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Abstract
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necessary for commercial application (selectively deactivating zones, implementable on em-
bedded processors with limited memory/computation, compatibility with demand response
events.). A controller architecture is presented based on model predictive control to meet the
requirements. Experiments are presented validating constraint enforcement and automatic
deactivation of zones.
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Model Predictive Control of Vapor Compression
Systems

Daniel J. Burns, Claus Danielson, Stefano Di Cairano, Christopher R. Laughman,
Scott A. Bortoff

Abstract In this chapter, a model predictive controller is designed for a multi-
zone vapor compression system. Controller requirements representing desired per-
formance of production-scale equipment are provided and include baseline require-
ments common in control literature (constraint enforcement, reference tracking, dis-
turbance rejection) and also extended requirements necessary for commercial ap-
plication (selectively deactivating zones, implementable on embedded processors
with limited memory/computation, compatibility with demand response events.). A
controller architecture is presented based on model predictive control to meet the
requirements. Experiments are presented validating constraint enforcement and au-
tomatic deactivation of zones.

Notation

R and Z denote the set of real and integer numbers, respectively. The vector formed
by concatenating x∈Rn and y∈Rm is denoted by col(x,y)∈Rn+m. I ∈Rn×n and 0∈
Rn×m denote the identity and the all-zero matrices of appropriate dimension n and
m, respectively. Inequalities are component-wise, and ≺ and � (� and �) indicate
positive and negative (semi)definiteness. A continuous-time signal x(τ) sampled
with period Ts is denoted by the discrete-time signal x(t) = x(tTs) where t ∈ Z. xk|t
denotes the k-steps predicted value of x at time t.
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1 Introduction

After more than 100 years of evolution, vapor compression systems (VCS) are now
the most common means for commercial and residential space cooling [1], often
employed for space or water heating [2], and extensively used in refrigeration (both
stationary and mobile [3, 4]), desalination [5, 6], and cryogenic applications [7].
As discussed in Chapter 4, whereas early systems typically used fixed-speed com-
pressors and fans, capillary tubes, and single condensers and evaporators, modern
systems use state-of-the-art technology such as as variable-speed compressors and
fans, electronically-positioned expansion valves, and multiple heat exchangers op-
erating in independent zones [8,9]. These machines must operate reliably in heating
or cooling modes, over a broad range of operating conditions and climates for many
years.

One effect of the advances in cycle technology is the increasing sophistication
of the control systems [10–12]. Control strategies in early products were simple
because of on/off actuation, limited sensing, and limited performance requirements
such as zone temperature regulation [13, 14]. Efficiency requirements were met by
designing the refrigeration cycle for a narrow set of conditions, and could be ac-
complished outside the scope of the control system design. However, modern VCS
control systems must accommodate a broader set of requirements, including (1)
maximizing energy efficiency over a broad range of operating conditions, (2) en-
forcing equipment protection constraints such as ensuring critical temperatures and
pressures remain within permissible operating limits, (3) providing rapid transient
response, (4) activation or deactivation of individual zones, and (5) integrating with
intelligent building control strategies that periodically demand reduced energy con-
sumption.

Model predictive control (MPC) is a strategy for the control of multivariable
plants that satisfies many of these requirements explicitly, especially enforcement of
plant input (actuator) and output (measurement) constraints with guarantees on sta-
bility and performance [15–17]. In MPC, control variables are computed by solving
a constrained optimization problem in real-time that includes the predicted response
of the system, resulting in a controller that achieves optimal performance according
to specified objective function and enforces constraints on actuators and plant out-
puts. Furthermore, the MPC approach offers advantages related to the requirement
of turning zones on and off, which can be met in a straightforward and scalable
manner: the objective function and constraints can be changed online when a zone
is activated, for example, altering the number of control objectives and decision
variables in the associated optimal control problem [18–20]. Moreover, tuning the
terms of the objective function is intuitive and leads to predictable performance and
constraints can be modified or added during the design process while preserving
system stability properties, eliminating the need for extensive revalidation during
the product development. For the manufacturer, MPC thus provides an attractive
strategy to meet a diverse set of requirements in a rigorous manner.

In this chapter, an MPC design for a VCS is presented. The design is offset-free
to account for low-frequency model uncertainty and a state estimator in order to
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estimate variables not directly measured [21, 22]. In contrast with other offset-free
methods [23], this approach does not require fitting an input disturbance model—
a task that is difficult because some disturbances, specifically the heat load, are
unmeasured and possess significant uncertainty especially at low frequencies. The
design enforces hard constraints associated with actuator limits and rate limits, and
also enforces several output limits including a maximum compressor temperature,
a minimum compressor discharge superheat temperature, and maximum and mini-
mum heat exchanger temperatures. In addition, the control architecture provides for
a separation of design concerns: distinct tuning parameters are provided to adjust
the system for energy efficiency, constraint enforcement and transient performance,
and these parameters are not coupled—enabling intuitive tuning.

The chapter is organized as follows. Section 2 describes the vapor compression
system under consideration, derives a linear model and introduces pertinent con-
straints. Section 3 discusses the prioritized set of control system requirements and
the strategy employed to meet them. In Section 4, an MPC design is presented in-
cluding prediction model augmentations and Kalman filter derivation. Also in this
section, an HVAC laboratory and validation experiments are described. Section 5
describes how the proposed control strategy meets extended requirements by de-
scribing a method that permits individual zones to be turned on or off within the
MPC framework, and discusses optimization algorithms appropriate for low power
embedded processors. Finally, concluding remarks are offered in Section 6.

2 Vapor Compression System Description

This section describes the dynamics and constraints of the multi-evaporator vapor
compression system (ME-VCS) shown in Fig. 1. We treat the single evaporator
system as a special case of the ME-VCS. The specific vapor compression system
considered here is an air conditioner operating in cooling mode, and therefore the
objects of conditioning are indoor volumes of air, although other applications of
vapor compression systems can be considered (heat pumps, chillers, refrigeration
systems, etc.) with straightforward substitutions of machine endpoints.

2.1 ME-VCS Dynamics

Consider the multi-zone vapor compression system operating in cooling mode
shown schematically in Fig. 1. The ME-VCS is comprised of a single outdoor unit
and N indoor units. The purpose of this system is to move both sensible and latent
heat from the indoor zones to the outdoor air. When operating in cooling mode, the
outdoor unit receives low pressure, low temperature refrigerant in the vapor state
from the indoor units. The compressor performs work to increase the pressure and
temperature of the refrigerant. The amount of work done is controlled by the com-
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Fig. 1 Refrigerant piping arrangement of a multi-evaporator vapor compression system. The main
actuators in the system are (i) the compressor, (ii) the outdoor (condenser) fan (ODF), and (iii)
N electronic expansion valves (EEV). Sensors provide measurements of the compressor discharge
temperature (Td), the evaporating temperature (Te), the condensing temperature (Tc) and the zone
temperatures (Tri).

pressor rotational frequency CF. A sensor measures the discharge temperature Td of
the refrigerant leaving the compressor. The refrigerant then flows through the out-
door heat exchanger across which a fan forces air. Heat is transferred from the re-
frigerant causing it to condense from a vapor to a saturated liquid where the amount
of heat removed from the refrigerant depends on the outdoor air temperature OAT
and outdoor fan speed ODF. In cooling mode, the outdoor unit heat exchanger acts
as a condenser, and the small pressure drop over the length of the heat exchanger
enables the modeling assumption that the phase change of the refrigerant is approx-
imately isobaric and occurs at a nearly constant condensing temperature Tc, which
is measured by a sensor on the heat exchanger.

High pressure liquid refrigerant from the outdoor unit is then routed to the in-
door units, indexed by i∈I = {1, . . . ,N}. The amount of refrigerant that enters the
indoor unit is controlled by the opening position EEVi of an electronic expansion
valve. If the electronic expansion valve is open (EEVi0), then refrigerant flows into
the i-th indoor unit. As the refrigerant flows through the expansion valve, it under-
goes a isenthapic drop in pressure and temperature and changes state into a two-
phase mixture of liquid and vapor. The low temperature two-phase refrigerant then
flows through the indoor unit heat exchanger. An indoor fan forces air from the zone
across the heat exchanger, which absorbs heat from the zone. An unmeasured heat
load acts in each zone. The temperature of each zone Tri is measured in the return
air stream. The heat absorbed by each indoor unit causes the refrigerant to evapo-
rate from a two-phase mixture to a saturated vapor, so that these heat exchangers
function as evaporators. As was also the case with the condenser, the small pres-
sure drop over the length of the heat exchanger enables the modeling assumption
of isobaric phase change that occurs at a nearly constant evaporating temperature
Te and is measured by sensors on the indoor unit heat exchangers. There are no
measurements of refrigerant pressures or flow rates [24].
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As discussed in Chapter 4, the dynamics of the ME-VCS can be modeled by a
set of nonlinear differential-algebraic equations (DAEs)

0 = f (φ̇ ,φ ,u,v,d), (1a)
y = h(φ ,u,v), (1b)

where φ ∈ Rn are the states representing thermofluid variables, u ∈ Rm are the con-
trol inputs, v ∈ Rl are the measured disturbances, d ∈ Rq are the unmeasured dis-
turbances and y ∈ Rp are the measured outputs. These equations can be derived
from the principles of fluid mechanics and thermodynamics, and typically involve
spatial discretization of one-dimensional Navier-Stokes equations and empirically-
determined closure relationships, including heat transfer correlations and frictional
pressure drops [25, 26].

Generally speaking, Equation (1) is nonlinear, high-order (n ≈ O(100−1000)),
stiff, and marginally stable. Nonlinearity arises from thermofluid properties, the clo-
sure relations, and the mass, momentum and energy balance equations governing
fluid dynamics and heat transfer [27]. The order can be high because of finite ele-
ment or finite volume modeling methodologies which are required for practical rea-
sons to accurately capture the spatial and temporal dynamics of the heat exchangers
over a broad range of operating conditions [28]. Time scales can range from ap-
proximately 1 second for the fastest dynamics associated with pressure within the
ME-VCS to as much as 1 week for the slowest timescale associated with heat trans-
fer to the building envelope. This slowest time scale is inherent in (1) because we
consider the zone air temperatures Tri to be among the measured outputs.

Idealized energy balance models of zone air thermodynamics assume an adia-
batic process (no thermal losses to the environment), leading to an integrator in
the equation for zone temperature dynamics. Physically, this marginal instability
manifests as a diverging zone temperature whenever the cooling provided by the
ME-VCS is not matched to the load in steady state. However, real systems are char-
acterized by finite heat loads and non-adiabatic volumes and therefore the zone air
temperature will ultimately reach some equilibrium, but this equilibrium is unknown
and with the unmeasured load, contributes to uncertainty at low frequencies. Uncer-
tainty in this context is used informally to mean that is difficult to experimentally
calibrate or validate an instance of the model, and also that (1) is assumed to con-
tain uncertainty in order to cover a diverse range of buildings in which a ME-VCS
is installed and operated. The low frequency uncertainty implies that it is practically
impossible to precisely compute the equilibrium 0 = f (0, φ̄ , ū, v̄, d̄) and the alge-
braic relationship among φ̄ , ū, v̄ and d̄ for any model instance. This recognition is
important to the architecture of any feedback compensator that aims to regulate the
zone temperature to a setpoint with zero steady state error.

Fortunately, the dynamic response of the system in the “medium frequency”
range of interest to the control system designer is remarkably linear and low order.
To support this assertion, consider the data shown in Figure 2 where a vapor com-
pression system is perturbed from three equilibrium points in order to characterize
the sensitivity of nonlinearities to operating condition. The range of heat loads are
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Fig. 2 Experiments in which compressor steps are applied at three different equilibrium points
demonstrate that ME-VCS dynamics are well approximated by linear low-order models.

selected to cover from 50% to 85% of the rated capacity of this particular system.
For each heat load, the compressor speed input is increased by 8 Hz, and the result-
ing responses of the compressor discharge temperature and the zone air temperature
are shown. Despite settling to different values at steady state, the time constants for
both outputs at each heat load are similar. For the systems considered, a medium
frequency range of approximately 0.001 - 0.1 rad/s (corresponding to time scales of
approximately 1 minute to 60 minutes) have been shown to be well approximated
by low-order linear models. Feedback is employed to compensate the low-frequency
uncertainty. This empirical observation enables the use of linear MPC.

Accordingly, the ME-VCS outdoor unit is modeled by

x0(t +1) = A00x0(t)+∑
N
j=0B0 ju j(t) (2a)

y0(t) =C00x0(t)+w0(t) (2b)

where the inputs u0 = col(CF,ODF) ∈ Rm0 are the compressor frequency CF and
outdoor fan speed ODF, and the outputs y0 = col(Td,Te,Tc) are the discharge Td,
evaporator Te, and condenser Tc temperatures. The inputs u j, j = 1, . . . ,N per-
tain to the individual indoor units and are described below. The model is fit to
experimentally-obtained input-output data, and thus the state of the outdoor unit
x0(t) ∈ Rn0 is non-physical. The discrete-time model (2) describes the ME-VCS
system when sampled with a period of 1 minute.

An additive output disturbance w0(t) is used to capture the effects of outdoor air
temperature OAT on the measured outputs y0(t). Since the outdoor air temperature
varies slowly with a diurnal period, we treat the disturbance w0(t) as constant on the
time scale of the model (2),

w0(t +1) = w0(t). (2c)
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Remark 1. The entire ME-VCS is characterized by a single evaporating temperature
due to the arrangement of valves shown in Fig. 1. In particular, the ME-VCS con-
sidered does not have valves at the outlet of each indoor unit. Thus, all indoor units
with open valves operate at the same pressure and therefore the same evaporating
temperature. As a consequence, the evaporator temperature Te is modeled as an out-
put of the outdoor unit (2b) and depends only on the state x0 of the outdoor unit.
�

Over its range operation, the effect of the electronic expansion valve position
EEVi on the room temperature Tri is nonlinear. Therefore, each indoor unit has an
inner feedback loop that manipulates the expansion valve position EEVi to achieve
a desired cooling capacity CCi. The cooling capacity is the amount of heat removed
from the zone by the corresponding evaporator per unit time. The cooling capacity
controllers linearize the response from the reference cooling capacity command of
each zone CCi to the associated zone temperature Tri. Additional details on the inner
feedback loops are provided in [29].

The i-th indoor unit, i = 1, . . . ,N, is modeled by

xi(t +1) =Aiixi(t)+Ai0x0(t)+∑
N
j=0Bi jui(t) (2d)

yi(t) =Ciixi(t)+wi(t) (2e)

where the input ui = CCi ∈ Rmi is the cooling capacity command (which also ap-
pears in (2)) and the output yi = Tri ∈ R is the zone temperature. The state of the
i-th indoor unit xi ∈Rni is non-physical. The dynamics of the indoor unit depend on
the state x0 and input u0 of the outdoor unit, as well as the inputs ui for i = 1, . . . ,N
for each of the indoor units.

Note that in some formulations, the indoor fan speed IDFi may be considered as
a control input and included in the definition of ui(t). However, in this application
we permit the occupants to set the IDF for comfort reasons and therefore we treat
the IDF as a measured disturbance. Because the IDF is measured, its effect on the
zone temperature yi(t) can either be modeled as an input disturbance (in which case
a dynamic model must be created that describes how changes in this input influence
the measurements) or as an output disturbance (in which case only the steady state
offset in zone temperature due to this disturbance is captured). Because the IDF
is anticipated to change infrequently and therefore not excite the system dynamics,
the output disturbance method is chosen. Additionally, the effects of the unmeasured
heat load Qi on the zone temperature is also modeled as an output disturbance. These
are lumped into the term wi(t), assumed constant, and added to the output in (2e)j,

wi(t +1) = wi(t). (2f)

It is convenient to gather both the outdoor (2a)–(2c) and indoor (2d)–(2f) models
into a single representation
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Table 1 Definition of Physical Signals

Type Symbol Description Units

Control Inputs u0
Compressor Frequency (CF) Hz
Outdoor Fan Speed (ODF) rpm

ui Cooling Capacity for i-th Zone (CCi) %

Measured Outputs y0

Discharge Temp (Td) ◦C
Evaporating Temp (Te) ◦C
Condensing Temp (Tc) ◦C

yi i-th Zone Temp (Tri) ◦C

Disturbances
w0 Temp offset due to Outdoor Air Temp (OAT) ◦C

wi
Temp offset due to heat load (Qi) and ◦Cindoor fan speed (IDFi) in i-th Zone

x(t +1) = Ax(t)+Bu(t) (3a)
w(t +1) = Iw(t) (3b)

y(t) =Cx(t)+ Iw(t) (3c)

where x = col(x0,x1, . . . ,xN), w = col(w0,w1, . . . ,wN), u = col(CF,ODF,CCi), y =
col(Td,Te,Tc,Tri), I is the identity matrix, and (A,B,C) are assembled as indicated
in (2).

The models (2) and (3) are experimentally identified with the structure described
above for the ME-VCS operating under typical conditions. The models (2) and (3)
are a minimal realization of the dynamics of the ME-VCS, and the pairs (Aii,Bii) and
(Aii,Cii) are controllable and observable, respectively, for i = 0, . . . ,N. The signals
ui(t), yi(t), and wi(t) for i ∈ I0 = {0, . . . ,N} are the deviations of the inputs, out-
puts, and disturbance from their nominal values, respectively. The physical meaning
of the control inputs, measured outputs, and disturbances are summarized in Table 1.

2.2 ME-VCS Constraints

This section describes the constraints on outputs, states, and inputs of the multi-
evaporator vapor compression system.

The outdoor unit measurements y0(t) of the discharge, evaporating and condens-
ing temperatures are constrained to protect the equipment. Physical damage to the
compressor motor can occur when its internal temperature exceeds some critical
value, thus we have an upper-bound Tdmax on the compressor discharge temperature
Td ≤ Tdmax. If the indoor unit evaporators become too cold, frost can accumulate
on the heat exchanger inhibiting heat transfer, thus we have a lower-bound Temin
on the evaporating temperature Te ≥ Temin. Additionally, excessive condenser-side
pressures (as measured through the surrogate condensing temperature) can rupture
components of the equipment, and thus we have an upper-bound Tcmax on the con-
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denser temperature Tc≤ Tcmax. Finally, to prevent the ingestion of damaging liquid
refrigerant into the compressor, we define the refrigerant superheat temperature at
the compressor discharge port Tdsh as an algebraic combination of other measure-
ments Tdsh = Td−Tc and impose a lower-bound Tdshmin on the discharge super-
heat temperature Tdsh≥ Tdshmin.

Note that the output constraints only apply to the outputs (or algebraic combi-
nations thereof) (2b) of the outdoor unit. The outputs (2e) of the indoor units are
unconstrained. In particular, the evaporating temperature constraint, which physi-
cally relates to the indoor units, is modeled as an output of the outdoor unit for
reasons described in Remark 1.

The outdoor unit has lower and upper bounds on the compressor frequency
CFmin ≤CF≤CFmax(t) and outdoor fan speed ODFmin ≤ODF≤ODFmax. Further-
more, we allow CFmax(t) to be time-varying to accommodate the action of external
protection logic, or as a means to implement building-level demand response.

Since the cooling capacity commands represent a fraction of the total rated ca-
pacity of each evaporator [29], the inputs to the indoor unit capacity controllers have
lower and upper bounds CCi,min ≤ CCi ≤ CCi,max. The actuator constraints associ-
ated with the electronic expansion valves EEVi are enforced within the indoor unit
capacity controllers.

The system also has constraints on the amount the inputs can change during
each sample period. The outdoor unit has constraints on the change in compressor
frequency ∆CFmin ≤ ∆CF≤ ∆CFmax and outdoor fan speed ∆ODFmin ≤ ∆ODF≤
∆ODFmax.

The indoor units have inner feedback loops that control the position of the elec-
tronic expansion valves to track the cooling capacity command. The change in cool-
ing capacity command is bounded ∆CCi,min ≤ ∆CCi ≤ ∆CCi,max to ensure that the
transient response of the inner-loop controllers settles during the sample period.

3 Control Requirements

The control requirements for a production-grade vapor compression system extend
beyond temperature regulation. The ME-VCS must also protect itself from dam-
age, permit some zones to shut off while others remain in service, minimize energy
consumption to the extent possible and accomplish these objectives while operating
over a wide and variable range of outdoor and load conditions. Additionally, emerg-
ing trends in building efficiency standards, smart grid compatibility and tighter inte-
gration with other HVAC equipment require flexibility in the control method to, for
example, adapt the operation of the machine to a demand response event or cooper-
ate with other equipment such as dedicated ventilation systems to efficiently manage
sensible and latent loads. Finally, economic and reliability pressures demand the use
of a limited number of low-cost sensors and low-end embedded processors.

The following is a prioritized list of control objectives that is divided into two
parts: baseline requirements and extended requirements. The baseline requirements
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are control objectives for the system during nominal operating modes and include
constraint enforcement, disturbance rejection and transient response metrics. The
extended requirements address practical concerns often neglected in the literature
such as compatibility with startup, shutdown, equipment protection and defrost
logic, response to building management system requests for energy reduction, and
the ability to shut off some zones.

3.1 Baseline Controller Requirements

This section lists control requirements for baseline operation of the ME-VCS. Here
“baseline operation” refers to the system operating around an equilibrium state.

B.1 Constraint Enforcement The controller should enforce the input (actuator),
input rate and output constraints described in Section 2.2.

B.2 Setpoint Regulation If B.1 is satisfied, the controller should drive each zone
air temperature to its setpoint with zero steady state error.

B.3 Disturbance Rejection The controller should achieve B.2 given changes in
heat loads and outdoor air temperatures.

B.4 Energy Minimization If B.1–B.3 are satisfied, the controller should drive the
system to energy-optimal operating points in steady state. Note that energy per-
formance is not defined during transients.

B.5 Transient Performance Ensuring B.1 is satisfied, the controller should mini-
mize the time required to adjust to a new setpoint with an overshoot of less than
1◦C. The response time is left unspecified because it depends on (i) whether the
setpoint change is a step-up or step-down, (ii) the unknown volume of air in the
zone and (iii) the unmeasured load.

3.2 Extended Controller Requirements

In addition to the baseline requirements, the controller must also meet the following
extended requirements:

E.1 Permit individual zones to be shut off Often low heat loads in some zones or
occupant desires are such that some evaporators must be turned off while others
remain in service. The control system should enable this type of behavior.

E.2 Computationally tractable Embedded processors are often limited in pro-
cessing ability, memory availability and communication speeds. The algorith-
mic realization of the controller should be conformable to such computational
platforms.

E.3 Compatible with Demand Response The controller should adapt its energy
consumption in response to signals received from a Building Management Sys-
tem during a Demand Response event.



Model Predictive Control of Vapor Compression Systems 11

E.4 Independent parameter-to-performance metric relationship The parameters
that adjust the behavior of the controller should independently and predictably
do so. For example, a parameter that specifies an output constraint should not
affect energy performance and the parameter that specifies energy performance
should not affect the output constraints. Parameter independence enables late-
stage modification of specifications without extensive re-validation, and there-
fore speeds product development.

3.3 Control Design Strategy

Our strategy to meet these requirements is outlined in this section, with additional
details and controller derivations provided in Sections 4 and 5. Model Predictive
Control (MPC) is selected as the main approach because (i) constraint enforcement
is critical (B.1), (ii) a model (3) of the process dynamics is available and a prediction
model for the references can be created, and (iii) control invariant sets and online
updates to the cost function enable satisfaction of the extended requirements.

An outline of the design process for model predictive control is shown in Fig. 3.
Designing a model predictive controller requires specifying a receding horizon opti-
mal control problem in a series of offline steps. Briefly, starting from a model of the
ME-VCS dynamics, augmentations to the model are performed to meet controller
requirements, resulting in a prediction model that achieves desired closed-loop dy-
namics. The prediction model is used in the specification of the optimal control
problem and as the basis of a online state estimator. The controller requirements
are also used to specify the cost function and constraint components of the opti-
mal control problem. A control problem with quadratic cost and linear constraints is
equivalent to a constrained quadratic program that is solved online by an optimiza-
tion algorithm [30].

The following describes how we apply the MPC design framework of Fig. 3 to
meet the control requirements. Specifically, and in order of priority, the constraint
enforcement requirement (B.1) is satisfied through appropriate specification of the
constraints in the optimal control problem. Zone temperature regulation (B.2) is ad-
dressed by specifying a setpoint temperature for each zone and penalizing tracking
errors in the cost function. Disturbance rejection (B.3) is addressed with output dis-
turbance models incorporated and the use of integral action on the zone temperature
tracking errors. A Kalman filter is used to estimate unmeasured states that are used
to initialize the prediction model.

To address the requirement to minimize energy consumption (B.4), we note that
the number of actuators is greater than the number of zones, which implies that
sufficient degrees-of-freedom exist to regulate an additional variable while simulta-
neously meeting zone temperature setpoint objectives, and we therefore introduce
another reference correlated to steady state thermodynamic efficiency. While many
control approaches for vapor compression systems regulate evaporator superheat as
a surrogate for efficiency, we instead select the compressor discharge temperature
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Fig. 3 A model predictive controller is designed in a series of offline steps to specify an optimal
control problem. Controller requirements inform the creation of the cost function, constraints, and
the model augmentations needed create the prediction model. The optimal control problem is then
converted into a representation suitable for online calculation of the control action.

Td because it is measured and because the steady state power consumption at any
operating point is convex with respect to it [31, 32]. Therefore, energy-optimal val-
ues of Td are used to create a reference, and tracking errors of this reference are
penalized in the cost function.

After introducing the Td reference there still remains an additional degree-of-
freedom. However, it is more important to enforce constraints, especially through
transients, than to regulate an additional process variable. We therefore choose to
use the additional degree-of-freedom to provide flexibility to the optimizer to meet
the constraints. The transient performance objective (B.5) is addressed through the
selection of appropriate penalty terms in the cost function and the reliance on the
actuator and output constraint enforcement to safely extract the high performance
only obtained near equipment limits.

The extended controller requirements are addressed by exploiting properties of
the MPC method. Selectively turning zones on or off (E.1) is accomplished with
online modification to the penalty terms in the MPC cost function, effectively re-
moving zone-level process variables and control inputs from the optimization prob-
lem. The manipulation of the controller cost function is performed when either an
occupant specifies that a zone is to be shut off or supervisory logic determines that
a zone should be deactivated. A detailed derivation of this approach and validation
experiments are provided in Section 5.

By requirement (E.2), the realization of the online calculations method must be
computationally tractable and fit within the limited memory available on low cost
embedded systems. The reconfigurable MPC strategy for shutting off zones with
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online modifications avoids the need to store individual controllers for every pos-
sible on/off configuration, and the relatively slow dynamics of (2) provide ample
time between controller updates for advanced algorithms [16] to reliably solve the
associated quadratic program.

The requirement of adapting to a demand response request (E.3) is enabled
through the parameter independence property of our MPC design and therefore
(E.3) is satisfied when (E.4) is satisfied. The controller derived in Sections 4 and
5 is shown to decouple the effect of one parameter from another. Not only does this
property simplify tuning and validation, but it also provides tunable parameters that
can be exposed to higher-level supervisory control systems such as with a building
management system. For example, zone temperature set points, or the controller
discharge reference or the maximum compressor frequency can each be dynami-
cally adjusted by external logic to alter the energy consumption behavior without
modifying, for example, the controller’s ability to enforce constraints.

As a result of the controller structure presented in the next section, the ability
to meet the baseline requirements degrades gracefully and in accordance with the
listed priority. We show this in experiments in the following section.

4 Model Predictive Control for Baseline Requirements

In this section, we show how a model predictive control strategy can be applied
to meet the baseline requirements described in Section 3.1. The key elements of
the control algorithm are described, including the prediction model used to define
performance and constrained outputs, the Kalman Filter and the optimal control
problem formulation. Finally, experiments are conducted to validate the approach.

A block diagram of the closed loop system is shown in Fig. 4. A state estima-
tor which includes a Kalman Filter (plus additional functions for generating other
states) receives zone temperature references ri(t), a signal u0,max(t) indicating the
time-varying maximum compressor speed from external control logic, the outputs
y(t) measured from the ME-VCS, and the control inputs u(t) supplied to it, and
computes estimated states x̄(t) of a prediction model. The model predictive con-
troller uses x̄(t) to define and to solve a constrained optimal control problem to
generate the control inputs u(t).

4.1 Kalman Filter

The structure of the Kalman Filter is designed to satisfy the setpoint regulation re-
quirement (B.2) and the disturbance rejection requirement (B.3), which demands
that the states be estimated such that the outputs of the estimator ŷ match the mea-
surements y at steady state when the disturbances are constant.
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Fig. 4 Block diagram of the closed loop system.

Starting from model (3), we construct the Kalman Filter for the ME-VCS plant
dynamics

x̂(k+1) = Ax̂(k)+Bu(k)+Lx (y(k)− ŷ(k)) (4a)
ŵ(k+1) = ŵ(k)+Lw (y(k)− ŷ(k)) (4b)

ŷ(k) =Cx̂(k)+ ŵ. (4c)

The estimator gain matrix L = [Lx Lw] can be computed using conventional methods
such as minimizing an H2 norm.

In addition to the estimated states [x̂T ŵT ]T , there are additional variables required
by the MPC that are added to the state vector, resulting in the augmented state
vector x̄. The block labeled “State Estimator” in Fig. 4 contains the Kalman Filter (4)
which computes [x̂T ŵT ]T , and also other equations for computing the remaining
components of x̄, as described in the next section.

4.2 Prediction Model Augmentations

In this section, we begin with the plant model (3) and augment the dynamics to
define performance outputs and constrained outputs for the optimal control problem.
Each augmentation is performed to meet one or more control requirements, as will
be indicated.

Augmentation 1 (Incremental Inputs) Because there are constraints on both the
magnitude of the inputs and the amount they can change at each sample period, we
redefine the inputs of (3) to explicitly track the incremental control action [33]. Let
u(t) = u(t−1)+∆u(t), define the actuator state xu(t) := u(t−1) and augment the
state in (3) with xu. Finally, augment the constrained outputs with this new state so
that the magnitude of the control inputs can be constrained, satisfying B.1.

Augmentation 2 (Time-varying Constraints) In order to be compatible with de-
mand response commands (E.4), we allow the maximum compressor maximum fre-
quency constraint to be time-varying u0,max(t) = CFmax(t). Therefore, we want to
enforce CF(t) ≤ CFmax(t) so we rewrite the constraint as CF(k)−CFmax(t) ≤ 0
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and define the new constrained output ytv(t) := CF(t)−CFmax(t) where the sub-
script is meant to indicate a time-varying constraint. This new constraint will have
a maximum value of 0, which ensures that CF remains less than the constrained
value.

Because the value of CFmax comes from an external source, we define a new state
xtv(t) := CFmax(t) and include it in the definition of the prediction model state. The
dynamics of this exogenous constraint cannot be predicted, so we assume that it is
constant xtv(t +1) = xtv(t).

Note that allowing a building management system to specify the maximum com-
pressor speed permits a more direct influence over the vapor compression system’s
energy consumption than traditional means where zone temperature setpoints are
adjusted with offsets.

Augmentation 3 (References and Performance Outputs) The baseline require-
ments include setpoint regulation (B.1) of the zone air temperatures and energy
minimization (B.4) in steady state. To achieve both requirements, we first introduce
the references into the prediction model, then define the performance outputs as the
tracking errors and integrals thereof.

The energy-optimal discharge temperature reference is a linear function of the
compressor frequency CF (control input) and the outdoor air temperature OAT (dis-
turbance input) [34] given by

r0 = F00u0 +G00w0 (5)

where the coefficients F00,G00 are experimentally characterized to minimize power
consumption over a range of operating conditions. Since w0 is assumed constant
over the timescale of the model (3), the prediction model of the reference discharge
temperature is given by

r0(t +1) = r0(t)+F00∆u0(t). (6)

The reference zone temperatures are assumed constant and modeled by

ri(t +1) = ri(t), (7)

for i = 1, . . . ,N. For consistency we define Fii = 0 and Gii = 0 for i = 1, . . . ,N. Thus,
the composite reference r = col(r0,r1, . . . ,rN) is modeled by

r(t +1) = r(t)+F∆u0(t)

where F = col(F00,F11, . . . ,FNN) and G = col(G00,G11, . . . ,GNN). The prediction
model state vector is then augmented to include these references.

Using these references, tracking errors are computed for the compressor dis-
charge temperature and the zone temperatures
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Fig. 5 Controller block diagram. A state estimator computes the states defined by the prediction
model from zone integrators, the Td reference function and the Kalman Filter. An optimizer solves
the constrained optimal control problem to determine incremental input vales that are integrated to
generate the control inputs.

e0(t) = Td− r0(t) (8)
ei(t) = Tri(t)− ri(t) i = 1, . . . ,N (9)

Additionally, the zone temperature tracking errors are integrated

ξi(t +1) = ξi(t)+ ei(t) i = 1, . . . ,N (10)

The zone temperature error integrators (10) provide integral action and hence zero
steady-state tracking error in the presence of uncertainties in zone air volume and
heat loads. Although the auxiliary output offset (2c) and (2f) provide offset-free
tracking [35,36], our experimental results have shown that combining both integral
action and output offsets provides improved transient performance.

Finally, the performance outputs z̄ are defined as the tracking errors and the
integrals of the zone temperature tracking errors z̄ := col(eo,ei,ξi), for i = 1, . . . ,N.

The augmentations result in the prediction model

x̄(t +1) = Āx̄(t)+ B̄∆u(t) (11)
ȳ(t) = C̄x̄(t)+ D̄∆u(t) (12)
z̄(t) = Ēx̄(t) (13)

where x̄ = col(x̂(t), ŵ(t),r(t),ξi(t),xtv(t),xu(t)), i = 1, . . . ,N are the augmented
states, ȳ = col(Td,Te,Tc,Tdsh,CF,ODF,CCi,CF− CFmax), i = 1, . . . ,N are the
constrained outputs and z̄= col(Td−r0,Tri−ri,ξi), i= 1, . . . ,N are the performance
outputs and ∆u = col(∆CF,∆ODF,∆CCi), i = 1, . . . ,N are the inputs.
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4.3 Optimal Control Problem Formulation

As shown in Fig. 5, at each sample time the estimator computes the augmented
state x̄(t), and an optimizer computes the control input by solving the following
constrained finite-time optimal control problem

min
∆u

x̄′T |tPx̄T |t +
T−1

∑
k=0

z̄′k|tQz̄k|t +∆u′k|tR∆uk|t (14a)

s.t. x̄k+1|t = Āx̄k|t + B̄∆uk|t (14b)

ȳk|t = C̄x̄k|t + D̄∆uk|t (14c)

z̄k|t = Ēx̄k|t (14d)

∆umin ≤ ∆uk|t ≤ ∆umax (14e)

ymin ≤ ȳk|t ≤ ymax (14f)

x̄0|t = x̄(t). (14g)

where x̄k|t is the predicted augmented state under the incremental input ∆uk|t over
the finite prediction horizon of T -steps, and ∆u = col(∆u0|t , . . . ,∆uT−1|t) is the op-
timization variable. The first element from ∆u is selected from the solution to the
optimization problem, ∆u(t) = ∆u?0|t and because this variable is an incremental in-
put (by Augmentation 1), the model predictive controller integrates the incremental
input ∆u(t) (see Fig. 5) to obtain the implemented input

u(t) = u(t−1)+∆ut (15)

which is then applied the ME-VCS.
The cost function (14a) penalizes the predicted performance outputs z̄k|t and in-

cremental inputs ∆uk|t over the prediction horizon, and the states at the end of the
prediction horizon x̄+ T |t. The performance output z̄0 = z0− r0 is the difference
between the discharge temperature z0 = Td and the reference discharge temperature
r0 = Tdref, which maximizes energy efficiency at steady state. Additional perfor-
mance outputs z̄i = col(zi−ri,ξ ), i = 1 . . .N relate to the N indoor units and include
the room temperature tracking errors zi−ri, and their integrals ξ . The matrix Q≥ 0
is used to weigh the relative importance of the performance outputs. Changes in
control inputs ∆uk|t are also penalized, and the matrix R > 0 specifies their relative
importance. The terminal state matrix P > 0 is designed to ensure that tracking er-
rors are locally asymptotically stable, and may be computed by solving the Ricatti
equation with slight modifications as discussed in [37].

The optimal control problem (14) is converted to a quadratic program in an of-
fline step [30] and parameters representing the quadratic program are stored for
online calculation of the control action. An algorithm for solving the quadratic pro-
gram (labeled “Optimizer” in Fig. 5) uses these parameters with the current instance
of the augmented state x̄ to solve the control problem (14) on the embedded ME-
VCS processor to compute ∆u.
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Fig. 6 The outdoor unit and two indoor units of a split-ductless style vapor compression system
is installed in three test chambers. A balance-of-plant system consists of a set of adjustable-power
heaters (red) and an adjustable-power hydronic system (blue), and is used to set the environmental
conditions of the vapor compression system under test.

4.4 Experimental Validation

In this section, we present experiments demonstrating that the MPC design satisfies
the baseline requirements. We begin by briefly describing the experimental testing
facility, then show two experimental results aimed at validating the controller de-
sign.

The ME-VCS system is a commercially-available two-zone unit installed in a
test facility that includes a balance-of-plant system to supply heating and cooling
loads, as shown schematically in Fig. 6. The ME-VCS outdoor unit (consisting of
the compressor, outdoor heat exchanger and fan, and EEVs) is installed in a 6.3 m3

insulated test chamber and is connected via refrigerant lines to two indoor units
(each consisting of indoor heat exchangers and fans), which are installed in separate
9.9 m3 insulated test chambers. The balance-of-plant system consists of variable
power heaters and a variable power chiller, hydronic fan coils and associated con-
trollers and is configured to regulate the heat loads in the indoor unit test chambers
and the air temperature in the outdoor unit test chamber.

The plant model (2) is derived from experimental data collected in this test facil-
ity as follows: With 1.6 kW fixed heat loads applied in the indoor unit test chambers,
the outdoor test chamber regulated to 35◦C, and the vapor compression system op-
erating at steady state, steps are separately applied to each control input u (CF, ODF,
CC1 and CC2). Measurements of the system outputs y are collected the data is used
to fit a model of the plant in the form of Equation (2).
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Fig. 7 A step down in the zone temperature setpoint causes the Td and capacity command con-
straints to become active.

4.4.1 Experiment 1: Enforcing Multiple Simultaneous Constraints

This section describes an experiment where a step change to a setpoint is applied in
order to induce a transient response where an output constraint becomes active and
thereby demonstrate enforcement (B.1).

Referring to Fig. 7, the vapor compression system is operated until steady state
conditions are present with a zone setpoint r1 = 25◦C and the boundary conditions
Q1 = 2200 W, and OAT = 35◦C. At t = 5 min, the setpoint is lowered to r1 = 22◦C
(Fig. 7B-ii), and the controller increases the CF and saturates CC1 to reduce the
temperature in that zone. As a result of the increased CF, the discharge temperature
increases until it reaches its constraint at t = 8 min (Fig. 7B-i). The CF commands
(Fig. 7A-i) computed by the MPC maintain Td below its constraint. From t = 20 to
35 min., Td largely follows the constraint until at t = 35 min a constraint violation
of about 2◦C occurs (Fig. 7B-i), which is attributed to modeling errors. Addition-
ally, the CC1 input is also saturated at its maximum value (Fig. 7A-ii), making two
constraints active during this transient. The Td constraint violation causes an imme-
diate reduction in CF at t = 35 min, and Td is decreased accordingly, relieving the
violation. Finally, zone 1 achieves the setpoint with zero steady state error at t = 37
min.

This experiment demonstrates that both input (actuator) and output (sensor) con-
straints can be simultaneously enforced by the MPC during transients, satisfying
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Fig. 8 The MPC controller raises the room temperature as quickly as possible, despite a constraint
violation that slows the zone temperature response.

the constraint enforcement requirement (B.1). Additionally, because the maximum
cooling capacity occurs at the constraints, the zone temperature response in Fig. 7B-
ii represents the fastest pull-down in zone temperature possible from this system at
these conditions, satisfying the transient performance requirement (B.5).

4.4.2 Experiment 2: Recovery from Constraint Violation

This section describes an experiment showing the controller meeting requirement
priority. Specifically, transient performance (B.5) is reduced when a constraint be-
comes violated demonstrating that the controller alters behavior to prioritize con-
straint enforcement (B.1).

Referring to Fig. 8, two experiments are performed wherein an MPC that includes
a Tdshmin constraint (black lines) is compared to the same controller where Tdsh is
unconstrained (gray lines). A zone temperature reference r1 step up from 24◦C to
27◦C is applied at t = 5 min. (Fig. 8B.-ii) to cause a reduction in both the CF and
CC1 commands. Note that the capacity command can be intuitively understood as
proportional to the associated expansion valve (i.e., when CC1 is reduced, EEV1
becomes more closed). This simultaneous reduction in both actuators causes the
discharge superheat temperature Tdsh to fall rapidly, resulting in a constraint viola-
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tion due to modeling errors. For the case where Tdsh is unconstrained (gray lines),
the MPC acts to raise the zone temperature (Fig. 8B.-ii) as quickly as possible. The
CF is reduced to its minimum constraint for the duration of the transient, and the
capacity command is smoothly reduced in an effort for Td to track its reference r0
(not shown for clarity). Under these actuator commands, the room temperature first
reaches the setpoint at about t = 25 min. But the violation for Tdsh is larger in this
case.

In this experiment, the MPC controller with a Tdshmin = 10◦C constraint (black
lines) selects actuator commands that reflect the prioritized baseline requirement
list. In particular, actuator commands and the resulting room temperature response
initially follow the same trajectories, but when the Tdsh constraint is violated at t =
8 min, the controller prioritizes recovery from the constraint violation at the penalty
of increased time in meeting the setpoint. In particular, when Tdsh falls below the
minimum value, the compressor frequency is rapidly increased and the expansion
valve is simultaneously closed down, where both actions serve to increase Tdsh, but
at a penalty of slower warming of the room. In this case, the room temperature first
reaches the setpoint at t = 31 min, but Tdsh recovers quickly from the constraint
violation.

5 Model Predictive Control for Extended Requirements

In this section, we expand on the MPC design in order to meet the extended con-
troller requirements described in Section 3.2. We present a new method that permits
reconfiguration of the model predictive controller to accommodate the changing
number of control objectives and inputs when individual zones are turned on or
off, and demonstrate the method in experiments. We also provide an overview of
two optimization algorithms that are suitable for the embedded processors typically
used in commercial HVAC equipment.

5.1 Selectively Deactivating Zones with Reconfigurable MPC

In practice, many multi-evaporator systems often experience low heat loads in zones
such that the corresponding evaporator no longer needs to provide cooling and
should be shut off while the remaining evaporators continue to operate. This func-
tion is captured in the extended controller requirement (E.1). Turning an indoor unit
on or off alters the model of the plant dynamics, and therefore induces changes in
the prediction model and number of regulated variables, actuators, sensors, and con-
straints. A structural change of this nature conventionally would require a separate
controller for each machine configuration, where at each control cycle the appro-
priate controller is switched in at runtime [19, 20]. However this standard approach
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is too memory intensive for the available embedded processor and violates require-
ment (E.2).

The reconfigurable MPC approach described here features a single “master” con-
troller designed and tuned for the configuration where all subsystems are active,
and enables automatic reconfiguration of the controller by simple operations for
configurations when any number of evaporators are deactivated. In this way, the
master controller is designed and tuned using a single appropriately-partitioned pre-
diction model. The method scales to any combination of active evaporators in a
multi-evaporator vapor compression system.

In this section, we briefly describe how the configuration-dependent prediction
model is obtained and used to specify a reconfigurable optimal control problem.
The terms in the cost function are then manipulated online based on the ME-VCS
configuration to obtain an controller specific to the machine configuration. Finally,
we show an experiment where the reconfigurable MPC autonomously activates and
deactivates a zone due to low heat load conditions.

5.1.1 Configuration-Dependent Model

An indoor unit is said to be active when its associated expansion valve is open
allowing refrigerant to flow through the evaporator providing cooling. Conversely,
an indoor unit is said to be inactive when its associated expansion valve is closed
and no cooling occurs. A configuration of the ME-VCS is a combination of active
and inactive indoor units.

To each indoor unit i ∈ I we assign a configuration variable ςi ∈ {0,1} where
ςi = 1 if the unit is active and ςi = 0 if the unit is inactive. The configuration of the
entire ME-VCS is given by the vector ς = col(ς0,ς1, . . . ,ςN) where ς0 = 1 since the
outdoor unit is always active. The configuration ς ∈ {1}×{0,1}× · · · × {0,1} is
used to obtain a parameter-dependent controller [38] which operates for any ME-
VCS configuration. In the subsequent analysis, the configuration is assumed to be
kept constant, at least for a sufficiently long dwell time.

For configuration ς , the dynamics of the outdoor unit are modeled by

x0(t +1) = A00x0(t)+∑
N
j=0ς jB0 ju j(t) (16a)

where the future state x0(t + 1) of the outdoor unit is only affected by the inputs
u j(t) of active units ς j = 1. The dynamics of the i-th indoor unit are modeled by

xi(t +1) =Aiixi(t)+ςiAi0x0(t)+
N

∑
j=0

ςiς jBi ju j(t) (16b)

If the i-th indoor unit is inactive ςi = 0, then its future state xi(t + 1) depends only
on its current state xi(t). If the i-th indoor unit is active ςi = 1, then its future state
xi(t+1) also depends on the outdoor unit state x0(t) and the inputs u j(t) to the other
active indoor units ς j = 1.
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The configuration-dependent model (16) can be written more compactly in the
form

x(t +1) = Aς x(t)+Bς u(t) (17)

where x = col(x0,x1, . . . ,xN) and u = col(u0,u1, . . . ,uN) are the composite state and
input respectively. The state-update matrix Aς is block lower-arrowhead and the
input matrix Bς is dense.

5.1.2 Configuration-Dependent Augmentations

In the design of the reconfigurable MPC, similar augmentations are made as de-
scribed in Section 4.2 to create the prediction model. Here, we highlight the
configuration-dependent augmentations. Specifically, the integrators of the zone
temperature tracking errors are expressed in configuration-dependent form as

ξi(t +1) = ςiξi(t)+ ςi
(
ei(t)

)
. (18)

And we define the state xu,i(t) = ui(t − 1). Note that when the i-th indoor unit is
inactive ςi = 0 the corresponding integrator is shut-off ξi(t+1)= 0. The incremental
inputs are configuration-dependent

ui(t) = ςiui(t−1)+ ςi∆ui(t) (19)

Note that when the i-th indoor unit is inactive ςi = 0 equation (19) sets the input ui(t)
to zero, and the associated inner feedback loop fully closes the expansion valve.

The remaining augmentations are applied as in Section 4.2. The configuration-
dependent prediction model then becomes

x̄(t +1) = Āς x̄(t)+ B̄ς
∆u(t) (20a)

ȳ(t) = C̄ς x̄(t)+ D̄ς
∆u(t) (20b)

z̄(t) = Ēς x̂(t) (20c)

where x̄ = col(x̂i(t), ŵi(t),r(t),ξi(t),xtv(t),xu,i(t)), i = 1, . . . ,N are the augmented
states, ȳ = col(Td,Te,Tc,Tdsh,CF,ODF,CCi,CF− CFmax), i = 1, . . . ,N are the
constrained outputs and z̄= col(Td−r0,Tri−ri,ξi), i= 1, . . . ,N are the performance
outputs and ∆u = col(∆CF,∆ODF,∆CCi), i = 1, . . . ,N are the inputs.

5.1.3 Configuration-Dependent Optimal Control Problem

The reconfigurable model predictive controller computes the control input by solv-
ing the following configuration-dependent finite-time optimal control problem
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min
∆u ∑

N
i=0

(
ςix̄′i,T |tPix̄i,T |t +∑

T−1
k=0 ςiz̄′i,k|tQiz̄i,k|t +λi∆u′i,k|tRi∆ui,k|t

)
(21a)

s.t. x̄k+1|t = Ā1x̄k|t + B̄1
∆uk|t (21b)

ȳk|t = C̄1x̄k|t + D̄1
∆uk|t (21c)

z̄k|t = Ē1x̄k|t (21d)

∆umin ≤ ∆uk|t ≤ ∆umax (21e)

ymin ≤ ȳk|t ≤ ymax (21f)

x̄0|t = x̄(t),u−1|t = ςiu(t−1). (21g)

where x̄k|t is the predicted augmented state under the incremental input ∆uk|t over
the horizon T , and ∆u= col(∆u0,0|t , . . . ,∆uN,0|t , . . . ,∆uN,T−1|t , . . . ,∆uN,T−1|t) is the
optimization variable. Note that the prediction model used here is for the nominal
configuration ς = 1 where all units are active ςi = 1 for i = 0, . . . ,N. The reconfig-
urable model predictive controller integrates the optimal incremental input ∆u?i,k|t to
obtain the implemented input

ui(t) = ςiui(t−1)+∆u?i,0|t (22)

for each unit i = 0, . . . ,N.
The cost function (21a) of the constrained finite-time optimal control problem

(21) is configuration-dependent. The term ςiz̄′i,k|tQiz̄i,k|t penalizes the performance
outputs of the configuration-dependent prediction model (20). For the outdoor unit
i = 0, the performance output z̄0 = z0− r0 is the difference between the discharge
temperature z0 =Td and the reference discharge temperature r0 =Tdref, which max-
imizes energy efficiency. Since the outdoor unit is always active ς0 = 1, the model
predictive control always regulates the discharge temperature. For the indoor units
i = 1, . . . ,N, the performance outputs z̄i = col(zi−ri,ξi) includes the zone tempera-
ture tracking errors zi−ri, and their integrals ξi. If an indoor unit is inactive ςi = 0,
then the zone temperature tracking error and integrated error for that indoor unit
do not appear in the cost ςiz̄′i,k|tQiz̄i,k|t = 0. Thus, the reconfigurable MPC does not
regulate the zone temperature of inactive zones.

The term λi∆u′i,k|tRi∆ui,k|t in the cost function (21a) penalizes changes ∆ui,k|t to
the inputs ui,k|t . For the outdoor unit i = 0, this term penalizes changing the com-
pressor frequency and outdoor fan speed. For the indoor units i = 1, . . . ,N this term
penalizes changing the capacity command. The scalar λi is defined as

λi =

{
1 if ςi = 1
M if ςi = 0

(23)

where the “big-M” scalar M is chosen to be large compared to the eigenvalues of
the matrices Qi, Ri, and Pi. The scalar λi ensures the optimal incremental input
∆u?i,k|t = 0 is zero for inactive indoor units ςi = 0 [39]. Thus, the capacity command
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Fig. 9 Block diagram for the reconfigurable MPC. A configuration signal indicating the zones to
be turned on modifies the parameterized optimizer.

ui,k|t = ui,k−1|t +∆ui,k|t = 0 to an inactive room ςi = 0 is zero since it is initially zero
ui,−1|t = ςiui(t−1) and does not change ∆ui,k|t = 0 for k = 0, . . . ,T −1.

The terminal cost term ςix̄′i,T |tPix̄i,T |t penalizes the deviation of the augmented
state x̄i,N|t for i = 0, . . . ,N. When the i-th indoor unit is inactive ςi = 0, its ter-
minal cost is zero ςix̄′i,T |tPix̄i,T |t = 0. The terminal cost matrices Pi are the Lya-
punov matrices for a linear controller designed using the configuration-dependent
model (20). The prediction model (21b)–(21d) used by the model predictive con-
troller does not depend on the configuration ς of the ME-VCS. Instead the opti-
mal control problem (21) uses the model (20) for the nominal configuration ς = 1.
Due to the structure of the cost (21a), solving the optimal control problem (21) with
the configuration-independent prediction model (21b)–(21d) is equivalent to solving
the problem with the correct configuration-dependent model (20). For more details
see [18].

A block diagram summarizing the online calculations performed for the reconfig-
urable MPC is shown in Fig. 9. The controller is similar to the non-reconfigurable
controller (in particular, note that the same estimator is used in Fig. 5), with the
exception of a new configuration signal ς(t) supplied by external logic. This con-
figuration signal could originate from an occupant indicating that a particular zone
is to be turned on (ςi = 1), or from a higher level controller that determines whether
an indoor unit should become activated based, for example, on the magnitude of the
zone error signal ei. This configuration signal is provided to the optimizer, which is
used to modify the cost function (21a) as previously described.

The reconfigurable MPC approach enables zones to be turned on or off, satisfy-
ing requirement (E.1). Additionally, because only one set of controller parameters
needs to be stored, the memory usage requirements are reduced, which satisfies re-
quirement (E.2). In order to validate the method, experiments are shown wherein
external logic automatically deactivates a zone based on the zone temperature error.
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5.1.4 Experiment 3: Validation of Reconfigurable MPC

The control system must turn zones on or off automatically in order to regulate
zone temperatures when the heat loads are lower than the minimum continuously-
available cooling capacity. This requires supervisory logic to compute the system
configuration ς(t). In this section, a state machine is designed to detect low heat
load conditions and reconfigure the ME-VCS automatically, and experiments are
presented to validate its performance. The objective of this experiment is to empir-
ically demonstrate reference tracking and constraint enforcement of the reconfig-
urable MPC controlling a switching system where the dwell times for a particular
configuration are determined by a supervisory state machine [40]. The state ma-
chine logic considers the sign and magnitude of the zone temperature error signal
and associated cooling command to determine when to switch a zone on or off.
Specifically, if a zone is off and has become overheated by 1◦C, then the state ma-
chine will activate that zone. If a zone is active and either the zone has become
overcooled by 2.5◦C, or the cooling capacity command for that zone has been low
enough for long enough, then the zone is deactivated.

Regarding the latter condition, an integrator is used to determine the low actuator
condition as follows: If CCi is less than 40%, then an integrator state ei(t) increases
according to

ei(t +1) = ei(t)+(40−CCi) (24)

Once the integrator has reached a predetermined value, then the zone is deactivated.
This predetermined value is chosen so that if CCi has been at its low constraint of
20% for about 5 minutes, then condition (2) becomes true. This test on the capac-
ity command will cause a zone to be deactivated even if good setpoint tracking is
achieved, but requires a low capacity command to do so, which is the intended be-
havior. The parameters used in the state machine have been determined heuristically.

Using this state machine to automatically determine the configuration signal ς(t),
an experiment is conducted wherein the heat load in zone 2 is reduced. Referring
to Fig. 10, the vapor compression system is brought into steady state operation with
setpoints r1 = 21◦C, r2 = 25◦C and the boundary conditions are set to Q1 = Q2 =
1800 W , and OAT = 35◦C. At this initial condition, both zone loads are met in steady
state with a compressor frequency of CF = 40 Hz, and capacity commands of CC1 =
100% and CC2 = 60%. At t = 10 min, the heat load in zone 2 is decreased to 500 W
(Fig. 10B-iii, red), which is a load that is about equal to the cooling provided when
operated at CC2,min = 20%. As a result of the load step, the temperature in zone 2 is
reduced, and the MPC decreases the associated actuator command to its minimum
value in an attempt to raise the zone temperature back to the setpoint.

After about 10 min., the integrator in the supervisory state machine has reached
its predetermined value, and ς2 is set to 0, triggering reconfiguration of the con-
troller. Zone 2 is automatically switched off, and the CC2 command is set to 0
(Fig. 10A-iii, black), which closes the associated EEV. The zone temperature subse-
quently increases under the influence of the 500 W load until it becomes overheated
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Fig. 10 Reconfig MPC shuts off zones.

by 1◦C (Fig. 10B-iii, black), at which point the state machine sets ς2 to 1 and the
controller is again reconfigured to turn zone 2 back on. This pattern is repeated
under automatic control, establishing a cyclic response.

Note that the coupling inherent in the vapor compression system induces a pe-
riodic disturbance in zone 1 (Fig. 10B-ii, black) as zone 2 is switched on and off,
which can only be partially rejected since the associated actuator CC1 is saturated
at its maximum value for large periods of the disturbance cycle (Fig. 10A-ii, black).
Despite the large imbalance in loads between the two zones, both zone temperatures
cycle around their respective setpoints, and when averaged over multiple periods,
both zones are shown to achieve their setpoints. The experiment demonstrates that
the reconfigurable MPC can operate in combination with supervisory logic deter-
mining the on/off conditions.
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Fig. 10 also shows the same experiment for the case where the controller is not
permitted to reconfigure. This non-reconfigurable MPC is shown in gray for the
same test conditions. Since the controller cannot turn zone 2 off, CC2 is driven
to its lower limit (Fig. 10A-iii, gray) while CC1 remains saturated at its upper
limit (Fig. 10A-ii, gray). The corresponding temperatures for these zones settle to
a nonzero steady state error (about 1◦C overheated in zone 1 (Fig. 10B-ii, gray),
and about 1◦C overcooled in zone 2 (Fig. 10B-iii, gray)). Note that since both zone
temperature tracking errors are equally penalized in the cost function, the MPC
controller selects compressor frequency commands that equally distribute the zone
tracking errors despite both zone capacity commands being saturated.

The experiment presented in this section demonstrates that reconfigurable MPC
permits individual zones to be selectively deactivated, satisfying extended require-
ment (E.1). Further, despite similar transient performance, reconfigurable MPC is
much more efficient in memory storage requirements and tuning effort than tradi-
tional approaches where an MPC must be created and stored for each configuration
and this satisfies extended requirement (E.2).

5.2 Optimization Algorithms for Embedded Platforms

While in general, building control systems may be supported by a fairly power-
ful computing infrastructure, at the equipment level, the computing platforms are
significantly more limited. Thus, in order to solve the finite horizon optimal control
problem (14) and (21), HVAC equipment control needs optimization algorithms that
are fast, but also simple to allow for implementation in low computational power
embedded platforms and for rapid validation.

In general (14) and (21) can be formulated as convex parametric Quadratic Pro-
grams (pQPs) with linear equalities and bound constraints

min
ϕ

1
2

ϕ
′Quϕ (25a)

s.t. Guϕ =Wu +Sux̄(t) (25b)
ϕ ≤ ϕ ≤ ϕ (25c)

where ϕ = col(xt ,∆ut ,yt), xt = col(x̄1|t , . . . , x̄T |t), yt = col(ȳ0|t , . . . , ȳT−1|t), and ϕ ,
ϕ are constructed from lower and upper bounds on inputs and outputs. Furthermore,
the equality constraints in pQP (25) can be eliminated by applying basic concepts
in linear systems theory [41] since the real degrees-of-freedom are only the inputs
in ∆u. The result is the pQP

min
∆u

1
2

∆u′Qp∆u+ x(t)′C′c∆u (26a)

s.t. Gc∆u≤Wc +Scx̄(t) (26b)
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where all the constraints are general linear inequalities.
Over the last few years there has been a large activity in developing simple and

fast optimization algorithms for solving (25), (26) as required for MPC [16,42–49].
In particular the results in Sections 4, 5 are obtained using the PQP method [16] that
solves (26) by solving the dual problem

min
ϕ

1
2

ϕ
′Qdϕ +F ′dϕ (27a)

s.t. ϕ ≥ 0 , (27b)

where Qd =GpQ−1
P G′p, Fd = (GpQ−1

p Cp+Sp)x̄(t)+Wp, and then computing ∆u∗ =
Γdθ +ϒdϕ∗, where ϒd = −Q−1

c G′c, Γd = −Q−1
c Cc. The PQP method solves (27) by

iterating

[ϕ(`+1)]i =
[(Q−d +φ)ϕ(`)+F−d ]i

[(Q+
d +φ)ϕ(`)+F+

d ]i
[ϕ(`)]i (28)

where [a]i is the ith component of vector a, and A+, A− are the positive and negative
parts of a matrix A, respectively, until the convergence conditions are reached.

Another algorithm that is most commonly applied to (25) is based on the alter-
nating direction method of multipliers (ADMM), where in order to obtain a simple
iteration, a “copy” ζ of the optimization vector ϕ is used to enforce bound con-
straints, and the equality between ζ and ϕ is dualized in the augmented Lagrangian,

min
ϕ,ζ

1
2

ϕ
′Quϕ +

β

2
‖ϕ−ζ −λ‖2 (29a)

s.t. Gpϕ = Kp (29b)
ϕ ≤ ζ ≤ ϕ (29c)

where λ is the Lagrange multiplier vector and β is a stepsize parameter that can
be optimally determined [48,49]. The ADMM the algorithm iteratively adjusts λ to
seek the values of ϕ , ζ that solve (29) and such that at optimum ζ = ϕ . In [50] the
solution is achieved by the iterations

ϕ
(k+1) = M (ζ (k)+λ

(k))+N KE (30a)

ζ
(k+1) = projζ∈[ϕ,ϕ](ϕ

(k+1)−λ
(k)) (30b)

λ
(k+1) = λ

(k)+ζ
(k+1)−ϕ

(k+1) (30c)

where M ,N are matrices computed from the matrices in (29), and proj denotes the
projection, i.e., in this case the clipping within the box determined by ϕ,ϕ .

Note that both iterations (28) and (30) involve only basic operations and no addi-
tional libraries for algebra operations are required. Hence, both methods are simple
to code and to verify and do not impose stringent requirements on the embedded
platform, thus enabling the usage of the algorithms in low-cost embedded platforms
that are suitable for HVAC equipment. Despite their simplicity, it is shown in [16,48]
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that both methods are relatively fast, and hence allows for solving the finite horizon
optimal control problems (14), (21) at rates that are suitable for the target HVAC
applications, where the control sampling period is usually on the order of 10–100s.

5.3 Reducing Power Consumption for Demand Response

In the demand response (DR) framework, utilities send signals to consumers to indi-
cate a planned short-term increase in energy rates to incentivize reduced consump-
tion during anticipated periods of expected peak demand. Because HVAC equipment
typically consumes significant amounts of energy and users can tolerate a range of
temperatures, a small reduction in individual cooling capacity can meaningfully re-
duce electrical consumption for the utility with minimal impact to zone occupants.
Therefore, it is important for HVAC control systems to be responsive to DR requests
for reduced consumption.

DR is often realized through zone setbacks. The reduction in energy consumption
is an indirect consequence of the setpoint change, and predicting the exact energy
reduction depends on equipment details, load conditions and building construction.
It is thus difficult to use this approach to reduce energy consumption by a known
amount.

However, the model predictive control architecture presented includes a time-
varying maximum constraint on the compressor frequency CF(t)≤CFmax(t), which
can be used to directly limit power consumption, provided a performance map (sim-
ilar to the one represented by Equations (18)-(19) in Chapter 4 editor: check ref
to another chapter) is available relating compressor speed to power consumption.
Suppose a DR event is initiated with the ME-VCS operating in steady state with
a non-zero compressor frequency and the heat loads are such that the system does
not duty cycle. The supervisory logic receives the DR signal, evaluates the current
power consumption, and uses the compressor map to determine the new maximum
compressor frequency that results in the desired reduction of energy consumption.
This new CFmax is provided to the model predictive controller and the compres-
sor speed is subsequently limited. When a DR event limits compressor speed, the
baseline control requirements will continue to be enforced, potentially giving up on
setpoint regulation in order to enforce constraints. This strategy has the same effect
of allowing zone temperatures to increase as in the zone setback method, but in the
case of MPC, the reduction in power consumption is directly specified and reliably
achieved.

6 Conclusion

A controller for a commercial vapor compression system must be capable of meet-
ing an extensive set of control objectives. Model predictive control is a design frame-
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work that enables satisfaction of both conventional controller requirements (con-
straint satisfaction, setpoint regulation, etc.), and also requirements not typically
discussed in academic treatments of vapor compression system control, including
prioritization, design separation-of-concerns and scalability. Through careful archi-
tecture considerations, MPC can satisfy requirements for set point regulation, distur-
bance rejection, energy efficiency, zone on/off, scalability and ease-of-tuning. MPC
also enables integration with higher level functionality at the building level. Finally,
efficient numerical optimization algorithms have been developed that enable this
technology to be deployed into commercial products. We expect this technology to
see increased application to this industry in the coming years.
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