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Abstract
In this paper, we propose a hand pose estimation approach from low cost surface electromyo-
gram (sEMG) signals using recurrent neural networks (RNN). We use the Leap Motion sensor
to capture the hand joint kinematics and the Myo sensor to collect sEMG while the user is
performing simple finger movements. We aim at building an accurate regression model that
predicts hand joint kinematics from sEMG features. We use RNN with long short-term mem-
ory (LSTM) cells to account for the non-linear relationship between the two domains (sEMG
and hand pose). Additionally, we add a Gaussian mixture model (GMM) to build a prob-
abilistic model of hand pose given EMG data. We performed experiments across 7 users to
test the performance of our approach. Our results show that for simple hand gestures such
as finger flexion, the model is able to capture hand pose kinematics precisely.
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Translating sEMG Signals to Continuous Hand Poses using Recurrent
Neural Networks
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Abstract— In this paper, we propose a hand pose estimation
approach from low cost surface electromyogram (sEMG) signals
using recurrent neural networks (RNN). We use the Leap
Motion sensor to capture the hand joint kinematics and the
Myo sensor to collect sEMG while the user is performing simple
finger movements. We aim at building an accurate regression
model that predicts hand joint kinematics from sEMG features.
We use RNN with long short-term memory (LSTM) cells to
account for the non-linear relationship between the two domains
(sEMG and hand pose). Additionally, we add a Gaussian
mixture model (GMM) to build a probabilistic model of hand
pose given EMG data. We performed experiments across 7 users
to test the performance of our approach. Our results show that
for simple hand gestures such as finger flexion, the model is
able to capture hand pose kinematics precisely.

I. INTRODUCTION

Non-invasive surface electromyogram (sEMG) recordings
on the forearm contain useful information for decoding
muscle activity and hand kinematics [1], [2]. sEMG has been
used by researchers to develop intuitive robotic prosthesis
interfaces either via pattern recognition using physiological
features or via classical control schemes [3], [4]. Classifi-
cation approaches attempt to estimate hand posture from a
pre-defined set using continuous sEMG signals. Classifiers
such as support vector machines [1], linear discriminant
analysis [5], artificial neural networks [6], fuzzy logic [7],
Gaussian mixture models (GMM) [3], among others have
been proposed using a wide variety of features (zero-
crossings of raw EMG, mean absolute deviation, root mean
square of the signal, etc.). However, such approaches are not
valid when attempting to fully reconstruct hand kinematics.

Hand pose estimation solutions have been proposed using
stereo imaging [8], tracking gloves [9], ultrasound [10],
among others. Camera-based methods do not work well
when there is occlusion. Moreover, some camera-based
methods require geometric calibration that can be cumber-
some to set up in complex environments [11]. Alterna-
tively, glove-based methods, although reliable, can be cost
prohibitive. A few studies have tackled the problem of
estimating finger movement from sEMG [12]. In [13], a
time-delayed neural network was used to estimate finger joint
angles while [2] showed that a Gaussian process regression
model outperformed the neural network approach.

In this paper, we propose a low-cost approach to build
models that translate sEMG recordings to hand kinematics.
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Fig. 1: Model training methodology.

The training procedure is based on inexpensive sensing with
the Myo sEMG sensor and hand skeleton tracking with the
Leap Motion sensor. Our approach uses recurrent neural
networks (RNN) to map muscle activation signals to hand
pose directly. By integrating a GMM into the RNN, we show
that we can build a probabilistic model that can successfully
reconstruct hand kinematics. We show our results on data
from 7 users performing different gestures.

II. METHODS

A. Experimental Setup

The overall data collection and analysis framework are
outlined in Fig. 1. sEMG data were collected with the Myo
sensor at 200 Hz. The hardware is comprised of 8 bipolar
channels placed uniformly around the proximal forearm
region, targeting most muscles used in hand manipulation.
The Myo has been widely used as an inexpensive source of
sEMG [14]. Hand pose tracking was performed with a Leap
Motion sensor. The acquisition records the positions of 22
joints in the hand relative to the sensor’s origin.

Users were asked to perform 7 hand gestures with 30
repetitions per gesture. Each gesture was executed in a win-
dow of 3 seconds, always returning the hand to the original
resting pose. Fig. 2 shows the user interface displayed during
experiments.

B. Data Acquisition

Muscle activation was estimated by computing mean abso-
lute deviation (MAD) on a moving window over 5 samples:

xMAD(n) =
1

L

n∑
k=n−L+1

|x(k)−m(k)|, (1)

where L is the window size and m(k) is the mean signal in
the given window.

Hand pose data were resampled to 200 Hz using a re-
sampling filter. Data were aligned with software triggers and



Fig. 2: Data collection instruction interface.

filter group delay was taken into account with a temporal
shift. The joint coordinates were transformed to be relative
with respect to the hand itself, thus making them translation
and rotation invariant. Additionally, the dimensionality of
the hand pose vector (22 features for each coordinate) was
reduced with principal component analysis (PCA), keeping
enough features to reconstruct original poses with 95%
fidelity (no loss in visual quality). Finally, the temporal
regression task was set to map 8 sEMG inputs (MAD
processed) to 10 hand pose features. The low dimensional
representation can be used to reconstruct the joint positions
in the original coordinate system.

C. Regression with Recurrent Neural Networks

RNNs are expressive models that can learn not only long-
term dependencies in sequential data such as time series, but
also can model complex non-linear dynamics [15]. RNNs
learn hidden representations hn of temporal data:

hn = tanh(W hn−1 + V xn), (2)

where W is the recurrent weight matrix and V is the
projection to the input representation. The hidden state h
is then used to make a prediction of the output (with a
linear mapping, for example). Moreover, RNN modules like
this can be stacked to learn more complex representations,
yielding richer models [15]:

hln = σ(Wl h
l
n−1 + Vl h

l−1
n ), (3)

where σ is the logistic sigmoid function and l denotes
the layer index. The last layer hidden state will be used
to compute an estimate of the desired output. However,
training such RNNs can be difficult due to the vanishing
and exploding gradient problem.

Long short-term memory (LSTM) networks are RNN
modules that address the vanishing gradient problem by
using gating functions that control the state dynamics [15].
At each step, an LSTM cell keeps an external output vector
h and a hidden internal state memory vector C which is
responsible for updating itself and the output. The computa-

tions are defined as follows:

gi = σ(Wi hn−1 + Vi xn),

gf = σ(Wf hn−1 + Vf xn),

go = σ(Wo hn−1 + Vo xn),

Ĉn = tanh(Wc hn−1 + Vc xn),

Ck = gf �Ck−1 + gi � Ĉn,

hn = go � tanh(Cn−1),

(4)

where W∗ and V∗ are state and input projection weights.
Each LSTM cell can be stacked as described earlier. In our
case, the input vector was the MAD-processed sEMG signals
and the output was the PCA-processed hand pose.

D. Generative Modeling with Mixture Density Networks

From a probabilistic perspective, using mean squared error
as the training loss corresponds to assuming that the output
can be modeled with unit variance Gaussian distribution [16].
Such model fails to capture complex relationships between
output features which are likely to be present in data as com-
plex as hand movement. Recurrent mixture density networks
(RMDN) [15] have been shown to be effective in a wide
variety of tasks such as hand writing modeling, trajectory
prediction, among others. With this approach the output of
the network is modeled probabilistically as follows:

p(yn|x≤n) = p(yn|x<n,xn)

≈ p(yn|hn−1,xn)

=
1

K

K∑
k=1

N (yn|µk,Σk)πk,

(5)

where µk := µk(hn−1,xn), Σk := Σk(hn−1,xn), and
πk := πk(hn−1,xn) are the outputs of neural networks
with the previous state and the current sEMG instance xn
as inputs, and K corresponds to the number of mixtures of
Gaussian distribution N (·). This model makes the assump-
tion that previous sEMG activity x<n can be summarized
into hidden state hn−1. To learn the parameters of this model,
we minimize the negative log-likelihood function defined by:

L(Θ) =

N∑
n=1

log

K∑
k=1

N (yn|µk,Σk)πk, (6)

with Θ as our set of parameters including GMM parameters.
This log-likelihood is optimized using truncated backpropa-
gation through time. Since it is a composition of continuous
functions (e.g. linear transformations and element-wise non-
linearity) and LSTM modules, we can compute the gradients
easily with automatic differentiation tools. Similar to [15],
we defined our GMM parameters as follows:

µk = Wµ
k h

o(hn−1,xn) + bµk ,

Σk = diag(σ2
k,1, ..., σk,L),

σ2
k,l = elu(Wσ

k h
o(hn−1,xn) + bσk) + 1,

πk =
exp(Wπ

k h
o(hn−1,xn) + bπk )∑K

j=1 exp(Wπ
j h

o(hn−1,xn) + bπj )
,

(7)



(a) Middle finger flexion (b) Pinkie finger flexion

(c) Power spherical grasp (d) Resting pose

Fig. 3: Snapshot results from RNN-based regression, showing reconstructed and true poses as well as sEMG signal.

where ho(hn−1,xn) is the output of a multi-layered LSTM
network for the current time step n. The covariance matrix
was assumed to be diagonal to reduce the number of pa-
rameters to be learned. The GMM weights are outputs of a
softmax activation to ensure proper normalization [15].

One advantage of using probabilistic models for regression
tasks over deterministic ones is the capability of estimating a
confidence range over the output given a series of inputs [16].
Additionally, the RMDN approach allows us to learn multi-
modal representations of possible hand poses [16]. In other
words, with similar sEMG inputs, the model can predict more
than one plausible hand pose instead of simply averaging
them; multiple model tracking can realistically account for
similar muscle activations yielding different hand postures.

III. RESULTS AND DISCUSSION

We use the network architecture as follows: 5 layers with
50 LSTM cells per layer. Data aggregation was used by
jittering the input/output pairs by 50 samples (0.25 seconds).
This prevented the network from simply memorizing the
sequence. Truncated backpropagation through time of length

5 was used for training. Gradient clipping and `2 weight
decay was used to regularize network weights. 10% of the
data were used for validation. 500 epochs were used to train
with early stopping on a validation set. Mean squared error
was used as the loss function. 5-fold cross validation was
used for performance assessment. The network was trained
and validated for each individual user using 80% of the data;
the rest were used to estimate performance.

7 subjects were asked to perform the experiment with
basic hand postures: flexion for each finger, resting state,
and spherical power grasp. 40 trials per hand posture were
collected for each user. Each trial lasted for 3 seconds plus
3 seconds for resting. Users were asked to perform the
gesture starting from resting position. Fig. 3 shows example
reconstructions from the RNN for given time instances.

Fig. 4 shows the test root mean-square error in mm for
the 2 models: deterministic (Det-RNN) and probabilistic
RMDN. In all users, the probabilistic model outperforms
the deterministic one. RMDN used 10 mixtures of Gaussian.
The estimated output for RMDN was obtained by finding
the mean of the best mixture as follows: ŷn = µk? with



Fig. 4: RMSE of joint distances across all gestures.

Fig. 5: RMSE of joint angles across all gestures.

k? = arg maxkN (yk|µk,Σk)πk. Fig. 5 shows the per-
user average performance in estimating angle between finger
joints. On average, RMDN outperforms the deterministic
case. Fig. 6 shows the performance of thumb flexion re-
gression, which was the lowest performing gesture in our
dataset. Since the abductor policis longus is close to the
wrist, the Myo forearm sensor is not able to capture isolated
movements of the thumb.

The current subjects have been limited to healthy, able-
bodied subjects to test the feasibility of our approach.
Moreover, only simple gestures were recorded due to sensing
limitations. More complex kinematics could be captured with
gloves or hand markers.

IV. CONCLUSIONS

Our study shows successful reconstruction of finger move-
ment from low-cost sEMG recordings. In our simple training
scheme, RNNs are shown to be powerful time-series models
that can capture the hand kinematic variability. The use of
regression methods offers the potential advantage of general-
izing to novel movements due to the continuous nature of the
model. Further verification of our results with more complex
hand postures is required to further evaluate our approach.
Future work includes but is not limited to adding more
complex gestures during training, using other probabilistic
models such as recurrent variational autoencoders, and using
more accurate sensing methods.
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