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Abstract
Despite the ever-increasing use across different sectors, the lithium-ion batteries (LiBs) have
continually seen serious concerns over their thermal vulnerability. The LiB operation involves
heat generation and buildup effect, which manifests itself strongly, in the form of highly un-
even thermal distribution, for a LiB pack consisting of multiple cells. If not well monitored
and managed, the heating may accelerate aging and cause unwanted side reactions. In ex-
treme cases, it will even cause fires and explosions. Toward addressing this threat, this paper,
for the first time, seeks to reconstruct the three-dimensional temperature field of a LiB pack
in real time. The major challenge lies in how to acquire a high-fidelity reconstruction with
constrained computation time. In this study, a three-dimensional thermal model is estab-
lished first for a LiB pack configured in series, which captures the spatial thermal behavior
with a combination of high integrity and low complexity. Given the model, the standard
Kalman filter is then distributed to attain temperature field estimation with substantially
reduced computational complexity. The arithmetic operation analysis and numerical simu-
lation illustrate that the proposed distributed estimation achieves a comparable accuracy as
the centralized approach but with much less computation.
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Three-Dimensional Temperature Field
Reconstruction for A Lithium-Ion Battery Pack: A

Distributed Kalman Filtering Approach
Ning Tian, Huazhen Fang and Yebin Wang

Abstract—Despite the ever-increasing use across different sec-
tors, the lithium-ion batteries (LiBs) have continually seen serious
concerns over their thermal vulnerability. The LiB operation
involves heat generation and buildup effect, which manifests itself
strongly, in the form of highly uneven thermal distribution, for a
LiB pack consisting of multiple cells. If not well monitored and
managed, the heating may accelerate aging and cause unwanted
side reactions. In extreme cases, it will even cause fires and explo-
sions. Toward addressing this threat, this paper, for the first time,
seeks to reconstruct the three-dimensional temperature field of a
LiB pack in real time. The major challenge lies in how to acquire
a high-fidelity reconstruction with constrained computation time.
In this study, a three-dimensional thermal model is established
first for a LiB pack configured in series, which captures the
spatial thermal behavior with a combination of high integrity
and low complexity. Given the model, the standard Kalman filter
is then distributed to attain temperature field estimation with
substantially reduced computational complexity. The arithmetic
operation analysis and numerical simulation illustrate that the
proposed distributed estimation achieves a comparable accuracy
as the centralized approach but with much less computation.

Index Terms—Lithium-ion battery pack, thermal modeling,
distributed Kalman filtering, temperature estimation.

I. INTRODUCTION

L ITHIUM-ION batteries (LiBs) are widely used in various
applications due to their high energy/power density, long

cycle life and low self-discharge rate. This trend has stimulated
significant research of battery management algorithms [1]–[3].
However, LiBs are also known to be thermally vulnerable.
Heat can be generated during charging and discharging due to
irreversible overpotential heating, reversible entropic heating
from electrochemical reactions, phase change heating, and
mixing effects [4]. Without timely removal, the heat can
gradually build up, which will lead to not only many side
reactions, but also performance degradation, aging acceleration
and even fires [5]. Recent years hence have witnessed a
growing research in real-time temperature monitoring.

Currently, a large amount of work has been devoted to
temperature estimation using a thermal model and the sur-
face temperature measurements [6]–[8]. These studies con-
sider low-order lumped thermal models that concentrate the
spatial dimensions into singular points. Though advantage-
ous for computation, lumped models introduce a significant
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simplification because the temperature distribution is nonuni-
form spatially within a cell. For improvement, some recent
works [9]–[11] study the temperature estimation with some
awareness of the spatial nonuniformity, which use thermal
models accounting for the LiB cell’s spatial dimensions to
a certain extent. These models yet are still simplified at the
sacrifice of their physical fidelity. It is noteworthy that the
foregoing studies are focused on thermal management for a
single LiB cell. The issue can become much more challenging
when LiB packs are considered. With a few cells stacked in
a compact space, a LiB pack has larger dimensions and more
complicated thermal behavior that will render the cell-level
approaches unproductive. The challenge can become more
daunting as large-format high-capacity LiB cells are preferred
increasingly to assemble packs and modules, since heat will
be generated in larger amounts and more complex manners
when the cell increases in size. In [12]–[16], the notion of
lumped modeling is extended to depict the thermal dynamics
of LiB packs composed of small cylindrical cells. However, a
pack’s spatially uneven thermal behavior, though crucial, has
received rare attention to date.

As the first of its kind, this paper proposes to reconstruct
the three-dimensional temperature field of a LiB pack in
real time. The fundamental notion is to acquire a spatially
resolved thermal model for a LiB pack and then apply the
Kalman filter (KF) technique to estimate the spatially distri-
buted temperature. However, the task is nontrivial given the
complexity of a LiB pack’s thermal behavior. To fulfill the
goal, a twofold effort is made, which lies in modeling and
KF-based estimation.

Thermal modeling for LiBs has attracted a wealth of re-
search, with the methodologies falling in three categories:
1) thermal models, which are concerned only with the heat
phenomena and based on the thermal energy conservation
principle, often given in the form of PDEs in three-dimensional
space [17]–[19], 2) coupled thermal-electrochemical models,
which associate the equations for thermal behavior with those
for electrochemical reactions [20]–[24], and 3) lumped pa-
rameter models, which reduce the spatially distributed heat
transfer into a heat flow passing through several discrete points
(e.g., two points representing the cell’s core and surface and
connected by a thermal resistance) [6]–[11], [16]. Among
them, coupled thermal-electrochemical models can offer a de-
tailed view of the LiB behavior with electrochemical reactions
characterized at multiple scales. This, however, requires com-
puting costs formidable enough to defy real-time estimation.
For lumped models, the simplicity is conducive to estimation
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design for thermal management, but the spatial information
loss weakens their capability for more effective temperature
monitoring. While these two types of models represent two
extremes in terms of model fidelity or computational effi-
ciency, the thermal models strike a valuable balance, thereby
offering great promises for thermal management with spatial
awareness. In this regard, despite prolific results on cell-level
thermal modeling, the research about pack-level modeling is
still at a nascent age. Hence, this work will investigate the
development of a three-dimensional LiB pack thermal model.

When the thermal model is available, the temperature field
reconstruction will depend on the estimation technique, which
is meant to estimate the temperature at any spatial point
using the model and the temperature measurement data. Here,
the celebrated KF is one of the most promising candidate
tools due to its ability to deal with the stochastic dynamic
systems affected by noise—the thermal dynamics of a LiB
pack can be subjected to the process noise in its evolution
and the measurement noise when the temperature is measured
by sensors. A direct application of the standard centralized
KF (CKF) here is possible but will cause hefty computational
burden. This is because of the KF’s computational complexity
being cubic with the size of the state space [25], and a spatially
resolved LiB pack model will have a substantial number of
states, especially when the pack comprises many cells. To
address this problem, a distributed KF (DKF) approach will be
undertaken to enhance computational efficiency, which reduces
a global KF into multiple local KFs running in parallel.
The overall computational complexity of this approach will
increase only linearly with the number of LiB cells in the
pack, in contrast with the cubic increase for the CKF. This
advantage can considerably benefit practical application.

This paper is organized as follows. Section II develops a
spatially resolved thermal model for a LiB pack and its state-
space form. Section III develops the computationally efficient
DKF for temperature field reconstruction. Section IV presents
a simulation to demonstrate the efficacy of the proposed appro-
aches. Finally, concluding remarks are gathered in Section V.

II. BATTERY PACK THERMAL MODELING

This section presents a spatially resolved thermal model for
a LiB pack, which is an extension of a cell-level model in [17].

A. Spatially Resolved Thermal Model

Consider a LiB pack shown in Figure 1. This pack consists
of multiple prismatic cells configured in series (see [17] for the
cell description). Each cell has two areas: core region and cell
case. The core region is the main body of a cell. It consists
of many smaller cell units connected in parallel to provide
high capacity, with each unit composed of electrodes, current
collectors and a separator. While this makes the cell similar to
a module, we still refer to it as a cell as it is the basic building
block of a battery pack. The cell case is a metal container and
also includes a contact layer filled with liquid electrolyte and
in touch with the core region. In this setting, modeling will
be performed next to describe the thermal dynamics in the
core region and the case and on the boundaries, including the

cell-air
interface 

cell 𝑁c

cell 2

cell 1

cell unit

cell case

cell unit 

Figure 1: Schematic diagram of a LiB pack.

core-case interface boundary, cell-cell interface boundary and
cell-air interface boundary.

Consider the core region first. It is known that there are three
ways for heat transfer: conduction, convection and radiation.
Here, convection and radiation can be ignored since the liquid
electrolyte is of limited mobility and electromagnetic waves
can hardly transmit through the cell. Consequently, conduction
dominates the heat transfer within the core region, which can
be expressed as

ρcocco
∂T

∂t
= λco∇2T + q, (1)

where ρco, cco and λco are the mass density, specific heat capa-
city and thermal conductivity of the core region, respectively.
In addition, T and q, respectively, denote the core region’s
temperature in kelvins and heat generation density. As shown
in [5], [18], [26], a general characterization of q is offered by

q =
I

Vco

[
(Uocv − Ut)− T

dUocv

dT

]
, (2)

where Vco, I , Uocv, Ut and dUocv/dT denote the total volume
of the core region, the current through pack (positive for
discharge, negative for charge), the open-circuit voltage, the
terminal voltage and the entropic heat coefficient, respectively.
Here, the heat is assumed to be generated uniformly across
the core region. The first term on the right-hand side of (2) is
the irreversible heating, and the second term is the reversible
entropic heating from electrochemical reactions.

Similarly, conduction makes up the dominant part of the
heat transfer in the case region, that is,

ρcacca
∂T

∂t
= λca∇2T, (3)

where ρca, cca and λca are the mass density, specific heat
capacity and thermal conductivity of the case, respectively.

Next, consider the boundaries. To begin with, heat transfer
on the core-case interface is mainly due to conduction. As-
suming a perfect core-case contact, the temperature and heat
flux can be considered continuous on the interface. Hence, the
boundary conditions on the core-case interface are given by

T |core = T |case, λco
∂T

∂n

∣∣∣∣
core

= λca
∂T

∂n

∣∣∣∣
case

, (4)

where n is the normal direction. The continuity of temperature
and heat flux at a boundary also holds for the cell-cell interface
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if LiB cells are in close contact. For example, on the interface
between cells 1 and 2 in Figure 1, one has

T |cell 1 = T |cell 2, λca
∂T

∂n

∣∣∣∣
cell 1

= λca
∂T

∂n

∣∣∣∣
cell 2

. (5)

In addition, the cell-air interface will see heat transfer due
to all of conduction, convection and radiation. Therefore, the
energy balance on this boundary is

λca
∂T

∂n

∣∣∣∣
cell

= qconv + qr, (6)

where qconv and qr represent the convective and radiative heat
flux on the cell-air interface, respectively. They are given by

qconv = hconv (T − Tair) , (7)

qr = εσ(T 4 − T 4
air), (8)

where hconv, ε, σ and Tair are the convective heat transfer
coefficient, the emissivity, the Stefan-Boltzmann constant and
the ambient air temperature, respectively. Note that if |T −
Tair|/Tair � 1 as is often the case of LiB operation, (8) can
be linearized around Tair as

qr = 4εσT 3
air(T − Tair) = hr(T − Tair), (9)

where hr is the radiative heat transfer coefficient. Combining
(7) and (9), the energy balance (6) can be rewritten as

λca
∂T

∂n

∣∣∣∣
cell

= h(T − Tair), (10)

where h is a combined heat transfer coefficient.
Summarizing (1)-(10), one will obtain a complete thermal

model for the considered LiB pack. Spatially resolved, this
model can capture the spatial temperature distribution. Ac-
cording to (1)-(2), when a current flows through the pack,
heat is produced within the core region and transferred across
the region by conduction. Conduction will also enable the
propagation of heat within the case region, which is shown
in (3). The boundary conditions at the core-case and cell-cell
interfaces can be determined as in (4)-(5) on the reasonable
assumption of continuous temperature and heat flux. Mean-
while, heat will travel from the cell surface to the air driven
by a mix of conduction, convection and radiation, as shown
in (6). The radiation effect at the cell-air interface is further
linearized to simplify the model, which would lead to (10).

Remark 1. (Extensions of the thermal model). The thermal
model above is developed in a basic battery pack setting but
able to capture the most critical heat transfer phenomena
underlying a pack’s thermal behavior. It can be extended to
more sophisticated settings. 1) Extension to a battery pack
with a cooling system. The cooling effects can be accounted
for in two ways. First, as suggested in [27], one can regard the
cooling system as the boundaries of the battery pack’s thermal
model and thus modify the boundary conditions accordingly.
Second, one can develop a separate heat transfer model for the
cooling system and determine its interaction with the pack’s
model. The two models can be combined to offer a complete
description of the battery pack under cooling conditions. This
idea is exploited in [13]–[15]. 2) Extension to nonuniform heat

sensor

cell 1 

cell 2

cell 𝑁c=3 

(𝑚, 𝑛𝑁c − 𝑁c + 1, 𝑝)

(1,1,1)
(2,1,2)

Figure 2: Schematic diagram of the nodes in a LiB pack.

generation. As shown in (2), the heat generation is assumed
to be even across a cell’s core region. A modification can be
made to cope with spatially nonuniform heating if the gradient
distribution of the potential and current density is captured.
The literature includes some studies on this topic, e.g., [5] and
the references therein. 3) Extension to heterogeneous cells.
While the above considers identical cells, cells of the same
type but of different state or aging level can be dealt with by
changing the model parameters. Further, if cells of different
electrochemistries are used in an extreme case, one can first
build separate models for each cell type and then couple them
using the same heat transfer principles to obtain a pack-
level model. It is noteworthy that, though based on the basic
model in (1)-(10), the temperature estimation methodology to
be proposed next is still applicable to the extended models. •

B. Reduction to State-Space Model

For the purpose of estimation, the above thermal model must
be discretized in space and time to derive a control-oriented
state-space model. The finite difference formulation can be
applied here. Consider the LiB pack comprising Nc cells. It
can be subdivided into a large number of volume elements,
giving rise to a three-dimensional grid with many nodes as
in Figure 2. Specifically, a LiB cell is subdivided by a grid
with (m × n × p) nodes. Here, two adjacent cells share the
mp nodes on their interface. Then, each node can be labeled
by its coordinates, i.e., (i, j, k), which ranges from (1, 1, 1) to
(m, (n−1)Nc+1, p). A node is linked with a control volume.
Within this volume, the temperature is considered uniform and
assigned as the temperature of the node. The finite-difference
equation at each node is developed by the energy balance
approach [28]. The detailed procedure is omitted here for the
sake of space, but a reader can refer to [29] for details.

Reorganizing the obtained finite-difference equations, one
can derive a high-dimensional state-space representation of the
following general form:

xk+1 = Fkxk +Gkuk. (11)

Here, x is the state vector summarizing the temperature at all
the nodes. Specifically, x = column

(
x(1), . . . ,x(Nc)

)
N×1,

and x(l) = column
(
T

(l)
1,1,1, . . . , T

(l)
m,n,p

)
Nl×1

, with N =

NcNl. Note that, for ease of the decomposition strategy design
toward distributed estimation, the global state vector x is
established as an aggregation of local state vector x(l) of
each cell. To accommodate this representation, the pack-based
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numbering method introduced above is modified accordingly
to be cell-based—for each cell, the nodes are numbered
from (1, 1, 1) to (m,n, p). The input u is u =

[
Tair I

]>
,

which comprises the ambient temperature and applied current.
Furthermore, F and G can be expressed in a block form:

F =


F11 F12 0

F21 F22
. . .

. . . . . . . . .

0
. . . FNc,Nc

 , G =

 G1

...
GNc

 .
Note that the tridiagonal F is also diagonally dominant and
sparse, because a cell only exchanges heat with its adjacent
cells and adjacent cells share a limited number of nodes.

Let cell l in the pack be equipped with Ml thermocouples
to measure the temperature. The measurement equation can
then be expressed as

y
(l)
k = Hlx

(l)
k , (12)

where y(l) ∈ RMl and Hl ∈ RMl×Nl are the temperature
measurement and measurement matrix, respectively. For H ,
the entries corresponding to the nodes directly measured are
set equal to 1, and all the other entries zero. Aggregating all
the measurements together, the measurement equation for the
entire pack is then given by

yk = Hxk. (13)

Here, y = column
(
y(1), . . .,y(Nc)

)
M×1, and H =

blkdiag (H1, . . .,HNc
)M×N , where M = NcMl.

From above, (11) and (13) form the state-space model,
which characterizes the propagation and measurement of a
LiB pack’s thermal dynamics. With this model, let us conduct
state estimation to reconstruct the temperature field.

III. KF-BASED TEMPERATURE FIELD ESTIMATION

This section develops KF-based approaches to achieve re-
construction of the temperature field. In the following, the
centralized KF will be introduced first, and then its distributed
versions presented and analyzed in detail.

A. Centralized Kalman Filtering

Replicate (11) and (13) with noise terms added as follows:{
xk+1 = Fkxk +Gkuk +wk,

yk = Hxk + vk.
(14)

Here, wk and vk are added to account for the process noise
and measurement noise that exist in the thermal dynamic
processes of a LiB pack. They are assumed to be zero-mean
Gaussian white noises with covariances of Q ≥ 0 and R > 0,
respectively. Suppose the initial guess of x0 is x̂0|0, with
an estimation error covariance P0|0. Then application of the
standard CKF to (14) can be performed at each time instant.
This procedure consists of two steps, prediction and update.

When the state estimate x̂k−1|k−1 is generated, the one-
step-forward prediction can be made through

x̂k|k−1 = Fk−1x̂k−1|k−1 +Gk−1uk−1, (15)

Pk|k−1 = Fk−1Pk−1|k−1F
>
k−1 +Q. (16)

When the new measurement yk becomes available, the update
step can be performed as follows to correct the prediction:

x̂k|k = x̂k|k−1 +Kk(yk −Hx̂k|k−1), (17)

Kk = Pk|k−1H
>(HPk|k−1H

> +R)−1, (18)
Pk|k = Pk|k−1 −KkHPk|k−1. (19)

The CKF executes the above steps recursively over time to
generate the state estimate at each time instant. However, it is
not suited to estimate the temperature for a LiB pack, because
the high-dimensional thermal model of the LiB pack implies
considerable computation (detailed computational complexity
analysis will be given in Section III-D). Hence, the CKF will
be distributed next to reduce the computational cost.

B. Distributed Kalman Filtering

Rather than estimate the global state in a centralized manner,
the DKF will consider the pack system as a combination of
multiple cell-based subsystems and run a series of local KFs in
parallel, each one corresponding to a cell. Because of the mu-
tual influence between the cells and their thermal behavior, the
local KFs will exchange information according to the existing
communication topology to accomplish the estimation. The
local estimates, when collected and put together, will comprise
a complete picture of the entire pack’s temperature field.

Consider a LiB pack composed of Nc cells wired in series,
which are numbered in order from 1 to Nc. For cell l and
i, they are said to be neighbors if they are adjacent. The
neighborhood of l, Nl, is defined as the set of its neighbor
cells, and in this setting, Nl = {l − 1, l + 1}. It is assumed
here that cell l can communicate with Nl. According to (11)-
(12), the state-space equation for cell l can be written as

x
(l)
k+1 = Fll,kx

(l)
k +

∑
i∈Nl

Fli,kx
(i)
k +Gl,kuk +w

(l)
k ,

y
(l)
k = Hlx

(l)
k + v

(l)
k ,

(20)

where cell-wise decomposition is also applied to wk and vk.
Note that the evolution of cell l’s state is not only self-driven
but also affected by the neighboring cells. All cells yet share
the same uk because the serial connection implies the same
charging/discharging current across the circuit. In addition,
each cell is only aware of its own temperature measurements.

For the above cell l-based subsystem, the CKF approach can
be adjusted for local state estimation. This can be attained by
applying the prediction-update procedure in analogy to (15)-
(19). Specifically, the prediction can be given by

x̂
(l)
k|k−1 = Fll,k−1x̂

(l)
k−1|k−1 +

∑
i∈Nl

Fli,k−1x̂
(i)
k−1|k−1

+Gl,k−1uk−1, (21)

P
(l)
k|k−1 = Fll,k−1P

(l)
k−1|k−1F

>
ll,k−1 +Ql. (22)

Here, cell l’s state prediction, x̂(l)
k|k−1, depends on not only its

own but also its neighbors’ state estimates from the previous
time instant. On its arrival, y(l)

k can be used to update x̂(l)
k|k−1:

x̂
(l)
k|k = x̂

(l)
k|k−1 +K

(l)
k

(
y
(l)
k −Hlx̂

(l)
k|k−1

)
, (23)
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K
(l)
k = P

(l)
k|k−1H

>
l

(
HlP

(l)
k|k−1H

>
l +Rl

)−1
, (24)

P
(l)
k|k = P

(l)
k|k−1 −K

(l)
k HlP

(l)
k|k−1. (25)

Note that no information exchange with neighbors is required
in the update step. Here, (21)-(25) constitute the DKF algo-
rithm. Running the DKF in parallel for each cell leads to local
temperature field estimation. Combining the local estimation,
one can obtain a full view of the pack’s temperature field.

Compared to the CKF, the DKF algorithm involves ap-
proximation. First, each cell only has a local rather than
global knowledge of the system’s dynamic behavior, implying
information loss inherent in each local DKF. To see this, the
nominal prediction error covariance P (l)

k|k−1, differing from the
CKF, evolves only from its predecessor without fusion of the
counterparts of the other cells, as shown in (22). This shows
P

(l)
k|k−1 is only approximate to the true prediction error covari-

ance. Second, part of the approximation is made to reduce the
communication and computation costs. Looking at (22) again,
one can see that a local cell does not consider its neighbors
in its forward propagation of its prediction error covariance.
This will obviate the need for the exchange of the estimation
error covariance between neighboring cells and further, the
local computational effort. However, the approximation will
not seriously compromise the estimation accuracy. Since F is
diagonally dominant and H block-diagonal due to the pack’s
serial connection, P will also be diagonally dominant. The
self-propagation of the local estimation error covariance, as a
result, will not bring much loss of estimation accuracy.

C. Steady-State Distributed Kalman Filtering

It is identified that, if some mild reduction is introduced
for the considered thermal model, we can obtain another
DKF approach with much higher computational efficiency. To
be specific, consider the heat generation equation (2). Many
studies in the literature suggest that its second term often has
a negligible magnitude in comparison with the first term and
thus can be ignored [8], [27]. With this simplification, (2) can
be reduced as q = I (Uocv − Ut)/Vco. It is then found that
F becomes time-invariant in this case, which will allow us to
develop a more computationally efficient DKF for temperature
field reconstruction. The development is as follows.

Assumption 1. The pair (Fll,Hl) is detectable and the pair(
Fll,Q

1
2

l

)
stabilizable for l ∈ {1, · · · , Nc}.

Given Assumption 1, the DKF algorithm in (21)-(25) will
gradually achieve steady state. Specifically, P (l)

k|k−1 will con-
verge to a unique stabilizing solution, P̄ (l), of the discrete
algebraic Riccati equation

X = FllXF
>
ll − FllXH

>
l

(
HlXH

>
l +Rl

)−1
HlXF

>
ll

+Ql,

where X is an unknown symmetric positive-definite matrix.
The gain matrix K(l)

k in (24) then will approach a fixed point

K̄(l) = P̄ (l)H>l

(
HlP̄

(l)H>l +Rl

)−1
, (26)

which can ensure Fll(Il − K̄(l)Hl) to be stable [30]. With
fixed P̄ (l) and K̄(l), the state prediction and update can be
accomplished more efficiently:

x̂
(l)
k|k−1 = Fllx̂

(l)
k−1|k−1 +

∑
i∈Nl

Flix̂
(i)
k−1|k−1 +Gluk−1, (27)

x̂
(l)
k|k = x̂

(l)
k|k−1 + K̄(l)

(
y
(l)
k −Hlx̂

(l)
k|k−1

)
, (28)

which together form the steady-state DKF (SS-DKF) algo-
rithm. It is seen that the SS-DKF does not maintain the
estimation error covariance and that its gain matrix can be
computed offline prior to the estimation run. Although this
incurs certain sacrifice of estimation accuracy, it presents much
appeal from a computational perspective. Before moving on
to the computational complexity analysis in Section III-D,
the stability of the SS-DKF algorithm is examined in the
remainder of this section.

We define the real state error ek = x̂k|k − xk. For the real
state error e(l)k at cell l, combining (27) and (28), we have

e
(l)
k = (I − K̄(l)Hl)Flle

(l)
k−1 +

∑
i∈Nl

(I − K̄(l)Hl)Flie
(i)
k−1

− (I − K̄(l)Hl)w
(l)
k−1 + K̄(l)v

(l)
k . (29)

Aggregating e(l)k for l ∈ {1, · · · , Nc} together yields

ek = (I − K̄H)Fek−1 − (I − K̄H)wk−1 + K̄vk, (30)

where K̄ = blkdiag
{
K̄(1), · · · , K̄(Nc)

}
. The stability of the

SS-DKF algorithm is stated as follows.

Theorem 1. LetA = (I−K̄H)F andB = (I−K̄H)Q(I−
K̄H)> + K̄RK̄>. If A is stable, the true error covariance
Σk = E

[
eke

>
k

]
will converge to the unique solution of the

discrete-time Lyapunov equation Σ = AΣA> +B.

Proof. It is seen that the propagation of Σk is governed by
Σk = AΣk−1A

> +B. Since A is stable, limk→∞Σk = Σ
(see Chapter 3.3 in [31]).

From above, Assumption 1 lays the foundation for the
derivation of the SS-DKF, and Theorem 1 indicates that a
stable (I−K̄H)F can guarantee the stability of the SS-DKF
algorithm. Yet, a question then is: will Assumption 1 and the
stability of (I − K̄H)F hold for the LiB pack model?

An examination is given as follows. First, consider Assump-
tion 1. Note that the thermal physics implies that the model
established in Section II is stable if the numerical stability
condition is satisfied in discretization. Hence, F will be stable.
Next, we partition F into the following form:

F = Fd + Fod, (31)

where the subscripts d and od denote diagonal blocks and
off-diagonal blocks, and Fd = blkdiag{F11, · · · ,FNc,Nc

}.
According to Corollary 5.6.14 in [32], one will have

ρ(Fod) = limk→∞‖F k
od‖1/k. (32)

It is interesting to note that F 2
od = 0 in this application due

to the serial structure of the LiB pack, and hence ρ(Fod) = 0
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Table I: Arithmetic operation requirements of the CKF, DKF and SS-DKF algorithms.

Algorithm Number of multiplications Number of additions Complexity

CKF 3N3 + 2N2M + 2NM2 +M3 +N2 + 2NM + 2N 3N3 + 2N2M + 2NM2 +M3 −N2 +N O(N3)
DKF Nc

(
3N3

l + 2N2
l Ml + 2NlM

2
l +M3

l + 3N2
l + 2NlMl + 2Nl

)
Nc

(
3N3

l + 2N2
l Ml + 2NlM

2
l +M3

l +N2
l +Nl

)
O(NcN3

l )
SS-DKF Nc

(
2N2

l + 2NlMl + 2Nl

)
Nc

(
3N2

l + 2NlMl +Nl

)
O(NcN2

l )

in this case. Invoking Lemma 5.6.10 in [32], there exists a
matrix norm ‖·‖∗ for any given ε > 0 such that

ρ(Fd) ≤ ‖Fd‖∗ ≤ ρ(Fd) + ε. (33)

Since it satisfies the triangle inequality, then

‖Fd‖∗ ≤ ‖F ‖∗ + ‖Fod‖∗ ≤ (ρ(F ) + ε1) + (ρ(Fod) + ε2),

where ε1 > 0 and ε2 > 0. It follows from ρ(Fod) = 0 that

‖Fd‖∗ ≤ ρ(F ) + ε1 + ε2. (34)

Thus, one can always find ε1 and ε2 to prove that Fd is stable,
thus validating Assumption 1.

Now, consider the stability of (I − K̄H)F . For notational
simplicity, we denote I − K̄H as Ĩ . Then the objective is
to show that ĨF is stable. Recalling the matrix norm ‖·‖∗
in (33), it is also submultiplicative and implies

‖ĨF ‖∗ ≤ ‖ĨFd‖∗ + ‖ĨFod‖∗
≤ ‖ĨFd‖∗ + ‖Ĩ‖∗‖Fod‖∗
≤ (ρ(ĨFd) + ε3) + (ρ(Ĩ) + ε4)(ρ(Fod) + ε5)

≤ ρ(ĨFd) + ε3 + ρ(Ĩ)ε5 + ε4ε5, (35)

where ε3 > 0, ε4 > 0, and ε5 > 0. Then, because
Fll(Il−K̄(l)Hl) is stable, the matrix FdĨ is stable. Following
that limk→∞(FdĨ)k = 0, (ĨFd)k can be constructed as
Ĩ(FdĨ)k−1Fd such that limi→∞(ĨFd)k = 0. Therefore, it
is always possible to find ε3, ε4 and ε5 to make the right-hand
side of (35) smaller than 1. Subsequently, ρ(ĨF ) < 1 and
(I − K̄H)F is stable.

Remark 2. (Extension to thermal runaway detection). The
above develops the DKF and SS-DKF to reconstruct the
temperature field of a battery pack. They can be used as
a tool to monitor the spatially distributed thermal behavior
critical for a battery pack’s safety. An extension of them to
detect thermal runaway can be hopefully made. An idea is to
consider the thermal runaway as an unknown disturbance that
abruptly appears and applies to the model in (14). Then, the
thermal runaway detection can be formulated as the problem
of disturbance detection. KF-based approaches have been
studied extensively for disturbance detection in the literature,
e.g., [33], and can be potentially exploited here. Combining
this idea and the design in this paper, we can promisingly
build distributed KF-based approaches for thermal runaway
detection. This will be an important part of our future work.

D. Computational Complexity Analysis

As aforementioned, distributing the CKF is to improve
the computational efficiency toward enabling real-time recon-
struction of a LiB pack’s temperature field. In this subsection,
the CKF, DKF and SS-DKF algorithms are analyzed and
compared in terms of computational complexity. The analysis
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Figure 3: Discharging current profile based on UDDS.

is to determine the number of arithmetic operations needed
by each algorithm. To proceed further, we consider the basic
matrix operations. For two n × n matrices, their addition
involves n2 elementary additions, and their multiplication
involves n3 elementary multiplications and (n−1)n2 elemen-
tary additions. The inverse of an n × n matrix requires n3

elementary multiplications and n3 elementary additions. The
complexity of each algorithm can be assessed by summing up
all the arithmetic operations required at each time instant, as
summarized in Table I.

It is demonstrated in Table I that the CKF has the heaviest
computation at O

(
N3
)
, which increases cubically with the

size of the state space of the entire pack. This also implies
that, when a pack has more cells, the computation would rise
cubically with the cell number. Computational complexity at
such a level is unaffordable for a real-world onboard compu-
ting platform. By contrast, the DKF is much more efficient.
Given that N = NcNl, the DKF’s arithmetic operations at
O(NcN

3
l ) are only about one N2

c -th of the CKF’s. In addition,
with the computation increasing only linearly with the cell
number, the DKF well lends itself to parallel processing,
where the estimation for each cell is performed on a separate
micro-processor at a complexity O(N3

l ). In this scenario, an
increase in the cell number will not add cost to the existing
micro-processors. The SS-DKF unsurprisingly is the most
computationally competitive. Its complexity at O

(
NcN

2
l

)
is

even one order less than that of the DKF. Just like the DKF,
it is also well suited for parallel processing-based execution.

IV. NUMERICAL SIMULATION

In this section, numerical simulation with a practical LiB
pack is offered. The simulation is performed using MATLAB.

A. Simulation Setting

Consider a LiB pack that consists of three large-format
high-capacity prismatic LiB cells connected and stacked in
series. Here, the cells are the same ones as in [17]. Each cell
has a capacity of 185.3 Ah and is 19.32 cm long, 10.24 cm
wide, and 10.24 cm high. As mentioned in Section II, the cell
has two portions: the core region and the metallic case. The
core region is 19.08 cm long, 10 cm wide, and 10 cm high,
housing three hundred smaller cell units in parallel. The key
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(a) t = 0 s (b) t = 240 s (c) t = 480 s (d) t = 1200 s

Figure 4: First row: real temperature fields through time for the LiB pack discharged at UDDS-based current loads. Second
row: CKF-based reconstruction. Third row: DKF-based reconstruction.

parameters of the LiB cell can refer to [17]. In the simulation,
it is assumed that the LiB pack operates in an environment
with temperature maintained at 300 K. The convective heat
transfer coefficient, emissivity on pack surface, and entropic
heat transfer coefficient dUocv/dT are set to be 30 W/(m2·K),
0.25, and 0.00022 VK−1 [17], respectively. The battery pack
is discharged using a time-varying current profile, which is
shown in Figure 3 and derived from the Urban Dynamometer
Driving Schedule (UDDS) [34]. Sensors are mounted on the
battery pack as shown in Figure 2, i.e., five sensors are placed
on each cell-air interface of a cell. Such a placement is
straightforward and easy to implement. Associated with this,
an intriguing question is how to optimally deploy the sensors
toward achieving satisfactory estimation performance with a
minimum number of sensors. While some results are reported
in the literature, e.g., [15], further research is still required to
fully address this question.

The thermal dynamics of the considered pack can be cha-
racterized by the PDE-based model in Section II. Each cell
is gridded in space with m = 9, n = 5 and p = 5 and in
time with ∆t = 1 s. In general, one can increase m, n and
p and reduce ∆t to increase the accuracy of simulation. This,
however, will increase computational cost. Another risk lies
in numerical instability, which can be caused if the selected
m, n, p and ∆t fail to satisfy certain conditions [28]. To find
a satisfactory set, one can consider a few candidates. S/he
can first check the numerical stability for each set using the
conditions in [28]. Then, run the simulation for the sets that
pass the check, and choose the set that leads to acceptable
accuracy with minimum computational cost. This process
understandably may require repeated trial effort.

In the simulation, the pack’s initial temperature is 300 K,
the same with the ambient temperature. Yet, for the purpose
of illustrating the estimation, the initial guess is 295 K in the

simulation. The noise covariance matricesQ andR are chosen
as Q = 0.052 · I and R = 0.32 · I , respectively.

B. Simulation Results

The real temperature field is obtained by running the state
equation of (14) using MATLAB with the effects of pro-
cess noise included. Sensor-based measurements are obtained
according to the measurement equation of (14), which are
subjected to sensor noise. Using the measurements and based
on the model, the CKF and DKF are applied to reconstruct
the temperature field. The simulation results are summarized
in Figure 4. The first row shows the real temperature field
that evolves over time. Here, trilinear spatial interpolation
is used to generate spatially continuous temperature fields.
As is shown, the pack sees an obvious temperature rise,
despite the convection cooling and only three cells. In ad-
dition, it can be easily found that the temperature differs
spatially across the pack, with a high gradient buildup at
the end of the simulation. The second and third rows show
the reconstructed temperature fields using the CKF and DKF,
respectively. It is seen that, although the initial guess differs
from the truth, both of them can generate temperature field
estimation that gradually catches up with the truth. Next, let
us further examine the SS-DKF approach. In this case, the
heat generation model (2) is simplified. In order to save space,
the visual demonstration of the temperature field estimation is
omitted. Yet a comparison of accuracy is provided in Figure 5,
where the metric 1

N trace
(
E
[
(x̂k|k − xk)(x̂k|k − xk)

>
])

is
the averaged trace of the estimation error covariance. It is
observed that the SS-DKF is less accurate in the initial stage
compared with the CKF and DKF. However, it can achieve
approximately the same accuracy after about 400 s. Given this
result and its superior computational efficiency, the SS-DKF
can be a worthy tool in practice.
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Figure 5: Evaluation of the estimation error over time when
the simplified heat generation model is used.

V. CONCLUSION

Thermal monitoring is crucial for ensuring the safety of
LiBs. This study is proposed to achieve three-dimensional tem-
perature field reconstruction, which is beneficial and necessary
but still absent in the literature. A thermal model is presented
first to capture the thermal dynamics of a LiB pack, which
is based on heat transfer and energy balance analysis. Based
on the model, the well-known KF approach is distributed
to achieve global temperature field reconstruction through
localized estimation, reducing the computational complexity
remarkably. A DKF algorithm, which well fits the considered
problem, is offered, and its steady-state version, SS-DKF,
would require even less computation time. A detailed com-
putational complexity analysis highlights the advantages of
the distributed estimation approaches. Simulation with a LiB
pack based on genuine cells demonstrates the effectiveness
of the proposed DKF and SS-DKF algorithms. A diversity
of work will be performed in the future along this study,
including temperature field reconstruction based on more
sophisticated models, DKF-based thermal runaway detection,
and experimental validation.
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