
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Reinforcement Learning with Function-Valued Action Spaces
for Partial Differential Equation Control

Pan, Y.; Farahmand, A.-M.; White, M.; Nabi, S.; Grover, P.; Nikovski, D.N.

TR2018-028 February 2018

Abstract
Recent work has shown reinforcement learning (RL) is promising to control partial differen-
tial equations (PDE) with discrete actions. This paper shows how to use RL algorithms to
solve more general and common PDE control problems where the action can be in continuous
high-dimensional space with spatial relationships amongst action dimensions. In particu-
lar, we propose the idea of action descriptors, which encodes regularities among spatially-
extended action dimensions and enables the agent to control high-dimensional action PDEs.
Based upon covering number argument, we provide theoretical evidence suggesting that this
approach can be more sample efficient compared to a conventional approach that treat each
action dimension separately and does not explicitly exploit the spatial regularity in the action
space. The action descriptors approach is then used within the deep deterministic policy gra-
dient algorithm, and experiments are conducted on two PDE control domains, with up to 256
dimensional continuous actions. The empirical results showthe advantage of the proposed ap-
proach over the conventional approach. We believe the action descriptor-based approach has
the potential of solving various PDE control problems with high-dimensional action spaces,
as well as some other classical high-dimensional action problems where the action dimensions
have regularities among themselves.

arXiv

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2018
201 Broadway, Cambridge, Massachusetts 02139

Reinforcement Learning with Function-Valued Action Spaces
for Partial Differential Equation Control

Yangchen Pan 1 2 Amir-massoud Farahmand 1 3 Martha White 2 Saleh Nabi 1 Piyush Grover 1

Daniel Nikovski 1

Abstract

Recent work has shown reinforcement learning
(RL) is promising to control partial differential
equations (PDE) with discrete actions. This pa-
per shows how to use RL algorithms to solve
more general and common PDE control prob-
lems where the action can be in continuous
high-dimensional space with spatial relationships
amongst action dimensions. In particular, we pro-
pose the idea of action descriptors, which en-
codes regularities among spatially-extended ac-
tion dimensions and enables the agent to con-
trol high-dimensional action PDEs. Based upon
covering number argument, we provide theoret-
ical evidence suggesting that this approach can
be more sample efficient compared to a con-
ventional approach that treat each action dimen-
sion separately and does not explicitly exploit
the spatial regularity in the action space. The
action descriptors approach is then used within
the deep deterministic policy gradient algorithm,
and experiments are conducted on two PDE
control domains, with up to 256 dimensional
continuous actions. The empirical results show
the advantage of the proposed approach over
the conventional approach. We believe the ac-
tion descriptor-based approach has the potential
of solving various PDE control problems with
high-dimensional action spaces, as well as some
other classical high-dimensional action problems
where the action dimensions have regularities
among themselves.

1Mitsubishi Electric Research Laboratories (MERL), Cam-
bridge, USA 2Department of Computing Science, Univer-
sity of Alberta, Edmonton, Canada 3Vector Institute, Toronto,
Canada. Correspondence to: Amir-massoud Farahmand <farah-
mand@vectorinstitute.ai>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

1. Introduction
This paper develops an algorithmic framework for han-
dling reinforcement learning (RL) problems with high-
dimensional action spaces. We are particularly interested in
problems where the dimension of the action space is very
large or even infinite. These types of problems naturally ap-
pear in the control of Partial Differential/Difference Equa-
tion (PDE), which has attracted attention because of their
potential applications spread over physical dynamic sys-
tem (Lions, 1971) and engineering problems, including the
design of air conditioning systems (Popescu et al., 2008),
modeling of flexible artificial muscles with many degrees
of freedom (Kim et al., 2013), of traffic control (Richards,
1956; Lighthill & Whitham, 1955), and the modeling of in-
formation flow among social networks (Wang et al., 2013).

Many dynamical systems can be described by a set of Ordi-
nary Differential Equations (ODE). Some examples are the
dynamics describing inverted pendulum, robotic arm ma-
nipulator (with inflexible joints), and electrical circuits (in
low-frequency regime for which the electrical radiation is
insignificant). The property of these systems is that their
state can be described by a finite dimensional variable.
The use of RL to control ODEs tasks such as mentioned
above, with either discretized action or continuous actions,
has been widely presented in various RL works (Sutton &
Barto, 1998; Kober et al., 2013; Deisenroth et al., 2013).
The success is most significant for problems where the tra-
ditional control engineering approaches may not fare well,
due to the complexity of the dynamics, either in the form
of nonlinearity or uncertainty. There are, however, many
other physical phenomena that cannot be well-described
by a ODE, but can be described by a PDE. Examples are
the distribution of heat in an object as a function of time
and location, motion of fluids, and electromagnetic radi-
ation, which are described by the heat, Navier-Stokes, and
Maxwell’s equations, respectively. The control of PDEs us-
ing data-driven approaches, including RL-based formula-
tion, has just recently attracted attention and is relatively
an unexplored area (Farahmand et al., 2016b; 2017a; Bel-
letti et al., 2017; Duriez et al., 2016).

Control of PDEs has been investigated in the conventional

RL with Function-Valued Action Space for PDE Control

control engineering (Krstic & Smyshlyaev, 2008; Ahuja
et al., 2011; Borggaard et al., 2009; Burns et al., 2016;
Burns & Hu, 2013; Brunton & Noack, 2015). Despite the
mathematical elegance of conventional approaches, they
have some drawbacks that motivate investigating learning-
based methods, in particular RL-based approaches. Many
conventional approaches require the knowledge of the PDE
model, which might be difficult to obtain. Designing a con-
troller for the model also requires a control engineer with
an expertise in modeling and control of PDEs, which makes
it even more challenging. Further, a hand-designed con-
troller is brittle to changes in the geometry and parameters
of the PDE, requiring repeated redesign of the controller to
maintain performance. This is impractical in many indus-
trial applications, such as an air conditioning system that
is deployed to a customer’s home. Moreover, many of the
controller design tools are based on a linear PDE assump-
tion, which ignores potentially useful nonlinear phenomena
inherent in PDEs, such as those in fluid dynamics prob-
lems (Foures et al., 2014). Designing a controller based
on this simplified model might lead to a suboptimal solu-
tion. Furthermore, the optimal controller is also typically
designed for the quadratic cost function, as opposed to a
more general objective, such as a user’s comfort level for
an air conditioning system.

It is desirable to have a controller design procedure that
has minimal assumptions, does not require the knowl-
edge of the PDE, and is completely data-driven. This can
be achieved by formulating the PDE control problem as
an RL problem, as has recently been shown (Farahmand
et al., 2016b; 2017a), or some other flexible data-driven ap-
proaches such as the genetic programming-based method
of (Duriez et al., 2016).

The PDE control problem is challenging because the the-
oretical state of a PDE is an infinite-dimensional vec-
tor. Moreover, many PDE control problems have infinite-
dimensional continuous action—function-valued action.
For example, if the PDE is controlled through its bound-
ary condition, the action space is a function space defined
over the continuous boundary. Spatial discretization of the
action space leads to a very high-dimensional continuous
action space with spacial regularities to be taken care of,
conventional RL algorithms, as we will discussed in later
section, may not be suitable for those problems.

In this work, we address PDE control with RL by using a
Markov Decision Process (MDP) formalism with function-
valued state and action. We then propose a generic method
to model actions in PDE control problems by introduc-
ing action descriptors, which can naturally scale to excep-
tionally high dimensional continuous action and simulta-
neously capture regularities among action components. We
provide some mathematical insight on why our proposed

approach might have a better sample complexity through
a covering number argument. By benefiting from action
descriptors, we propose an innovative neural network ar-
chitecture that is not changed with the increase of action
dimensions; rather, it simply queries an expanded set of
action descriptors. This contrasts standard RL algorithms,
that directly output a high-dimensional action vector. Last,
we empirically verify the effectiveness of our architecture
on two PDE control domains with up to 256 dimensional
continuous actions.

2. Reformulating PDE control as an MDP
In this section, we first provide a PDE control example, and
then briefly discuss how this could be viewed as an MDP.
We also highlight the need to exploit the spatial regulari-
ties in the action space of PDEs. For more discussion, refer
to Farahmand et al. (2016b).

2.1. Heat Invader: A PDE Example

PDE control problems characterize a dynamical system us-
ing partial different equations. An example of such a set of
equations is the convection-diffusion equation

∂T (z, t)

∂t
= ∇ · 1

Pe
∇T −∇ · (vT) + S(z, t), (1)

where S(z, t) is the is the source or sink at a specific lo-
cation z ∈ Z ⊂ Rd and time t; T (z, t) is the temperature
function at location z and t; ∇· is the divergence operator
measuring the difference between a sink and source in the
vector field; 1

Pe
is a diffusivity constant; and v = v(z, t)

is the velocity field, physically describing the airflow in
the domain, which is also a function of location and time.
This PDE describes how the temperature changes at each
location at each time step. We can further decompose the
source term S(z, t) = S(z, t; a) = So(z, t) + a(z, t),
where So(z, t) is a source term that cannot be controlled,
and a(z, t) is the action that we can control. The Heat In-
vader problem is a particular example of this convection-
diffusion PDE over a 2D domain Z with a time-varying
source So(z, t) (Farahmand et al., 2016b).

Since the location space Z is a continuous domain, the ac-
tion is a function lying in some function space. The dimen-
sion of this action space, however, depends on how we ac-
tuate the PDE. As a concrete example, if we can control the
temperature of the airflow going through an inlet in an air
conditioning system, the action is the scalar temperature of
the inflow air and the action space is one-dimensional real-
valued vector space (assuming we can control the temper-
ature with arbitrary precision). But we may also be able
to finely control the temperature of walls of a room by
a distributed set of minuscule heaters/coolers within the
wall (this technology might not exist today, but is perceiv-

RL with Function-Valued Action Space for PDE Control

able). In this case, the action is the temperature of each tiny
heater/cooler in the wall, so the action space would be a
extremely high dimensional vector space.

Generally, one may control a PDE by setting its boundary
condition or by defining a source/sink within its domain.
The boundary of a PDE has a dimension one smaller than
the domain of a PDE (under certain regularities of the ge-
ometry of the boundary). So for a 3D PDE (e.g., a room and
its temperature field), the boundary is a 2D domain (e.g.,
the walls). An action defined over the boundary, without
further constraint, is a function with a domain that is un-
countably large. A similar observation holds when we con-
trol a source/sink within the domain.

2.2. Formulation as an MDP

To relate this to the reinforcement learning setting, we first
provide a brief overview of this formalism, which involves
trial-and-error interaction in an environment formalized by
an MDP (Sutton & Barto, 1998; Szepesvári, 2010; Bert-
sekas, 2013). An MDP consists of (X ,A,P,R, γ), where
X denotes the state space, A denotes the action space,
P : X × A × X → M(X) is the transition probability
kernel (withM(X) being the space of probability distribu-
tions defined over X), R : X × A × X → M(R) is the
reward distribution, and γ ∈ [0, 1) is the discount factor.
At each discrete time step t = 1, 2, 3, ..., the agent selects
an action according to some policy π and the environment
responds by transitioning into a new state xt+1 sampled
from P(·|xt, at), and the agent receives a scalar reward
rt+1 samples fromR(·|xt, at, xt+1). The agent’s goal is to
maximize discounted cumulative sum of rewards, from the
current state xt, for some discount factor γ < 1. Typically
in the RL literature, both the state space and action space
are finite dimensional, for example with both being subsets
of an Euclidean space, Rd and Rk respectively. However,
this can be extended to infinite-dimensional vector spaces,
which we describe below and which is needed to represent
the PDE control problem as an MDP.1

Consider now the PDE control problem, and how it can
be formalized as an agent finding an optimal policy for
an MDP (X ,A,P,R, γ). In (1), the state and action are
infinite dimensional vectors (functions) xt = T (·, t) and
at = a(·, t). Both state and action are functions belonging
to some function space defined over the domain Z of PDE,
e.g., the space of continuous function C(Z), the Sobolev
space, etc. As an example, for the Heat Invader problem,
the state is the current temperature at all locations, and the

1The discounted MDP framework works fine with general
state spaces, under certain measurability conditions, c.f., Sections
5.3 and 5.4 and Appendix C of (Bertsekas, 2013). The conditions
would be satisfied for bounded Borel measurable reward function
and the Borel measurable stochastic kernel.

action can increase or decrease the source value at each lo-
cation. The particular choice of function space depends on
the PDE and its regularity. For simplicity of exposition, we
denote the space by F(Z).

The dynamics of the MDP is a function of the dynamics
of PDE. One difference between the MDP framework and
PDE is that the former describes a discrete time dynami-
cal system whereas the latter describes a continuous time
one. One may, however, integrate the PDE over some ar-
bitrary chosen time step ∆t to obtain the following partial
difference equation: xt+1 = f(xt, at) for some function
f : F(X) × F(Z) → F(X), which depends on the PDE.
As an example, for the convection-diffusion PDE (1) with
the state being T , we have f(T, a) =

∫∆t

t=0
∇ · 1

Pe
∇T −

∇ · (vT) + S(z, t; a)dt with the initial state at t = 0 deter-
mined by x and the choice of S(z, t; a) depending on a.2

So we might write P(x|xt, at) = δ(x − f(xt, at)), where
δ(·) is the Dirac’s delta function. More generally, if there is
stochasticity in the dynamics, for example if the constants
describing the PDE are random, the temporal evolution of
the PDE can be described by a transition probability kernel,
i.e., xt+1 ∼ P(·|xt, at).

The remaining specification of the MDP, including the re-
ward and the discount factor, is straightforward. For exam-
ple, the reward function in the Heat Invader problem is de-
signed based on the desire to keep the room temperature at
a comfortable level while saving energy:

r(xt, at,xt+1) = −cost(at) (2)

−
∫
z∈Z

I(|T (z, t+ 1)| > T ∗(z, t+ 1))dz,

where I(·) is an indicator function, T ∗(·) is a predefined
function describing the acceptable threshold of deviation
from a comfortable temperature (assumed to be 0), and
cost(·) is a penalty for high-cost actions.

Reinforcement learning algorithms, however, are not de-
signed to learn with infinite-dimensional states and ac-
tions. We can overcome this problem by exploiting the
spatial regularities in the problem, and beyond PDEs, ex-
ploiting general regularities between states and actions. We
provide more intuition for these regularities, and then in-
troduce MDPs with action-descriptors, a general subclass
of infinite-dimensional MDPs that provides a feasible ap-
proach to solving these infinite-dimensional problems.

2Note that this step requires the technical requirement of the
existence of the solution of a PDE, which has not been proven for
all PDEs, e.g., the Navier-Stokes equation. Also we assume that
the action remains the same for that time period.

RL with Function-Valued Action Space for PDE Control

2.3. Exploiting regularities in PDEs

One type of regularity particular to PDEs is the spatial reg-
ularity of their state. This regularity becomes apparent by
noticing that the solution of a PDE, which is typically a
1D/2D/3D scalar or vector field, is similar to a 1D/2D/3D
image in a computer vision problem. This similarity has
motivated some previous work to design RL algorithms
that directly work with the PDE’s infinite dimensional state
vector, or more accurately its very high-dimensional rep-
resentation on a computer, by treating the state as an im-
age (Farahmand et al., 2016b; 2017a). Farahmand et al.
(2016b) suggest using the Regularized Fitted Q-Iteration
(RFQI) algorithm (Farahmand et al., 2009) with a repro-
ducing kernel Hilbert space (RKHS) as a value function
approximator. For that approach, one only needs to define
a kernel between two image-like objects. Farahmand et al.
(2017a) suggest using a deep convolution network (Con-
vNet) as the estimator of the value function. ConvNets are
suitable to exploit spatial regularities of the input and pro-
vide domain-specific features from image-like inputs.

Even though these work can handle high-dimensional
states in PDE control problems, they are limited to a fi-
nite number of actions. Furthermore, their approach does
not exploit the possible regularities in the action space of a
PDE. For example, some small local changes in a control-
lable boundary condition may not change the solution of
the PDE very much. In that case, it makes sense to ensure
that the actions of nearby points on the boundary be simi-
lar to each other. The discretization-based approach (Farah-
mand et al., 2016b; 2017a) ignores the possibility of having
a spatial regularity in the action space. We next describe
how we can exploit these regularities—as well as make it
more feasible to apply reinforcement learning algorithms to
these extraordinarily high-dimensional continuous action
problems—by introducing the idea of action descriptors.

3. MDPs with Action Descriptors
We consider an MDP formulation where the state space X
and action space A can be an infinite dimensional vector
space, e.g., the space of continuous functions over Z . Pro-
cedurally, the agent-environment interaction is no different:
at each step, the agent selects a function at ∈ A at the cur-
rent state xt ∈ X , then transit to next state xt+1 according
to the dynamics of the PDE, and receives reward rt+1.

Even though the infinite dimensional state/action space
MDPs provide a suitable mathematical framework to talk
about control of PDEs, a practically implementable agent
may not be able to provide an infinite dimensional action
as its output, i.e., providing a value for all uncountably infi-
nite number of points over Z . Rather, it may only select the
values of actions at a finite number of locations in Z , and

through an “adapter” converts those values to an infinite
dimensional action appropriately as an input of the PDE.
As an example, consider the Heat Invader problem. There
might be a fine, but finite, grid of heater/cooler elements on
the wall whose temperature can be separately controlled by
the agent. Each of the elements is spatially extended (i.e.,
each element covers a subset of Z), so together they define
a scalar field that is controlled by the agent. The result is an
infinite dimensional action, an appropriate control input for
a PDE, even though the agent only controls a finite, but pos-
sibly very large, number of values. For some problems, the
set of controllable locations are not necessarily fixed, and
might change. For example, if one of the elements breaks
or some additional ones are added, the agent should ideally
still be able to control them.

We propose to model this selection of action-dimensions
(or the location of where the agent can exert control)
using action descriptors. For the Heat Invader problem,
the action descriptors correspond to the spatial locations,
z, of the air conditioners; more generally, they can be
any vector describing an action-dimension in the infinite-
dimensional action. The action descriptors can capture reg-
ularities across action-dimensions, based on similarities be-
tween these vectors.

To be concrete, let Z be the set of locations in the domain
of PDE, e.g., Z = [0, 1]2 for a 2D convection-diffusion
equation (1). An action location is c ∈ Z and determines
the location where the action can be freely selected by the
agent. The set of all action locations defines the finite and
ordered set C = (c1, . . . , ck), called action descriptor. Here
the number of actions k is finite. Given each action location
ci and the state x, the agent generates an action u(i) ∈ R.
Given the set of actions u = (u(1), . . . , u(k)) and the action
descriptors C, we have an “adapter” I : C × Rk → F(Z)
which outputs a function defined over domain Z . This
function is the action given to the MDP with infinite di-
mensional action space, i.e., at = I(C, ut).

The adapter can be thought of as a decoder from a finite-
dimensional code to a function-valued code. The choice of
I is not unique. One particular choice, which is useful in the
context of PDE control, is defined as follows: Based on the
action descriptors C, define a partition ofZ and denote it by
(A1, . . . , Ak), i.e.,

⋃
Ai = Z and Ai ∩ Aj = ∅ for i 6= j.

For example,Ai might be a rectangular-shaped region in Z
and ci being it centre. Another example would be Voronoi
diagram corresponding to centres in C. We then define

I(C, u) : z 7→
k∑
i=1

I{z ∈ Ai}u(i), (3)

which assigns the value of u(i) to any point within Ai.

To build a physical intuition, consider the Heat Invader

RL with Function-Valued Action Space for PDE Control

problem, where the action descriptors C correspond to the
spatial locations of the heater/cooler elements of the air
conditioners. Furthermore, the partitions Ai corresponds to
the region that each element takes. When we set the temper-
ature at location ci to a certain value u(i), in the model (3),
the value of the whole region Ai takes the same value u(i).
Note that this partitioning of the domain is somehow simi-
lar to the meshing in the finite element method.

Our action descriptor formulation allows exploiting the
spatial regularity of the action as it explicitly encodes in-
formation that specify correlations among different action
components, i.e., locations where different action compo-
nents are applied. Moreover, as long as I(C, u) can work
with variable-sized sets C and u, it allows variable number
of spatial locations to be queried.

The significance of this formulation parallels the gains
observed when moving from tabular state representation
to function approximators. Therefore, even though only a
finite number of action dimensions will practically ever
be queried, the generalization obtained across action-
dimensions should result in significantly improved learning
speed, even with high-dimensional continuous actions.

We would like to remark that this formulation encompasses
more specific cases such as a finite-dimensional action
space A = Rk. To see this, choose Z = {1, . . . , k} and
define Ai = {ei} for i = 1, . . . , k with ei being the unit
vector corresponding to the i-th dimension of Rk.

4. PDE control with RL algorithms
There has been some work addressing continuous action
spaces, including both with action-value methods (Baird &
Klopf, 1993; Gaskett et al., 1999; del R Millán et al., 2002;
van Hasselt & Wiering, 2007) and policy-based methods
(Schulman et al., 2015; Montgomery & Levine, 2016; Sil-
ver et al., 2014; Lillicrap et al., 2016; Schulman et al.,
2016). These methods, however, do not scale with ex-
tremely high-dimensional action spaces, because they ei-
ther have to optimize the action-value function over a high-
dimensional action space or output a high-dimensional ac-
tion vector. These approaches also do not explicitly ex-
ploit regularities between actions. Some work for high-
dimensional discrete (finite) action spaces do extract action
embeddings (Sunehag et al., 2015; He et al., 2015; Dulac-
Arnold et al., 2015) or impose factorizations on the action
space (Sallans & Hinton, 2004; Dulac-Arnold et al., 2012;
Pazis & Parr, 2011). These methods, however, are specific
to large sets of discrete actions. Existing methods, then,
cannot be directly applied to learning for these (extremely)
high-dimensional continuous action problems with regu-
larities. We now discuss how to modify a policy gradient
method to extend to this setting.

For our MDP problem formulation with action descrip-
tors, we propose to learn a policy function that get the
state along with action descriptors and outputs actions or
probabilities over actions. Consider the policy parameter-
ization πθµ : X × Z → R. For a given state xt, under
the infinite-dimensional MDP formalism, the selected ac-
tion is at = πθµ(xt, ·) which is function-valued. With the
descriptor set C, the policy outputs the ith action compo-
nent by evaluating πθµ(xt, ci), ci ∈ C and hence we are
able to get action ut ∈ R|C|. Through the use of I(C, ut),
it is converted to the correct number of dimensional action
whatever the domain needed. Although a distribution over
such functions could be maintained, for simplicity in this
preliminary work, we focus on deterministic policies.

The Deterministic Policy Gradient algorithm (Lillicrap
et al., 2016) is an appropriate choice to learn such a de-
terministic policy. For finite-dimensional action spaces A,
let πθµ(·) : X → A be the actor network parameterized
by θµ, Q(·, ·; θQ) : X × A → R be the critic network pa-
rameterized by θQ. Similarly to the stochastic case (Sutton
et al., 2000), the goal is to maximize the expected average
reward, under that policy

J(πθµ) =

∫
X×X

dπθµ (x)r(x, πθµ(x), x′)dxdx′.

The Deterministic Policy Gradient theorem (Lillicrap
et al., 2016; Silver et al., 2014, Theorem 1) shows
that the gradient of this average reward objective, un-
der certain conditions, is the expected value, across
states, of ∇θµQ(x, πθµ(x); θQ). Using the chain rule,
this provides a straightforward gradient ascent up-
date for θµ: ∇aQ(x, a; θQ)|a=πθµ (x)∇θµπθµ(x), where
∇aQ(x, a; θQ)|a=πθµ (x) is the Jacobian matrix generated
by taking gradient of each action component with respect
to the actor network parameters.

We can extend this algorithm to use action descriptors as
showed in Algorithm 1, which can efficiently scale to ex-
tremely high-dimensional continuous actions while cap-
turing the intrinsic regularities. From implementation, the
change to vanilla DDPG is to make the actor network have
only one output unit, and hence we think of it as a func-
tion space. Given a state, we are able to specify a function
within that space, and then it can be evaluated on k action
descriptors to get the desired action vector u ∈ Rk.

5. Theoretical Insights
We provide theoretical evidence that learning a policy that
explicitly incorporates the action location z might be bene-
ficial compared to learning many separate policies for each
action location. The evidence for this intuitive result is
based on comparing the covering number of two differ-

RL with Function-Valued Action Space for PDE Control

Algorithm 1 DDPG with Action Descriptors
Initialize a random process N for exploration
buffer B for experience replay
actor and critic networks:
π(·, ·; θµ) : X × Z 7→ R, Q(·, ·; θQ) : X × Rk 7→ R
target actor and critic networks π(·, ·; θµ′), Q(·, ·; θQ′)
set of action descriptors C, |C| = k
target network update rate τ
for t = 1, 2, ... do

Observe xt, take action ut + N ∈ Rk where each
component u(j)

t = π(xt, cj ; θ
µ),∀cj ∈ C

Transition to state xt+1 and get reward rt+1

Add sample (xt, ut, xt+1, rt+1) to B
BN ← a mini-batch of N samples from B
for (xi, ui, xi+1, ri+1) ∈ BN do

u′ = [π(xi, c1; θµ′), . . . , π(xi, ck; θµ′)]

set target yi = ri+1 + γQ(xi+1, u
′; θQ

′
)

end for
// use BN and corresponding targets
Update the critic by minimizing the loss:
L = 1

N

∑N
i=1(yi −Q(xi, ui; θ

Q))2

Update the actor by gradient ascent, with gradient:
For f(θµ) = [π(xi, c1; θµ), . . . , π(xi, ck; θµ)]
1
N

∑N
i=1∇uQ(x, u; θQ)|u=f(θµ)∇θµf(θµ)

Update target network parameters:
θµ′ ← (1− τ)θµ′ + τθµ

θQ
′ ← (1− τ)θQ

′
+ τθQ

end for

ent policy spaces. The first is the space of policies with
certain spatial regularity (Lipschitzness in z) explicitly en-
coded and the other is the policy space where the spatial
regularity is not explicitly encoded. The covering number
is a measure of complexity of a function space and appears
in the estimation error terms of many error upper bounds,
both in supervised learning problems (Györfi et al., 2002;
Steinwart & Christmann, 2008) and in RL (Antos et al.,
2008; Lazaric et al., 2016; Farahmand et al., 2016a). Note
that the covering number-based argument, is only a part of
an error upper bound even in the supervised learning theory
(Mohri et al., 2012, page 61). Due to complications arising
from exploration strategy and convergence issues, to our
best knowledge, there is no estimation error bound so far
for deep reinforcement learning algorithms. Therefore, our
results only provide a possible mathematical insight rather
than a complete picture of the sample efficiency bound.

Consider a policy πθ : X × Z → R, parameterized by θ ∈
Θ. Let us denote this space by ΠL. We make the following
assumptions regarding its regularities (refer to the appendix
for the definition of the covering number and the proof of
the result).

Assumption A1 The following properties hold for the pol-
icy space ΠL:

• For any fixed action location z ∈ Z , the cover-
ing number of ΠL|z , {x 7→ πθ(x, z) : θ ∈ Θ } is
N (ε).

• The policy πθ is L-Lipschitz in the action location z
uniformly in θ ∈ Θ and x ∈ X , i.e., |πθ(x, z1) −
πθ(x, z2)| ≤ L ‖z1 − z2‖ for any z1, z2 ∈ Z and any
x ∈ X . The domain Z is a bounded subset of Rd.

We think of ΠL as the policy space to which the optimal
policy, or a good approximation thereof, belongs, but we do
not know which member of it is the actual optimal policy.
The role of any policy search algorithm, DDPG included, is
then to find that policy within ΠL. The stated assumptions
on ΠL describe certain types of regularities of ΠL, which
manifest themselves both in the complexity of the policy
for a fixed location z (through the covering numberN (ε)),
and its Lipschitzness as the location parameter varies. Note
that we have not proved that the optimal policy for the Heat
Invader problem, or any PDE control problem for that mat-
ter, in fact satisfies these regularities.

We would like to compare the ε-covering number of ΠL

with the ε-covering number of a policy space that does not
explicitly benefit from the Lipschitzness of ΠL, but still can
provide an ε-approximation to any member of ΠL. This
policy might be seen as the extreme example of the policy
used by conventional DDPG (or any other policy search al-
gorithm) where each action dimension is represented sepa-
rately. In other words, for havingN -dimensional action, we
have N different function approximators. Let us introduce
some notations in order to define this policy space more
precisely.

Consider a set of locations {ci}Mε
i=1 and their corresponding

partition {Ai}Mε
i=1 with resolution ε

2L . This means that for
each z ∈ Z , there exists a ci ∈ Ai such that the distance of
z to ci is less than ε

2L and z ∈ Ai. The number of required
partition is Mε = c(ε

2L)d, for some constant c > 0, which
depends on the choice of distance metric and the geometry
of Z (but not ε).

Define the following policy space:

Π =
{
πθ(x, z) =

Mε∑
i=1

πθi(x, ci)I{z ∈ Ai} :

πθi ∈ ΠL|ci , i = 1, . . . ,Mε

}
.

This is the policy space where each action location is mod-
eled separately, and it is allowed to be as flexible as any
policy in ΠL with a fixed action location. But this policy
space does not restrict the policy to be Lipschitz in Z , so it
is more complex than ΠL. The following proposition com-
pares the complexity of Π and ΠL in terms of the logarithm
of their covering numbers (metric entropy).

RL with Function-Valued Action Space for PDE Control

Proposition 1. Consider two policy spaces ΠL and Π, as
defined above. Suppose that ΠL satisfies Assumption A1. It
holds that for any ε > 0, the policy space Π provides an
ε-cover of ΠL. Furthermore, for some c1, c2 > 0, indepen-
dent of ε, the following upper bounds on the logarithm of
the covering number hold:

logN (ε,ΠL) ≤ c1
(
L

ε

)d
+ logN (ε),

logN (ε,Π) ≤ c2
(
L

ε

)d
logN (ε/2).

The covering number of Π grows faster than that of ΠL.
This is intuitive as the former imposes less restriction
on its members, i.e., no Lipschitzness over Z . To give a
more tangible comparison between two results, suppose
that logN(ε) = cε−2α for some c > 0 and 0 ≤ α < 1.3 In
that case, the metric entropy of ΠL behaves as ε−max{d,2α}

whereas that of Π behaves as ε−(d+2α).

Since there is no error bound for DDPG, we cannot com-
pare the error bounds here either. But for some estimation
problems such as regression or value function estimation
with a function approximator with the metric entropy of
logN(ε) = cε−2β , the optimal error bound behaves as
O(n−

1
1+β), with n being the number of samples (Yang &

Barron, 1999; Farahmand et al., 2016a). Taking this as a
rough estimate, the ratio of the error rates would be

n
1+d+2α

1+max{2α,d} ,

which becomes significant as α, the complexity of ΠL|z ,
grows. This suggests the possible benefit of explicitly in-
corporating the spatial regularity in the Z space, in terms
of sample complexity of learning.

6. Experiments
We now empirically show that our approach can be easily
scaled to large continuous action dimensions while main-
taining competitive performance. We also verify that ex-
ploiting the regularity improves both speed of learning and
stability, as the action dimension increases. We compare
vanilla DDPG, and DDPG with separate Neural Networks
(NN) for each action component, to our DDPG with Ac-
tion Descriptors. The network architecture is the same for
both vanilla DDPG and our DDPG with descriptor, except
in the last layer, where DDPG outputs a k-dimensional ac-
tion vector and DDPG with Action Descriptors only uses
one output unit. We tested on two domains. The first is a

3This particular choice of metric entropy holds for some non-
parametric function spaces, such as many RKHS. We should warn
the reader that we do not show that this covering number result ac-
tually holds for the policy space ΠL|z , so at this stage this is only
an example.

simple PDE Model domain, and the second is the Heat In-
vader problem, which has been described throughout this
work. It is a more difficult problem with a stronger require-
ment on regularities.

6.1. Results on the PDE Model domain

The PDE model domain is using the 2D heat equation as
the underlying transition dynamic (please see A.4 for de-
tails). The infinite-dimensional state and action spaces are
discretized to X ⊂ Rd×d and A ⊂ [−1, 1]d×d (we get a
vector from algorithm and reshape it to a matrix). One can
intuitively understand the domain as following. At any lo-
cation (i, j) (an entry in the matrix xt ∈ X) which has high
temperature, it likely transfers its heat content to nearby lo-
cations, and vice versa. Note that the boundary condition
implies certain spatial regularity. Since all initial state val-
ues are positive, the 0 boundary value means the heat value
near the boundary is likely to decrease.

Figure 1 shows the comparison between our DDPG with
Action Descriptors and the other two competitors, as the
number of state and action dimension increases in d2 ∈
{36, 100, 256}. One can see that using action descriptors
consistently outperforms the other algorithms. On this do-
main both vanilla DDPG, and the one with separate NN
cannot work well, in fact, they showed certain level of di-
vergence when dimension is high d2 = 100, 256. Both of
them converge when d2 = 36, at ∈ R36; DDPG with sep-
arate NN shows slightly lower sample efficiency as we ex-
pected. However, in any action dimension, our DDPG with
Action Descriptors continues improving.

6.2. Results on the Heat Invader domain

The underlying state transition dynamics of this domain is
the PDE as described by Equation (1). In an ideal case,
there are infinitely many air conditioners on the floor, and at
each time step we can control the temperature for each air
conditioner. In simulation, the state and action spaces are
discretized. The state space is discretized to X ⊂ R50×50,
giving a total of 2500 measurement locations on the floor.
We experimented with a variety of discretization levels for
the action space: at ∈ [−0.5, 0]k, k ∈ {25, 50, 100, 200}.
Because the air conditioners are uniformly distributed on
the floor, in a square area, we can topologically think of it
as the area [−1, 1]2. Hence we can design the set of descrip-
tors as C ⊂ [−1, 1]2, where |C| = k and the descriptors are
uniformly distributed points in that area (please see A.5 for
details).

Figure 2 shows comparisons across different control di-
mensions. On this more difficult domain, requring a
stronger regularity, it becomes clear that DDPG with sepa-

RL with Function-Valued Action Space for PDE Control

50 100 150 200
Number of Episodes

-0.05

-0.045

-0.04

-0.035

-0.015

-0.01

-0.005

 Mean
Reward

Per
Episode DDPG with Separate NN

DDPG

DDPG with Action Descriptors

(a) PDEModel: action dimension = 36

50 100 150 200
Number of Episodes

-0.05

-0.045

-0.04

-0.035

-0.015

-0.01

-0.005

 Mean
Reward

Per
Episode

DDPG with Action Descriptors

DDPG

DDPG with Separate NN

(b) PDEModel: action dimension = 100

50 100 150 200
Number of Episodes

-0.05

-0.045

-0.04

-0.035

-0.015

-0.01

-0.005

 Mean
Reward

Per
Episode

DDPG with Action Descriptors

DDPG with Separate NN

DDPG

(c) PDEModel: action dimension = 256

Figure 1. Relative performance on the PDE-Model domain, with increasing dimension of the state and action space. The results are
averaged over 30 runs, with standard error displayed. DDPG with Action Descriptors consistently outperforms DDPG and DDPG with
separate NN. The latter two can converge to a policy only when the dimension is reasonably low, both them degrade after the action
dimension reaches 100, even with a careful parameter optimization on performance in the last 10% of episodes.

50 100 150 200
Number of Episodes

-0.6

-0.55

-0.5

-0.45

-0.25

-0.2

-0.15

 Mean
Reward

Per
Episode

DDPG with
Separate NN

DDPG

DDPG with Action Descriptors

(a) 25 dimensional action

50 100 150 200
Number of Episodes

-0.6

-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

DDPG with Action
DescriptorsDDPG

DDPG with Separate NN

(b) 50 dimensional action

50 100 150 200
Number of Episodes

-0.6

-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

DDPG with
Separate NN

DDPG with Action
Descriptors

DDPG

(c) 100 dimensional action

50 100 150 200
Number of Episodes

-0.6

-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

DDPG with
Separate NN

DDPG

DDPG with Action
Descriptors

(d) 200 dimensional action

Figure 2. Results of mean reward per
episode vs. episodes on the Heat Invader
domain, with an increasing action dimen-
sions. The results are averaged over 50
runs. Our DDPG with action descriptors
consistently outperform other algorithms
across dimensions, and vanilla DDPG
shows a higher sample efficiency than the
one with DDPG with separate NN. We
suspect the latter cannot converge to a
good policy after the dimension increased
to 50 due to its inability to capture the
regularities. The results suggest that 25 air
conditioners may not be sufficiently fine to
control the temperature well in the room, as
even the solution under DDPG with Action
Descriptors has more variability. Note that
the sharp increase in the reward early in the
graphs is due to the relatively large noise in
the action, triggering the airflow to be on
and making the temperature decrease faster.
As the noise decreasing in a few episodes,
the fan turns off and the agent has to learn
to improve its policy.

rate NN has a lower sample efficiency than vanilla DDPG,
and the former even shows divergence after the dimension
reaches 50. For k = 100 and 200, DDPG with Action De-
scriptors learns a significantly better and more stable pol-
icy, even though it only has one output unit, regardless of
the dimension of action. DDPG, and its variant of using
separate NN, on the other hand, has the number of outputs
growing with k. Theoretically, the finer we can control the
temperature, the higher reward we can potentially obtain.
We suspect there is a tradeoff between how well the agent
can learn the policy and how finely the temperature needs
to be controlled. Once the dimension increases to 100 or
200, only DDPG with Action Descriptors is able to exploit

this finer-grained control.

7. Conclusion
We demonstrated a general framework of using reinforce-
ment learning for PDE control, which theoretically could
have infinite-dimensional state and action spaces and prac-
tically has very high-dimensional continuous states and ac-
tions with special regularities to handle. We then proposed
the notion of action descriptors, to enable reinforcement
learning algorithms—such as deterministic policy gradient
algorithm—to be used for these problems. Theoretical ev-
idences are provided to illustrate why our approach could

RL with Function-Valued Action Space for PDE Control

have better sample efficiency. Our strategy enables the ar-
chitecture to easily scale with increasing action dimension.
We show that with the same neural network architecture,
except the output layer, we can obtain significantly bet-
ter scaling as dimension increases as well as better em-
pirical performance on two PDE domains. We believe our
proposed strategy is a potential substitution for conven-
tional methods of solving PDE control problems, and also
a promising and effective way to solve more classical rein-
forcement learning control problems with extremely high-
dimensional continuous action spaces.

RL with Function-Valued Action Space for PDE Control

References
Ahuja, Sunil, Surana, Amit, and Cliff, Eugene. Reduced-

order models for control of stratified flows in buildings.
In American Control Conference (ACC), pp. 2083–2088.
IEEE, 2011.

Antos, András, Szepesvári, Csaba, and Munos, Rémi.
Learning near-optimal policies with Bellman-residual
minimization based fitted policy iteration and a single
sample path. Machine Learning, 71:89–129, 2008.

Baird, L.C. and Klopf, A Harry. Reinforcement learn-
ing with high-dimensional, continuous actions. Wright
Laboratory, Wright-Patterson Air Force Base, Tech. Rep,
1993.

Belletti, Francois, Haziza, Daniel, Gomes, Gabriel, and
Bayen, Alexandre M/. Expert level control of
ramp metering based on multi-task deep reinforce-
ment learning. CoRR, abs/1701.08832, 2017. URL
http://arxiv.org/abs/1701.08832.

Bertsekas, Dimitri P. Abstract dynamic programming.
Athena Scientific Belmont, 2013.

Borggaard, Jeff, Burns, John A., Surana, Amit, and Ziets-
man, Lizette. Control, estimation and optimization of
energy efficient buildings. In American Control Confer-
ence (ACC), pp. 837–841, 2009.

Brunton, Steven L and Noack, Bernd R. Closed-loop tur-
bulence control: Progress and challenges. Applied Me-
chanics Reviews, 67(5), 2015.

Burns, John A and Hu, Weiwei. Approximation methods
for boundary control of the Boussinesq equations. In
IEEE Conference on Decision and Control (CDC), pp.
454–459, 2013.

Burns, John A, He, Xiaoming, and Hu, Weiwei. Feedback
stabilization of a thermal fluid system with mixed bound-
ary control. Computers & Mathematics with Applica-
tions, 2016.

Deisenroth, Marc Peter, Neumann, Gerhard, and Peters,
Jan. A survey on policy search for robotics. Found.
Trends Robot, 2(1–2):1–142, August 2013. ISSN
1935-8253.

del R Millán, José, Posenato, Daniele, and Dedieu, Eric.
Continuous-Action Q-Learning. Machine Learning,
2002.

Dulac-Arnold, Gabriel, Denoyer, Ludovic, Preux, Philippe,
and Gallinari, Patrick. Fast reinforcement learning with
large action sets using error-correcting output codes for
mdp factorization. In Joint European Conference on Ma-
chine Learning and Knowledge Discovery in Databases,
pp. 180–194. Springer, 2012.

Dulac-Arnold, Gabriel, Evans, Richard, van Hasselt, Hado,
Sunehag, Peter, Lillicrap, Timothy, Hunt, Jonathan,
Mann, Timothy, Weber, Theophane, Degris, Thomas,
and Coppin, Ben. Deep reinforcement learning in large
discrete action spaces. arXiv preprint arXiv:1512.07679,
2015.

Duriez, Thomas, Brunton, Steven L, and Noack, Bernd R.
Machine Learning Control–Taming Nonlinear Dynam-
ics and Turbulence, volume 116 of Fluid mechanics and
its applications. Springer, 2016.

E, W., Han, J., and Jentzen, A. Deep learning-based nu-
merical methods for high-dimensional parabolic partial
differential equations and backward stochastic differen-
tial equations. ArXiv e-prints, June 2017.

Farahmand, Amir-massoud, Ghavamzadeh, Mohammad,
Szepesvári, Csaba, and Mannor, Shie. Regularized fitted
Q-iteration for planning in continuous-space Markovian
Decision Problems. In Proceedings of American Control
Conference (ACC), pp. 725–730, June 2009.

Farahmand, Amir-massoud, Ghavamzadeh, Mohammad,
Szepesvári, Csaba, and Mannor, Shie. Regularized pol-
icy iteration with nonparametric function spaces. Jour-
nal of Machine Learning Research (JMLR), 17(139):1–
66, 2016a.

Farahmand, Amir-massoud, Nabi, Saleh, Grover, Piyush,
and Nikovski, Daniel N. Learning to control partial
differential equations: Regularized fitted Q-iteration ap-
proach. In IEEE Conference on Decision and Control
(CDC), pp. 4578–4585, December 2016b.

Farahmand, Amir-massoud, Nabi, Saleh, and Nikovski,
Daniel N. Deep reinforcement learning for partial differ-
ential equation control. In American Control Conference
(ACC), 2017a.

Farahmand, Amir-massoud, Pourazarm, Sepideh, and
Nikovski, Daniel N. Random projection filter bank for
time series data. In Advances in Neural Information Pro-
cessing Systems (NIPS), 2017b.

Foures, DPG, Caulfield, Colm-cille, and Schmid, Peter J.
Optimal mixing in two-dimensional plane poiseuille
flow at finite Péclet number. Journal of Fluid Mechanics,
748:241–277, 2014.

Gaskett, Chris, Wettergreen, David, and Zelinsky, Alexan-
der. Q-Learning in Continuous State and Action Spaces.
In Advanced Topics in Artificial Intelligence. 1999.

Glorot, Xavier and Bengio, Yoshua. Understanding the dif-
ficulty of training deep feedforward neural networks. In
Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics, 2010.

RL with Function-Valued Action Space for PDE Control

Györfi, László, Kohler, Michael, Krzyżak, Adam, and
Walk, Harro. A Distribution-Free Theory of Nonpara-
metric Regression. Springer Verlag, New York, 2002.

He, Ji, Chen, Jianshu, He, Xiaodong, Gao, Jianfeng, Li, Li-
hong, Deng, Li, and Ostendorf, Mari. Deep reinforce-
ment learning with an unbounded action space. CoRR
abs/1511.04636, 2015.

Ioffe, Sergey and Szegedy, Christian. Batch normalization:
Accelerating deep network training by reducing inter-
nal covariate shift. CoRR, abs/1502.03167, 2015. URL
http://arxiv.org/abs/1502.03167.

Kim, Kwang Jin, Choi, Hyouk Ryeol, and Tan, Xiaobo.
Biomimetic robotic artificial muscles. World Scientific,
2013.

Kober, Jens, Andrew Bagnell, J, and Peters, Jan. Reinforce-
ment learning in robotics: A survey. 32:1238–1274, 09
2013.

Krstic, Miroslav and Smyshlyaev, Andrey. Boundary con-
trol of PDEs: A course on backstepping designs, vol-
ume 16. SIAM, 2008.

Lazaric, Alessandro, Ghavamzadeh, Mohammad, and
Munos, Rémi. Analysis of classification-based
policy iteration algorithms. Journal of Machine
Learning Research (JMLR), 17(19):1–30, 2016. URL
http://jmlr.org/papers/v17/10-364.html.

Lighthill, M.J. and Whitham, J.B. On kinematic waves. i:
Flow movement in long rivers. ii: A theory of traffic flow
on long crowded roads. pp. 229:281–345, 1955.

Lillicrap, Timothy P., J. Hunt, Jonathan, Pritzel, Alexander,
Heess, Nicolas, Erez, Tom, Tassa, Yuval, Silver, David,
and Wierstra, Daan. Continuous control with deep rein-
forcement learning. 2016.

Lions, Jacques Louis. Optimal control of systems governed
by partial differential equations. 1971.

Mohri, Mehryar, Rostamizadeh, Afshin, and Talwalkar,
Ameet. Foundations of Machine Learning. The MIT
Press, 2012. ISBN 026201825X, 9780262018258.

Montgomery, William and Levine, Sergey. Guided policy
search as approximate mirror descent. 2016.

Pazis, Jason and Parr, Ron. Generalized value functions
for large action sets. In Proceedings of the 28th Interna-
tional Conference on Machine Learning, pp. 1185–1192,
2011.

Popescu, M. C., Petrisor, A., and Drighiciu, M. A.
Modelling and simulation of a variable speed air-
conditioning system. In 2008 IEEE International

Conference on Automation, Quality and Testing,
Robotics, volume 2, pp. 115–120, May 2008. doi:
10.1109/AQTR.2008.4588805.

Richards, P.I. Shockwaves on the highway. 1956.

Sallans, Brian and Hinton, Geoffrey E. Reinforcement
learning with factored states and actions. Journal of Ma-
chine Learning Research, 5(Aug):1063–1088, 2004.

Schulman, Jhon, Levine, Sergey, Moritz, Philipp, Jordan,
Michael, and Abbeel, Pieter. Trust region policy opti-
mization. 2015.

Schulman, John, Moritz, Philipp, Levine, Sergey, Jordan,
Michael, and Abbeel, Pieter. High-dimensional con-
tinuous control using generalized advantage estimation.
International Conference on Learning Representations,
2016.

Silver, David, Lever, Guy, Heess, Nicolas, Degris, Thomas,
Wierstra, Daan, and Riedmiller, Martin. Determinis-
tic policy gradient algorithms. In Proceedings of the
31st International Conference on International Confer-
ence on Machine Learning - Volume 32, pp. I–387–I–
395. JMLR.org, 2014.

Steinwart, Ingo and Christmann, Andreas. Support Vector
Machines. Springer, 2008.

Sunehag, Peter, Evans, Richard, Dulac-Arnold, Gabriel,
Zwols, Yori, Visentin, Daniel, and Coppin, Ben. Deep
reinforcement learning with attention for slate markov
decision processes with high-dimensional states and ac-
tions. arXiv preprint arXiv:1512.01124, 2015.

Sutton, Richard S. and Barto, Andrew G. Reinforcement
Learning: An Introduction. The MIT Press, 1998.

Sutton, Richard S., McAllester, David, Singh, Satinder, and
Mansour, Yishay. Policy gradient methods for reinforce-
ment learning with function approximation. In Advances
in Neural Information Processing Systems (NIPS - 12),
2000.

Szepesvári, Csaba. Algorithms for Reinforcement Learn-
ing. Morgan Claypool Publishers, 2010.

van de Geer, Sara A. Empirical Processes in M-Estimation.
Cambridge University Press, 2000.

van Hasselt, Hado and Wiering, Marco A. Reinforcement
Learning in Continuous Action Spaces. In 2007 IEEE
International Symposium on Approximate Dynamic Pro-
gramming and Reinforcement Learning, 2007.

Wang, Haiyan, Wang, Feng, and Xu, Kuai. Modeling infor-
mation diffusion in online social networks with partial
differential equations. CoRR, abs/1310.0505, 2013.

RL with Function-Valued Action Space for PDE Control

Yang, Yuhong and Barron, Andrew R. Information-
theoretic determination of minimax rates of conver-
gence. The Annals of Statistics, 27(5):1564–1599, 1999.

RL with Function-Valued Action Space for PDE Control

A. Appendix
A.1. Covering Number

We briefly introduce the notion of covering number, and
refer the reader to standard references for more discussions,
e.g., Chapter 9 of Györfi et al. (2002). Consider a normed
function space F(Ω) defined over the domain Ω with the
norm denoted by ‖·‖. The set Sε = {f1, . . . , fNε} is the
ε-covering of F w.r.t. the norm if for any f ∈ F , there
exists an f ′ ∈ Sε such that ‖f − f ′‖ ≤ ε. The covering
number is the minimum Nε that is an ε-cover for F , and
we use N (ε,F(Ω)) or simply N (ε) if F(Ω) is clear from
the context, to denote it.

For simplicity of arguments in this paper, the covering
number results use the supremum norm, which is defined
as

‖f‖∞ = sup
w∈Ω
|f(w)|.

A.2. Proof for Proposition 1

The proof for proposition 1 is as following.

Proof. First we show that Π provides an ε-covering of ΠL.
Pick any ε > 0. For each ci (i = 1, . . . ,Mε), pick a min-
imal ε/2-covering set of ΠL|ci , and call it Sε/2,ci . Define
the following function space:

Πε/2 =
{
πθ(x, z) =

Mε∑
i=1

πθi(x, ci)I{z ∈ Ai} :

πθi ∈ Sε/2,ci , i = 1, . . . ,Mε/2

}
.

This space is an ε/2-cover of Π. Moreover, it provides an
ε-covering of ΠL too. To see this, consider any πθ ∈ ΠL.
For any fixed (x, z) ∈ X ×Z , the location z falls in one of
the partitionsAi. Because of the construction of Πε/2, there
exists πθ ∈ Πε/2 such that |πθ(x, ci) − πθ(x, ci)| ≤ ε/2.
Therefore, we have∣∣πθ(x, z)− πθ(x, z)∣∣ ≤ |πθ(x, z)− πθ(x, ci)|+∣∣πθ(x, ci)− πθ(x, ci)∣∣+∣∣πθ(x, ci)− πθ(x, z)∣∣

≤L ‖z − ci‖+
ε

2
+ 0 ≤ ε.

As we have Mε cells, the number of members of the cover-
ing of πθ(x, ci) is

[N (ε/2)]
Mε . (4)

Substituting the value of Mε leads to the desired result for
N (ε,Π).

To provide the covering number for ΠL, let ε > 0 and de-
fine the following function space:

Π̃ε = {π̃(x, z) =

Mε∑
i=1

0.5ε

⌊
π(x, ci)

0.5ε

⌋
I{z ∈ Ai}, π ∈ ΠL}

We shortly show that Π̃ε is an ε-covering of ΠL. Also no-
tice that π̃ only takes discrete values with resolution of ε/2.

Consider any πθ ∈ ΠL. As in the previous case, for any
fixed (x, z) ∈ X ×Z , the location z falls in one of the par-
titions Ai. Because of the construction of Π̃ε, there exists a
π̃ that is ε/2-close to π(x, ci). Using this property and the
Lipschitzness of πθ ∈ ΠL, we have

|πθ(x, z)− π̃(x, z)| ≤|πθ(x, z)− πθ(x, ci)|+
|πθ(x, ci)− π̃(x, ci)|+
|π̃(x, ci)− π̃(x, z)|
≤L ‖z − ci‖+∣∣∣∣0.5ε⌊πθ(x, ci)0.5ε

⌋
− πθ(x, ci)

∣∣∣∣+ 0

≤ ε/2 + ε/2 = ε (5)

So Π̃ε provides an ε-cover for ΠL. It remains to count the
number of elements of Π̃ε.

We choose an arbitrary centre c1. We let the function
π̃(x, c1) to be one of possible N (ε) members of the cover-
ing of ΠL|c1 . Notice that for any ci and cj that are neigh-
bour (so they have distance less than ε/L), using the Lips-
chitzness of π and the definition of π̃, we have

|π̃(x, ci)− π̃(x, cj)| ≤ |π̃(x, ci)− π(x, cj)|+
|π(x, ci)− π(x, cj)|+
|π(x, cj)− π̃(x, cj)|
≤2ε.

Consider two neighbour centres ci and cj 6= ci. Since π̃
only takes discrete values (with the resolution of ε/2), the
value of π̃(x, cj) can only be one of 9 possible values, i.e.,
π̃(x, ci)− 4ε/2, π̃(x, ci)− 3ε/2, . . . , π̃(x, ci) + 4ε/2.

Choose ci = c1. One of its neighbour, let us call it cj =
c2, can take at most 9 different values. Therefore, the total
number of function π̃ defined over X × {c1, c2} is 9N (ε).
We continue this argument with an arbitrary sweep through
neighbourhood structure of the partition. As there are at
most Mε points, the number of possible functions π̃ε is

N (ε)× 9Mε . (6)

Replacing the value of Mε leads to the desired result.

We would like to acknowledge that the argument for count-
ing the members of Π̃ε is borrowed from a similar argument
in Lemma 2.3 of van de Geer (2000).

RL with Function-Valued Action Space for PDE Control

A.3. Experimental settings

Neural network architecture. The implementation tool is
Tensorflow. We basically follow the same neural network
architecture as introduced in the original DDPG paper (Lil-
licrap et al., 2016). We have 3 convolutional layers without
pooling, and each has 32 filters. The kernel sizes are 4× 4
for the first two layers and then 3 × 3 for the third one.
Batch normalizations (Ioffe & Szegedy, 2015) are used in
the convolutional layers. The convolutionary layers are fol-
lowed by two fully connected layers and each has 200 relu
units. The output layer in the actor network is sigmoid on
the heat invader domain and is tanh on the PDE model do-
main. The output layer of ciritic network use the same con-
volutional layer setting with that of the actor network, but
it does not has activation function in the output layer, and a
L2 weight decay factor as 0.001 was used after the convolu-
tional layers. The final layer weights and biases of both the
actor and critic were initialized from a uniform distribution
[−0.0003, 0.0003] and all other parameters are initialized
by using Xavier (Glorot & Bengio, 2010).

As for the DDPG with separate NN, we used same convo-
lutional layers across all neural networks, but replicate the
full connected layers k times if the action is in Rk.

For DDPG with action descriptors, we used exactly the
same architecture as DDPG, execpt the output layer has
only one output irrespective of action dimensions. The ac-
tion descriptor comes into the neural network immediately
after the convolutional layers.

Parameter Setting. Across all experiments, we used expe-
rience replay with buffer size 20, 000 and the batch size is
16. Each episode has at most 40 steps. The discount rate
is 0.99. We have the exploration noise as gaussian dis-
tribution N (ut,

1.0
episodes). For each action dimension, we

sweep over parameters as following. Actor learning rate α
from {0.000001, 0.000005, 0.00001, 0.0001}, critic learn-
ing rate is from α× {1.0, 5.0, 10.0, 20.0, 40.0} (intuitively
critic learning rate should be larger, and indeed we tried
that with a smaller cirtic learning rate the algorithm cannot
work well).

Performance measure. We take a similar approach with
the previous work (Farahmand et al., 2017a), computing
the mean reward per step for each episode i averaged over
of number of runs N . Hence on our learning curve, given
episode index i, the corresponding y-axis value is com-
puted as

R(i) =
1

N

N∑
n=1

1

T

T∑
t=1

r
(n,i)
t ,

where T = 40 across all of our experiments. When pick up
best parameters, we compute Evaluate =

∑n
i=mR

(i). On
PDE model, we use m = 180, n = 200 while on heat in-
vader, we use m = 150, n = 200. We choose those ranges

to avoid fast converge at the begining but divergence later,
which actually happened more obvious for our competitor
algorithms.

A.4. Additional details on PDE model

The PDE model domain is our self-defined domain based
on 2−D heat equation.

∂h(z, t)

∂t
= α∇2h

where h is the heat, a function of location z = (x, y) ∈ R2

and time t, α is some constant depends on physical mate-
rial, called thermal diffusitivity. We let α = 1 for simplic-
ity. Note that since we think the space as a 2-D plane, we
use a matrix to discretize it and hence each entry in the ma-
trix indicates the heat value at that particular location. Use
finite difference method to approximate the second order
derivative, we can implement the state d× d matrix transi-
tion as following.

∂h(z, t)

∂t
=

α(
h(x+δ, y, t)+h(x−δ, y, t)+h(x, y−δ, t)+h(x, y+δ, t)

c

− 4h(x, y, t)

c
+ action)

c is some constant to scale the change and the action re-
sults from control, the effect outside of the physical sys-
tem. This is how our discretized state transition derived.
For each x ∈ X , let x(i,j) denotes the element in the ith
row and j column of the matrix x. Let xt and at be the
state and action, respectively, at time step t. Then the state
dynamics are described by the following equations,

∆xt=

(
x

(i−1,j)
t +x

(i+1,j)
t +x

(i,j−1)
t +x

(i,j+1)
t −4x

(i−1,j−1)
t

)
δs

+ a
(i−1,j−1)
t

x
(i−1,j−1)
t+1 ← x

(i−1,j−1)
t + δt∆xt,

with the temporal discretization δt= 0.001 and spatial dis-
cretization δs = 0.1 of the finite difference method. For
boundary values, where i − 1 or i + 1 becomes smaller
than 0 or larger than d, we set them to zero, i.e., x(i,j)

t =
0,∀i, j /∈ {1, ..., d}. The reward function is defined as

R(xt, at, xt+1) = −||xt+1||2
d

− ||at||2
d

.

One can intuitively understand this as the heat always move
from the high heat region to low heat region, and hence
for each entry in the matrix we take the sum of four of
its neighbors as the heat value coming from nearby region,

RL with Function-Valued Action Space for PDE Control

Figure 3. Heat invader domain. Image is modified from the paper
(Farahmand et al., 2017b). The solid circle means the air condi-
tioners. The actual number of air conditioners is different with
what the figure showed.

then if this value is larger than the entry’s current value, we
should expect an increase in this entry. At each episode, the
state values are uniformly initialized from [0, 1]d×d. Note
that at each step, the update to each value in the state hap-
pens simultaneously. The boundary values are setted as 0
across all steps. Each episode is restricted to 40 steps and at
each step, an action is repeatedly executed 100 times. This
design is based on the intuition that the agent may not re-
act quickly enough to change action every 0.001 time unit,
which is the time discretization level.

Our design of reward function is mainly based on the intu-
ition that we want to keep the temperature low and action
cost is small. We believe other reasonable reward choices
can also work.

The way of choosing action descriptors is to simply uni-
formly choose from the space [−0.5, 0.5]2. There is no par-
ticular reason for our choice, we believe other way such as
[−1, 1] can also work, as long as the descriptors are uni-
formly chosen from a square area.

A.5. Additional details on Heat Invader

We include Figure 3 to describe the domain: heat invader.
The action is discretized to four rows lie in the middle of the
room and each row has 50 air conditioners. When the out-
put action is repeated to 200 excecutable action dimension
if it is less then 200. Similar to (Farahmand et al., 2017a),
we still design two fans (respectively and symmetrically lo-
cated on the left and right wall of the room) in the room. A
fan will be trigged if the sum of absolute values of actions
located on that corresponding half area of the room exceed

some threshold, which we set as 25. The reward function

r(xt, at,xt+1) = −cost(at) (7)

−
∫
z∈Z

I(|T (z, t+ 1)| > T ∗(z, t+ 1))dz

is designed as following. Z is discretized to 50× 50 on the
floor and hence there are totally 2500 temperature measure-
ments. We set T ∗(z, t + 1) = 0.501,∀z ∈ Z . We further
scaled the integration (summation over locations) by 2500.
The cost from action is defined as cost(at) = ||at||

d , at ∈
Rd. The initial position of the heat invader is randomly
sampled from (i, j) ∈ [45, 50]2, i, j ∈ Z. There are two
types of airflow to choose, one is uniform and another one is
whirl. We also include results of averaging less runs when
using whirl airflow as showed in Figure 4. Note that there
is a common learning pattern when using either uniform
or whirl airflow. At the beginning, the exploration noise is
large and hence the fan is triggered frequently, allowing the
temperature to be lowered faster. As the noise decreasing,
the penalty comes from the “uncomfortable temperature”
shows effect and hence the performance drops. Later while
the agent is learning a better policy, the performance starts
improving again.

We design the set of action descriptors as following. When
the action dimension k ≤ 50, we think the air condition-
ers are located on a single line in the middle of the room,
hence we pick the descriptors uniformly from the segment
[−1, 1]. When the action dimension k = 100, we think
there are two lines on the middle of the room and hence
we design the descriptors as two dimensional denoted as
(x, y) ∈ [−1, 1]2, where x takes two values −1, 1 while y
takes 50 values uniformly along [−1, 1]. Similar approach
applied to the case k = 200. Note that this domain has a
fixed executable action dimension at ∈ R200, hence while
the output action from the agent has dimension less then
200 (i.e., 1, 25, 50, 100), the adapter I(C, ut) would map
the output action to 200 dimensions by repeating.

As sanity check, we also conducted experiments when use
only 1 dimensional action as showed in figure 4. Neither
of the two algorithms can learn a good policy for k = 1,
because there is no sufficiently fine-grained control. When
the dimension is 1, the two algorithms are almost identical,
except that DDPG with Action Descriptors has two addi-
tional input units, as the descriptor is in R2.

Due to computational resource restriction, to generate the
figure using the uniform airflow, we use 10 runs to find best
parameter settings and then do 50 runs for that setting.

RL with Function-Valued Action Space for PDE Control

50 100 150 200
Number of Episodes

-0.6

-0.55

-0.5

-0.45

-0.25

-0.2

-0.15

 Mean
Reward

Per
Episode

DDPG with
Separate NN

DDPG

DDPG with Action Descriptors

(a) 25 dimensional action

50 100 150 200
Number of Episodes

-0.6

-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

DDPG with
Separate NN

DDPG

DDPG with Action
Descriptors

(b) 50 dimensional action

50 100 150 200
Number of Episodes

-0.6

-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

DDPG with
Separate NN

DDPG with Action
Descriptors

DDPG

(c) 100 dimensional action

50 100 150 200
Number of Episodes

-0.6

-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15
DDPG

DDPG with
Separate NN

DDPG with Action
Descriptors

(d) 200 dimensional action

50 100 150 200
Number of Episodes

-0.6

-0.55

-0.5

-0.45

-0.25

-0.2

-0.15

 Mean
Reward

 Per
Episode

DDPG with Separate NNDDPG/

DDPG with Action Descriptors

(e) 1 dimensional action, uniform

50 100 150 200
Number of Episodes

-0.6

-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

DDPG with Separate NN

DDPG with Action Descriptors

DDPG/

(f) 1 dimensional action, whirl

Figure 4. Results of mean reward per episode vs. episodes on the Heat Invader domain, with an increasing number of action dimensions.
The results are averaged over 10 runs except Figure (e). This figure is generated by using whirl air flow unless otherwise specified. The
results basically match what we see in the experimental section, which was generated using uniform airflow. Figure (e) and (f) show the
comparison when using 1d action dimension as a sanity check.

	Title Page
	page 2

	/projects/www/html/publications/docs/TR2018-028.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16

