SDP (1) and
(50) Tx + N =8"

We will prove a necessary and sufficient condition for primal nondegeneracy in terms
of the defined spaces. Note this was shown in [3] using the spectral decomposition of
the matrix X.

LEMMA E.1. Suppose X € M} satisfying (46) is feasible for SDP (1) and {Ax}
are linearly independent. Then. X is primal nondegenerate if and only if the matrices

(51) {[(LTAL-L)U (LT AL, ] }
(LTAk.L)Q] O(n—p)x(n—p) -

are linearly independent, where (-)11 € SP,(-)a1 € RU""P)XP yefer to the subblocks
consistent with the notation in (11).

Proof. The condition (50) is equivalent to Tg¢ NN+ = {0}. Let By for k =
1....,m denote the matrices in (51). Suppose { By} are linearly dependent. Then

T

Z BiBi. = 0 for some {3} not all zero

k=1
— Z B LT ArL — Z Z af?-_jeg-e‘? = 0 where a;; = Z ;E;C(LTARL)[.U]
k=1 i=p+1 j=p+1 k=1

mn

= iﬁmk:r’f ) Z aijeie] | L7

k=1 i=p+1 j=p+1
— TE NN+ £ {0}

where the last statement follows by noting that the left hand side of the preceding
statement is in N'* while the right hand side is in TXL. This proves the claim. g

A consequence of (51) is that the dual solutions are unique as shown next.

LEMMA E.2. Suppose X* is optimal to SDP (1) satisfying (46) and is primal
nondegenerate. Then (N*, z*) satisfying (5) for p =0 are unique.

Proof. Suppose the multipliers are not unique. Since X* is positive semidefinite,
the unit lower triangular factor L(X™*) is not unique. Accordingly, suppose that
e (A\*,z*) with L(X*)=L*
e (A°,2°) with L(X™*) = L°
both satisfy (5) for g = 0. By Lemma 2.2 and (46)

L* £ 1L°
= L3y # La,
N
L3, 22 | 21 L3y

— L* = E] [ I;p Opx(lb—p)} . 8= f} [ Ip Opx(:_p):l )
o(ﬂ.—p)Xp LQQ 0(.”_‘,_,))(;} L22

Note that L is also an unit lower triangular factor of X*. By the complementarity
condition in (5) and (46),

(52b) Z=---=z"p=0and gy =--- =2z =0.
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Since (A*, z*) and (A%, 2°) satisfy (5) we have by the first equation in (5) that

O+ AT ) = (@) [ Oer  Orieen)] eyt =g

(52(:) 0(?1—3J)xp D2

C_E_A#()‘O) _ (Lo)_T [ Opxp Opx(vé—p)} (LO)—] =1
U(H—p)Xp D3

where D3 = Diag(zfpﬂl, ; ..,zful) and D$§ = Diag( zfn]). We multiply the

27 e
[p+1]2* "
equations in (52¢) on the left and right by LT and L respectively to obtain

P ; 0 0 i
LT(C+ A*(\))L - [ Pxp an gD, } =0
( X)) 0(n—p)xp (L35) IDZ(LQZ) :
(52d) 5 5
_EIT C+A* 2\° ﬁ_ [ pXp - _px{uo—p}o P } = 0.
( ) On—pyxp (L32) D3 (L3,)~"
Subtracting the equations in (52d) obtain
Z(I\ﬁ_] = /\‘[)k]]fer}.fz — Z Z auﬁi(i}r =0
k=1 i=p+1 j=p+1

where ay; = ((L3y) " D3(L35) ™" = (L3,) ™" D5(L35)™")

= A =A°=0

(4]

where the last implication follows by (51). Since A* = X\°, (52¢) implies that (L*)~7,
Diag(z*) and (L°)~T, Diag(z°) are both UDUT factorizations of (C' + .A*(\*)). By
Lemma 2.2 and Remark 2.1 2* = 2°, proving the claim. ]

Appendix F. Discussion on Dual Nondegeneracy.
Let (A, S) be feasible for the dual SDP problem,
W T
(53) st. C+A*(N)—8=0
5= 0.

Let ¢ = rank(S) and let U be the unit upper triangular factor in the UDUT factor-
ization of S. According to Lemma 2.2 we have

(59) S=UDUT with U = [ U U“*] iD= [O(n—wx(u—fn ”(n—rnxw}
qu(n—q) U?? gx{n—q) D2

where Uy € RP—9%(n—a) [],, € RI%9 are unit upper triangular, U;p € R("—9)%4¢

and Dy = 0 € R7%7 is diagonal. Following the exposition in Appendix E, the tangent

space at S € Mq+ satisfying the decomposition in (54) is

(55) ‘T‘;:.’. s {U Ii[](‘u—.};é(n—q) gj| UT

Ge8l Fe R"’“‘”*‘f} .

From [3], (A, S) is said to be dual nondegenerate if (), S) is feasible to (53) and
(56} l}f?s +NL — S‘H‘

We will prove a necessary and sufficient condition for dual nondegeneracy in terms of
the defined spaces. This was shown in [3] using the spectral decomposition of S.
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LEMMA F.1. Suppose (A, S) € R™ x M;r with S satisfying (54) is feasible to
SDP (53) and {Ay} are linearly independent. Then, S is dual nondegenerate if and
only if the matrices

(57) {U AU )1}, span S™79,

where (+)11 € S—DX(=9) pefers to the subblock consistent with the notation in (54).

Proof. Let U be an upper triangular factor in the UDU” factorization of S. Let
W € S§" be any matrix. Then,

-1 =T -1 =TT
- 1 -T\T — (UWU ) (UWU )5 01
w=UWwuTyuT =U [(U—IWU~T)21 (- WU-T)s

_ (U_li';VU_T)ll O(TP—fI)Xq' T, 0(1’1,—(;)><(‘n.—q) (U_II"VU_T)%HI T
=U U +U (U"lﬂ"U‘T)gl (UHI'WU_T)QQ Uu'.

04 (n—q) qxq

There exist oy, for k = 1,...,m such that

T

WU =Y ar(U AUy if (57) holds.
k=1

Then,

wW=U (Z akU_lAkU“T) UT +U [0("*';;’;("-—‘” g UT if (57) holds
k=1

m

with FT = (U'WU ™ T)a1 = Y aw(U' AU )
k=1

G=UT"WU )= ap(U T AU™T)22
k=1
— §" = N+ + 75 if (57) holds

where the implication follows from (49) and (55). The only if part of the claim follows

from the definition of dual nondegeneracy in (55) and the form of N+ in (49) and Tg

in (55). O
A consequence of (57) is that the primal solution is unique as shown next.

LEMMA F.2. Suppose (A\*,S*) is optimal to the dual SDP (53) and is dual non-
degenerate. Then the optimal solution X* is unique.

Proof. By the complementarity condition and the decomposition for $* in (54),
any optimal solution X* to SDP (1) must be of the form

Xll 0(?;—(;)><q (U*)—I

qu(n—q] D"]'XQ

X* = (U* )-—T
where X7 = 0. Substituting for X* in the equality constraints obtain

(U ' AU*) e X1y =byyVk=1,...,m = Xi; is unique

where the implication follows by (57), proving the claim. O
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Appendix G. AHO Step Transformation.
The Newton step of the stationary conditions (2) corresponding to the AHO
direction (P = I) is computed by solving the linear system

(58)
A*(AN) —-AS =R, (=—(C+A*()\)-25))
A(AX) =1, (;=b-A(X))
1(SAX + AXS) +3(XAS+ASX) =R:. (=:—%(XS+5X)).

At a solution (X*, A", S*) to SDP (1), it is well known that X*, S* share the eigen-
vectors [25] i.e.

(59) X* = Q*Diag(\*)(Q")" and $* = Q" Diag(w*)(Q*)"
where Q* € R™*" is an orthonormal matrix of the eigenvectors of X* and S*, and
A*,w* € R™ are the eigenvalues of X*,5*, respectively. Further, \* o w* = 0 since

X*8* = 0. For the purposes of this section, we will assume that strict complementarity
holds, A* 4+ w* > 0 and further

Afl]Z"-E)\Fp] >/\£.p+l]="'=/\*l=0,

(60) A N i
and 0 = wm == w[p] 5 pr_‘_l] S me S w[n].

Consider the following transformation of the step AX and AS
AX = (Q")TAXQ* and AS = (Q*)TASQ".

With this transformation of variables the linear system in (58) can be recast as

_ A(Ax -AS = (" TR
(61) A(AX) =1
O 0 AX +A%oAS =(Q")TR.Q*

where A(AX) = [((Q*)TA1Q*) ¢ AX --- ((Q)TAnQ") o AX], Qi = §(1a(w")T +
(w*)1]) and Aj = $(1,(A*)" + (A*)1]). The correspondences listed in Table 2 can
be inferred by comparing the linear systems in (61) and (38).

Appendix H. Detailed Numerical Results.

Table 4 presents the results from solving the SDPLIB [7] instances using different
algorithms described in §7. The reported results are for the convergence tolerance
of 107%. We set an iteration limit of 200 for all algorithms. The results reported in
Table 4 are for the iterate v* that has the least #(v*;0) defined in §7. We will term
this iterate the best iterate for short and denote it as pPest = (XPest \best ;besty The
best iterate is indeed the optimal solution when the algorithm achieves the tolerance
of 1076, In Table 4, Primal Obj reported is C' ® X' Dual Obj corresponds to
—bTAPest . Opt Tol corresponds to #(vP°*,0) and # iter - number of iterations taken
by the algorithm, Time (s) - computational time in seconds, and Status reports the
status of the algorithm at termination. The possible termination status are: OPT -
solved to tolerance, I'TL - iteration limit reached, NUM - numerical issues encountered.
Termination of the algorithm with NUM is typically due to the Schur complement
matrix being ill-conditioned with condition numbers on order of 10'® or higher.
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