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Leader-to-formation stability of multi-agent
systems: An adaptive optimal control approach
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Abstract—This note proposes a novel data-driven solution to
the cooperative adaptive optimal control problem of leader-
follower multi-agent systems under switching network topology.
The dynamics of all the followers are unknown, and the leader
is modeled by a perturbed exosystem. Through the combination
of adaptive dynamic programming and internal model principle,
an approximate optimal controller is iteratively learned online
using real-time input-state data. Rigorous stability analysis shows
that the system in closed-loop with the developed control policy
is leader-to-formation stable, with guaranteed robustness to
unmeasurable leader disturbance. Numerical results illustrate the
effectiveness of the proposed data-driven algorithm.

Index Terms—Adaptive dynamic programming (ADP), Opti-
mal tracking control, Leader-to-formation stability, Switching
network topology.

I. INTRODUCTION

The cooperative control problem of leader-follower multi-
agent systems has been under extensive investigation in the
last decade due to its wide application in electrical, mechanical
and biological systems; see [3], [4], [35] and many references
therein. A general assumption in the present literature on the
topic is that the leader is modeled by an autonomous system
without considering the influence of external signals. Refer-
ence [29] relaxes this assumption by developing distributed
trackers for multi-agent systems with bounded unknown leader
input. The notion of leader-to-formation stability (LFS) [41]
is introduced to investigate how the leader inputs and distur-
bances affect the stability of the group. By taking unknown
dynamics and partial measurements into account, reference
[13] proposes an adaptive control design approach for a class
of second-order leader-follower systems. However, the issue of
adaptive optimal controller design of the multi-agent systems
with assured LFS remains open.

Over the last decade, a trend in adaptive optimal control is to
invoke reinforcement learning [40] and approximate/adaptive
dynamic programming (ADP) [2], [21], [27], [45] for feedback
control of dynamical systems. Among all the different ADP
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approaches, much attention has been paid to achieving the
adaptive optimal stabilization of linear or nonlinear plants
via state-feedback [6], [11], [12], [18], [19], [22], [27], [42],
[43] and output-feedback [8], [9], [26]. The generalization to
adaptive optimal tracking control is studied by [10], [33], [34].
For non-model-based optimal stabilization of large-scale and
multi-agent systems, some interesting results appear in [1],
[20] using (robust) ADP.

The main purpose of this note is to address the cooperative
adaptive optimal control problem of leader-follower multi-
agent systems via ADP. The contributions of this note are
three-fold. First, considering the more general and realistic
case when the leader model (or, the exosystem here) is subject
to external disturbance, we develop a data-driven distributed
control policy to guarantee that the closed-loop system is
leader-to-formation stable. Moreover, given a vanishing leader
disturbance, the multi-agent system is able to achieve cooper-
ative output regulation [5], [14], [30], [38], [44] which means
each follower asymptotically tracks a desired trajectory, while
rejecting the disturbance (Div in eq. (2) below) generated
by the exosystem. Second, this note, for the first time, com-
bines the idea of ADP and internal model principle to study
cooperative adaptive optimal tracking control problems. By
means of internal model principle, we convert the tracking
problem to a stabilization problem of an augmented system
composed of the plant and a dynamic compensator named
as internal model. Comparing with our previous work [10]
which need solve regulator equations by online data first and
then design a feedback-feedforward controller, the proposed
algorithm in this note has a reduced computational cost since it
need not solve regulator equations. Third, instead of assuming
that the communication network remains static and connected,
we study a more practical situation where the network is
jointly connected [17]. In other words, the network is allowed
disconnected at any time instant. To overcome this issue, the
estimation of the exostate obtained from a distributed observer
is used for feedback design.

The remainder of this note is organized as follows. Section
II formulates the problem and introduces some basic results re-
garding LFS, internal model principle, and optimal control. In
Section III, a novel data-driven control approach is presented
based on ADP to solve cooperative adaptive optimal con-
trol problems for leader-follower multi-agent systems under
switching network. The convergence of the proposed algorithm
and the LFS of the closed-loop system are rigorously analyzed
as well. An example to validate our design is shown in Section
IV. Section V provides concluding remarks. For the sake of
clarity and readability, the relationship among our main results
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is illustrated in Table I.

TABLE I
RELATIONSHIP BETWEEN THE PROPOSITION, LEMMA AND THEOREMS

Stability Analysis: Proposition 1 −→ Theorem 2
Convergence Analysis: Lemma 1 −→ Theorem 1

Optimality Analysis: Theorem 3

Notations. Throughout this note, | · | represents the
Euclidean norm for vectors and the induced norm for
matrices. C− stands for the open left-half complex plane.
For any piecewise continuous function u : R+ → Rm, ‖u‖
stands for supt≥0 |u(t)|. ⊗ indicates the Kronecker product.
A continuous function α : R+ → R+ belongs to class K
if it is increasing and α(0) = 0. A continuous function
β : R+ × R+ → R+ belongs to class KL if for each fixed t,
the function β(·, t) is of class K and, for each fixed s, the
function β(s, ·) is non-increasing and tends to 0 at infinity.
vec(A) = [aT1 , a

T
2 , · · · , aTm]T , where ai ∈ Rn is the ith

column of A ∈ Rn×m. When n = m, σ(A) is its complex
spectrum. For a symmetric matrix P ∈ Rm×m, vecs(P ) =
[p11, 2p12, · · · , 2p1m, p22, 2p23, · · · , 2pm−1,m, pmm]T ∈
R

1
2m(m+1). For an arbitrary column vector

v ∈ Rm, |v|P stands for vTPv, and vecv(v) =
[v2

1 , v1v2, · · · , v1vm, v
2
2 , v2v3, · · · , vm−1vm, v

2
m]T ∈

R
1
2m(m+1). λM (P ) and λm(P ) denote the maximum

and the minimum eigenvalue of a real symmetric matrix
P . ρ(t) represents a piecewise constant switching signal
ρ : [0,+∞) → {1, 2, · · · , nρ} for some integer nρ > 0. We
assume switching constants t0 = 0, t1, t2, · · · of ρ satisfy
infi(ti+1 − ti) ≥ τd > 0, i = 0, 1, · · · , with lim

i→∞
ti = ∞,

where τd is called the dwell time.

II. PRELIMINARIES

A. Problem Formulation

Consider the following class of linear multi-agent systems

v̇ =Ev +Hw, (1)
ẋi =Aixi +Biui +Div,

ei =Cixi + Fiv, i = 1, 2 · · · , N (2)

where xi ∈ Rni , ui ∈ R and ei ∈ R are the state, control input
and tracking error of the ith subsystem (follower), respectively.
v ∈ Rq is the state of the leader, modeled by the exosystem (1)
which generates both the disturbance Div and the reference
signal −Fiv (to be tracked by the output yi = Cixi) of each
follower. The leader is assumed to track a desired trajectory
y∗0 = −F0v

∗(t) with the signal v∗ satisfying v̇∗ = Ev∗. In
this setting, we let the leader input contain two parts: w =
ŵ+w̃, where ŵ is a feedback control input ŵ = −K0(v−v∗)
with σ(E − HK0) ⊂ C− and w̃ is an external disturbance
input. Given the exosystem (1) and the plant (2), define a time-
varying digraph Gρ(t) = {V, Eρ(t)}. V = {0, 1, · · · , N} is the
node set with node 0 denoting the leader and the remaining N
nodes being identified as followers described by (2). Eρ(t) ⊂
V × V refers to the edge set. Denote Ni(t) the set of all
the nodes j such that (j, i) ∈ Eρ(t). The adjacency matrix

Aρ(t) = [aij(t)] ∈ R(N+1)×(N+1) is defined by aij(t) > 0 if
(j, i) ∈ Eρ(t) and otherwise aij(t) = 0.

Some standard assumptions are made on the system (1)-(2).
Similar assumptions can be found in [7], [31], [32], [38], [44]
for solving (cooperative) output regulation problems.

Assumption 1. All the eigenvalues of E are simple with zero
real part.

Assumption 2. (Ai, Bi) is stabilizable, ∀1 ≤ i ≤ N .

Assumption 3. rank
[
Ai − λI Bi
Ci 0

]
= ni + 1, ∀λ ∈ σ(E),

∀1 ≤ i ≤ N .

Assumption 4. There exists a subsequence {ik} of {i : i =
0, 1, · · · } with tik+1

− tik < T for some positive T such that
each node j = 1, 2, · · · , N is reachable from node 0 in the
union graph ∪ik+1−1

l=ik
Gρ(tj).

Remark 1. Assumption 2 is made such that the exponential
stability can be achieved for each follower. Assumption 3 is a
sufficient condition for the solvability of regulator equations
(6)-(7). Assumption 4 is a joint connectivity condition [17],
[31], [39] that allows the network disconnected at any time
instant.

B. Basic Results

Under Assumptions 1-3, LFS can be achieved by system
(1)-(2) in closed-loop with a decentralized controller

ui =−Kxixi −Kzizi, (3)
żi =G1zi +G2ei, i = 1, 2, · · · , N (4)

where the characteristic polynomial of G1 is the same as
the minimal polynomial of E, and the pair (G1, G2) is
controllable. In this setting, the pair (G1, G2) incorporates an
internal model of the matrix E, and (4) is an internal model
of the ith follower. For i = 1, 2, · · · , N , matrices Kxi,Kzi

are chosen such that

Aci =

[
Ai −BiKxi −BiKzi

G2Ci G1

]
is a Hurwitz matrix.

Remark 2. As shown in [15, Lemma 1.26], for i =
1, 2, · · · , N , the pair (Āi, B̄i) is stabilizable under Assump-
tions 1-2, where

Āi =

[
Ai 0
G2Ci G1

]
, B̄i =

[
Bi
0

]
which implies one can always find a Ki :=

[
Kxi Kzi

]
such

that σ(Aci) ⊂ C−.

Let η be the error between the lumped state of the multi-
agent system (1)-(2) with (4) and its desired value. The LFS
is then defined as follows. The definition in this note is in
light of input-to-output stability [23], [37], which is slightly
different from [41].

Definition 1. System (1)-(2) achieves LFS if there exist a
function β of class KL and a function γ of class K such that,
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for any initial state error η(0) and any measurable essentially
bounded input w̃ and t ≥ 0:

|e(t)| ≤ β(|η(0)|, t) + γ(‖w̃‖) (5)

where e(t) =
[
e1(t) e2(t) · · · eN (t)

]T
.

Remark 3. Note that the LFS ensures that, given any bounded
disturbance w̃, the tracking error e will be bounded. It also
implies that lim

t→∞
e(t) = 0 if lim

t→∞
w̃(t) = 0, which corresponds

to the asymptotic tracking with disturbance rejection arisen in
the cooperative output regulation problems [38].

The following proposition analyzes the LFS of the closed-
loop system with respect to w̃.

Proposition 1. Under Assumptions 1-3, for i = 1, 2, · · · , N ,
the multi-agent system (1)-(2) in closed-loop with (3)-(4) is
leader-to-formation stable.

Proof. Under Assumptions 1-3, for i = 1, 2, · · · , N , by [32],
there exist uniquely matrices Xi and Ui solving the following
regulator equations

XiE =AiXi +BiUi +Di, (6)
0 =CiXi + Fi. (7)

By [15, Lemma 1.27], the matrix equations (7) combined
with

XiE =(Ai −BiKxi)Xi −BiKziZi +Di, (8)
ZiE =G1Zi +G2(CiXi + Fi) (9)

have a unique solution X̂i and Zi. Then, one can easily
check that Xi = X̂i, and Ui = −KxiXi − KziZi. Let
ṽ = 1N ⊗ (v − v∗), x̃i = xi − Xiv

∗, z̃i = zi − Ziv
∗,

ξ̃i = [x̃Ti , z̃
T
i ]T ∈ Rmi , Bci =

[
DT
i FTi G

T
2

]T
and C̄i =

[
Ci 0

]
∈ R1×mi . Also, let ξ̃ =

[ξ̃T1 , ξ̃
T
2 , · · · , ξ̃TN ]T , Ac = blockdiag(Ac1, Ac2, · · · , AcN ),

Bc = blockdiag(Bc1, Bc2, · · · , BcN ),
C̄ = blockdiag(C̄1, C̄2, · · · , C̄N ), and F =
blockdiag(F1, F2, · · · , FN ). Then, we have[

˙̃v
˙̃
ξ

]
=

[
IN ⊗ (E −HK0) 0

Bc Ac

] [
ṽ

ξ̃

]
+

[
IN ⊗H

0

]
(1N ⊗ w̃)

e =F ṽ + C̄ξ̃. (10)

By η = [ṽT , ξ̃T ]T , it is easily checkable that the LFS of the
original multi-agent systems is achieved since (E−HK0) and
Ac are Hurwitz matrices. The proof is thus completed.

In order to ameliorate the transient performance of each
subsystem, we develop a robust optimal controller such that
the closed-loop system is leader-to-formation stable with re-
spect to the leader disturbance w̃. Moreover, as v ≡ v∗, the
developed controller is optimal in the sense that it minimizes
the following cost

J =

∫ ∞
0

(
|ξ̃|Q + |ũ|R

)
dt (11)

for the open-loop system
˙̃
ξ =Āξ̃ + B̄ũ (12)

where, for i = 1, 2, · · · , N , ũi = ui − Uiv
∗,

Qi = QTi > 0, Ri = RTi > 0. ũ =
[ũ1, ũ2, · · · , ũN ]T , Ā = blockdiag(Ā1, Ā2, · · · , ĀN ),
B̄ = blockdiag(B̄1, B̄2, · · · , B̄N ), Q =
blockdiag(Q1, Q2, · · · , QN ) and R =
blockdiag(R1, R2, · · · , RN ). Based upon optimal control
theory, the locally optimal control policy is (4) with

u∗i =ũ∗i + Uiv
∗

=−K∗xix̃i −K∗ziz̃i + Uiv
∗

=−K∗xixi −K∗zizi, i = 1, 2, · · · , N. (13)

The optimal control gains are[
K∗xi K∗zi

]
= R−1

i BTi P
∗
i := K∗i (14)

where P ∗i is the unique solution to the following Riccati
equation

ĀTi P
∗
i + P ∗i Āi +Qi − P ∗i B̄iR−1

i B̄Ti P
∗
i = 0. (15)

A model-based algorithm, Algorithm 1, is given to seek the
decentralized optimal controller. Note that, instead of solving
(15) which is nonlinear in P ∗i , we employ the policy iteration
technique [24] to approximate P ∗i by solving linear Lyapunov
equations iteratively .

Algorithm 1 Model-based Decentralized Optimal Controller
Design

1: Find a pair (G1, G2) such that it incorporates an internal
model of E. i← 1

2: repeat
3: Find K

(0)
i such that

(
Āi − B̄iK(0)

i

)
is a Hurwitz

matrix. k ← 0. Select a sufficiently small constant ε > 0.
4: repeat
5: Solve P (k)

i and K(k+1)
i from

0 =
(
Āi − B̄iK(k)

i

)T
P

(k)
i + P

(k)
i

(
Āi − B̄iK(k)

i

)
+Qi +

(
K

(k)
i

)T
RiK

(k)
i (16)

K
(k+1)
i =R−1

i BTi P
(k)
i (17)

6: k ← k + 1
7: until

∣∣∣P (k)
i − P (k−1)

i

∣∣∣ < ε

8: i← i+ 1
9: until i = N + 1

III. MAIN RESULTS

In this section, we will design a data-driven distributed
controller via ADP to achieve LFS under switching network
topology. The developed approach is able to approximate the
control gains K∗i for each follower without relying on the
knowledge of system matrices Ai, Bi and Di. To begin with,
the internal model (4) is modified by

żi =G1zi +G2êi, i = 1, 2, · · ·N (18)
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where êi = yi + Fζi. The dynamics of ζi ∈ Rq depends on
the following equation

ζ̇i =Eζi +
∑

j∈Ni(t)

aij(t)(ζj − ζi) i = 1, 2, · · · , N (19)

with ζ0 = v.
Then, we rewrite the ith subsystem augmented with the

internal model (18):

ξ̇i =Āiξi + B̄iui + D̄iψi

=Ā
(k)
i ξi + B̄i

(
K

(k)
i ξi + ui

)
+ D̄iψi

where, for i = 1, 2, · · · , N , Ā(k)
i = Āi − B̄iK

(k)
i , D̄i =

blockdiag(Di, G2Fi), ξi =
[
xTi zTi

]T ∈ Rmi , ψi =[
vT ζTi

]T ∈ R2q .
By equation (16), we have

|ξi(t+ δt)|
P

(k)
i
− |ξi(t)|P (k)

i

=

∫ t+δt

t

[|ξi|(Ā(k)
i )TP

(k)
i +P

(k)
i Ā

(k)
i

+ 2ψTi D̄
T
i P

(k)
i ξi

+ 2(ui +K
(k)
i ξi)

T B̄Ti P
(k)
i ξi]dτ

=

∫ t+δt

t

[−|ξi|Qi+(K
(k)
i )TRiK

(k)
i

+ 2ψTi D̄
T
i P

(k)
i ξi

+ 2(ui +K
(k)
i ξi)

TRiK
(k+1)
i ξi]dτ. (20)

By Kronecker product representation, we obtain

|ξi|Qi+(K
(k)
i )TRiK

(k)
i

= (ξTi ⊗ ξTi )vec
(
Qi + (K

(k)
i )TRiK

(k)
i

)
,

ψTi D̄
T
i P

(k)
i ξi = (ξTi ⊗ ψTi )vec

(
D̄T
i P

(k)
i

)
,

(ui +K
(k)
i ξi)

TRiK
(k+1)
i ξi = [(ξTi ⊗ ξTi )(I ⊗ (K

(k)
i )TRi)

+ (ξTi ⊗ uTi )(I ⊗Ri)]vec
(
K

(k+1)
i

)
.

Moreover, for any two vectors a, b and a sufficiently large
number s > 0, define

δa =[vecv(a(t1))− vecv(a(t0)), · · · ,
vecv(a(ts))− vecv(a(ts−1))]T ,

Γa,b =

[∫ t1

t0

a⊗ bdτ,
∫ t2

t1

a⊗ bdτ, · · · ,
∫ ts

ts−1

a⊗ bdτ
]T

.

(20) implies the following linear equation

Ψ
(k)
i

 vecs(P
(k)
i )

vec(K
(k+1)
i )

vec
(
D̄T
i P

(k)
i

)
 = Φ

(k)
i (21)

where

Ψ
(k)
i =[δξi ,−2Γξiξi(I ⊗ (K

(k)
i )TRi)− 2Γξiui

(I ⊗Ri),
− 2Γξiψi

],

Φ
(k)
i =− Γξiξivec

(
Qi + (K

(k)
i )TRiK

(k)
i

)
.

The uniqueness of solution to (21) is guaranteed under some
rank condition as shown below. For want of space, we omit

the proof of Lemma 1 which follows the same line of proofs
as in [10], [19].

Lemma 1. For all k ∈ Z+, if there exists a s∗ ∈ Z+ such
that for all s > s∗,

rank([Γξiξi ,Γξiui
,Γξiψi

]) =
(mi + 4q + 3)mi

2
, (22)

then the matrix Ψ
(k)
i has full column rank for all k ∈ Z+.

Now, we are ready to present a data-driven ADP algorithm
2 which yields approximate solutions to the unknown optimal
values K∗i and P ∗i .

Algorithm 2 Data-driven ADP Algorithm for Distributed
Optimal Controller Design

1: Find a pair (G1, G2) such that it incorporates an internal
model of E.

2: Select a small ε > 0. Apply ui = −K(0)
i ξi + νi on

[t0, ts] with νi an exploration noise, s.t. (22) holds for
i = 1, 2, · · · , N.

3: i← 1
4: repeat
5: k ← −1
6: repeat
7: k ← k + 1
8: Solve P (k)

i and K(k+1)
i from (21)

9: until |P (k)
i − P (k−1)

i | < ε for k ≥ 1

10: P †i ← P
(k)
i

11: The learned controller is (18), (19), and

ui = −K(k+1)
i ξi := −K†i ξi (23)

12: i← i+ 1
13: until i = N + 1

The convergence of Algorithm 2 is shown in Theorem
1, while the LFS of the closed-loop system is analyzed in
Theorem 2.

Theorem 1. If (22) is satisfied, then, for i = 1, 2, · · · , N ,
sequences {P (k)

i }∞k=0 and {K(k)
i }∞k=1 computed by Algorithm

2 converge to P ∗i and K∗i , respectively.

Proof. For all 1 ≤ i ≤ N, letting P
(k)
i =

(
P

(k)
i

)T
> 0

be the solution to (16). K(k+1)
i is uniquely determined by

(17) with T
(k)
i = D̄T

i P
(k)
i . On the other hand, letting P̂ ,

K̂, and T̂ solve (21), condition (22) ensures that P (k)
i = P̂ ,

K
(k+1)
i = K̂, and T (k)

i = T̂ are uniquely determined. By [24],
we have lim

k→∞
K

(k)
i = K∗i , lim

k→∞
P

(k)
i = P ∗i . The convergence

of sequences {P̄ (k)
i }∞k=0 and {K̄(k)

i }∞k=1 obtained by non-
model-based Algorithm 2 is thus ensured.

Theorem 2. Under Assumptions 1-4, the multi-agent system
(1)-(2) in closed-loop with the learned controller (18), (19)
and (23) is leader-to-formation stable.



5

Proof. Write the closed-loop system in a compact form[
ξ̇

ζ̇

]
=

[
A†c B†c
0

[
(IN ⊗ E)− (Hρ(t) ⊗ Iq)

]] [ξ
ζ

]
+

[
D

Hρ(t) ⊗ Iq

]
(1N ⊗ v)

:=Āc,ρ(t)

[
ξ
ζ

]
+ B̄c,ρ(t)(1N ⊗ v),

e =C̄ξ + F (1N ⊗ v) (24)

where Ac† = blockdiag(Ā1 − B̄1K
†
1 , · · · , ĀN −

B̄NK
†
N ), ζ =

[
ζT1 , ζ

T
2 , · · · , ζTN

]T
, D =

blockdiag(
[
DT

1 0q×(mi−ni)

]T
, · · · ,

[
DT
N 0q×(mi−ni)

]T
),

and B†c = blockdiag(
[
0q×ni

FT1 G
T
2

]T
, · · · ,

[
0q×ni

FTNG
T
2

]T
).

Hρ(t) = [hij ] ∈ RN×N is a submatrix of Laplacian of the
digraph Gρ(t) with hii(t) =

∑N
j=0 aij(t) and hij(t) = −aij(t)

if j 6= i.
Let X = blockdiag(X1, Z1, X2, Z2, · · · , XN , ZN ), where,

for i = 1, 2, · · · , N , matrices Xi and Zi solve regula-
tor equations (6)-(7) and equations (8)-(9). Defining X̄c =[
XT IqN

]T
, then we have

X̄c(IN ⊗ E) =Āc,ρ(t)X̄c + B̄c,ρ(t),

0 =C̄X + F. (25)

Let ζ̃ = ζ − (1N ⊗ v∗). By equations (24) and (25), we
obtain

˙̃v =[IN ⊗ (E −HK0)]ṽ + (IN ⊗H)(1N ⊗ w̃), (26)[
˙̃
ξ
˙̃
ζ

]
=Āc,ρ(t)

[
ξ̃

ζ̃

]
+ B̄c,ρ(t)ṽ (27)

e =F ṽ + C̄ξ̃. (28)

Define φ = [ξ̃T , ζ̃T ]T . By [39, Lemma 2], we see that the
origin of following linear switched system

φ̇ = Āc,ρ(t)φ (29)

is exponentially stable. Hence, the state transition matrix
Φ(τ, t) of (29) satisfies |Φ(τ, t)| ≤ ke−λ(τ−t),∀τ ≥ t ≥ 0.
Let P †(t) =

∫∞
t

ΦT (τ, t)Φ(τ, t)dτ . It is checkable that there
exists some c1, c2 > 0 such that c1|φ|2 ≤ φTP †(t)φ ≤
c2|φ|2, which implies that P †(t) is positive definite and upper
bounded by some supt≥0 |P †(t)| < c3. The definition of P †(t)
shows that it is symmetric and continuously differentiable. By
the fact that ∂Φ(τ, t)/∂t = −Φ(τ, t)Āc,ρ(t), we have

Ṗ †(t) = −P †(t)Āc,ρ(t) − ĀTc,ρ(t)P †(t)− I. (30)

On the other hand, since σ(E −HK0) ⊂ C−, there exists
a positive definite matrix Pv = PTv such that

[IN ⊗ (E −HK0)]TPv + Pv[IN ⊗ (E −HK0)] + IqN = 0
(31)

Choose the Lyapunov function V (t) = φTP †(t)φ+(2c23c
2
4+

1)ṽTPv ṽ, where c4 = supt≥0 |B̄c,ρ(t)| and c5 = |Pv(IN⊗H)|.

The derivative of V along the solutions of system (26)-(27) is

V̇ =− |φ|2 + 2φTP †B̄c,ρ(t)ṽ − (2c23c
2
4 + 1)|ṽ|2

+ 2(2c23c
2
4 + 1)ṽTPv(IN ⊗H)(1N ⊗ w̃)

≤− |φ|2 + 2c3c4|φ||ṽ| − (2c23c
2
4 + 1)|ṽ|2

+ 2N(2c23c
2
4 + 1)c5|ṽ||w̃|

≤ − |φ|
2

2
− |ṽ|

2

2
+ c6|w̃|2

with c6 = 2N2(2c23c
2
4 + 1)2c25.

The previous inequality implies that the system (26)-(27)
with w̃ as the input is input-to-state stable (ISS) [36]. Given
η = [ṽT , φT ]T , there exist a function β1 of class KL and a
function γ1 of class K such that

|η(t)| ≤β1(|η(0)|, t) + γ1(‖w̃‖). (32)

From (28), one can immediately check that the LFS condi-
tion (5) is satisfied. The proof is thus completed.

The following result compares the cost J� for the decen-
tralized controller (4), (13) with the cost J† associated with
the distributed controller (18), (19) and (23).

Theorem 3. There always exist constants d1, d2 > 0 such that
J† ≤ d1J

� + d2|ζ̃(0)|2 if v ≡ v∗.
Proof. Denoting K∗ = blockdiag{K∗1 ,K∗2 , · · · ,K∗N}, P ∗ =
blockdiag{P ∗1 , P ∗2 , · · · , P ∗N}, one can rewrite the system (2)
with (4) and (13) by

˙̃
ξ =(Ā− B̄K∗)ξ̃. (33)

The corresponding cost is

J� =ξ̃(0)TP ∗ξ̃(0). (34)

When v ≡ v∗, the system (2) with (13), (18) and (19) can
be written by (29). Along the trajectory of (29), from (30), we
have ∫ ∞

0

|φ2|dτ ≤ φT (0)P †(0)φ(0) ≤ c2|φ(0)|2. (35)

By the previous inequality, the cost J† is upper bounded by

J† ≤λM (Q+ (K†)TRK†)
∫ ∞

0

|ξ̃|2dτ

≤λM (Q+ (K†)TRK†)
∫ ∞

0

|φ|2dτ

≤c2λM (Q+ (K†)TRK†)|φ(0)|2

≤c2λM (Q+ (K†)TRK†)(|ξ̃(0)|2 + |ζ̃(0)|2)

≤c2λM (Q+ (K†)TRK†)
λm(P ∗)

J�

+ c2λM (Q+ (K†)TRK†)|ζ̃(0)|2

:=d1J
� + d2|ζ̃(0)|2 (36)

where K† = blockdiag{K†1 ,K†2 , · · · ,K†N}.
The proof is thus completed.

Remark 4. Note that the proposed Algorithm 2 is a di-
rect adaptive control approach without identifying the system
matrices. In each iteration, one can estimate the controller
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parameters by solving a linear matrix equation (21). This
is different from the indirect adaptive optimal control [25],
[16, Chap. 7.4.4] that the plant parameters are estimated
online and used to find controller parameters by solving the
corresponding Riccati equations that is nonlinear in Pi.

Remark 5. (22) is introduced to ensure the convergence of
controller parameters. Like traditional adaptive control [46]
and existing work on ADP [19], [28], we add an exploration
noise to the input during the learning phase in order to satisfy
(22).

Remark 6. Albeit some nodes cannot get instant information
from the leader, Algorithm 2 is implementable since all the
followers are reachable from node 0, i.e., there always exists
a T > 0 such that v(t) in the period [t0, ts] is receivable by
all the other subsystems at t = ts + T .

IV. EXAMPLE

In order to validate the effectiveness of the proposed data-
driven Algorithm 2, we consider a system in the form of (1)-(2)
with N = 4 and for i = 1, 2, 3, 4,

Ai =

[
0 1
0 0

]
, Bi =

[
0
1

]
, Di =

[
0 0
0 0.5 ∗ i

]
,

Ci =

[
1
0

]T
, Fi =

[
−i− 1

0

]T
, E =

[
0 1
−1 0

]
, H =

[
1
1

]
.

Suppose that the switching network topology Gρ(t) is dom-
inated by the following switching signal

ρ(t) =

1, if 3sTs ≤ t < (3s+ 1)Ts
2, if (3s+ 1)Ts ≤ t < (3s+ 2)Ts
3, if (3s+ 2)Ts ≤ t < (3s+ 3)Ts

where s = 0, 1, 2, · · · , Ts = 0.2s and the corresponding
communication graph is depicted in Fig. 1. It is easily check-
able that Assumptions 1-4 are satisfied. Suppose the system
matrices Ai, Bi, and Di are unknown. Let the internal model
for the exosystem dynamics v be

G1 =

[
0 1
−1 0

]
, G2 =

[
0
1

]
.

For the purpose of simulation, we choose all the weight
matrices Qi and Ri in the cost (11) to be identity matrices.
The external disturbance of the leader is set by w̃ = sin(3t).
The exploration noise is taken as a sum of sinusoidal signals
with disparate frequencies. We collect data from t = 0s to
t = 10s, then (21) is solved repeatedly until the convergence
criterion is satisfied. The comparison of the P (k)

i of the ith
follower at kth iteration with its optimal value is shown in
Fig. 2. We employ our updated control policy after t = 10s.
The outputs of all the leader and followers are depicted in
Fig. 3 with their reference signal y∗i = −Fiv∗. The plots of
the distributed control inputs are shown in Fig. 4.

V. SUMMARY AND FUTURE WORK

This note has studied the cooperative adaptive optimal
control problem by means of a combined use of internal
model principle and adaptive dynamic programming theory.

Fig. 1. Network topology
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Fig. 2. The comparison of P (k)
i and their optimal values
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Fig. 3. Plots of the system outputs yi and the reference signal y∗i

The communication network is jointly connected, which is
allowed disconnected at any time instant. Instead of relying on
the accurate knowledge of the system dynamics, an internal-
model-based control policy is learned by means of input-state
data. The learned control policy achieves leader-to-formation
stability, which is robust to unmeasurable leader disturbance.
Future work includes the generalization to nonlinear multi-
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Fig. 4. Plots of distributed controllers

agent systems and the combination of ADP and adaptive
internal model.
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