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Abstract
Stochastic Model Predictive Control (SMPC) accounts for model uncertainties and distur-
bances based on their statistical description. SMPC is synergistic with the well-established
fields of stochastic modeling, stochastic optimization, and estimation. In particular, SMPC
benefits from availability of already established stochastic models in many domains, existing
stochastic optimization techniques, and wellestablished stochastic estimation techniques. For
instance, the effect of wind gusts on an aircraft can be modeled by stochastic von Karman
and Dryden’s models but no similar deterministic models appear to exist. Loads or failures
in electrical power grids, prices of financial assets, weather (temperature, humidity, wind
speed and directions), computational loads in data centers, demand for a product in market-
ing/supply chain management are frequently modeled stochastically thereby facilitating the
application of the SMPC framework. A comprehensive overview of various approaches and
applications of SMPC has been given in the article. Another overview article in Encyclope-
dia of Systems and Control is focused on tube SMPC approaches. This chapter provides a
tutorial exposition of several SMPC approaches.
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Stochastic Model Predictive Control

Ali Mesbah, Ilya Kolmanovsky and Stefano Di Cairano

I. INTRODUCTION

Stochastic Model Predictive Control (SMPC) accounts for model uncertainties and disturbances based

on their statistical description. SMPC is synergistic with the well-established fields of stochastic mod-

eling, stochastic optimization, and estimation. In particular, SMPC benefits from availability of already

established stochastic models in many domains, existing stochastic optimization techniques, and well-

established stochastic estimation techniques. For instance, the effect of wind gusts on an aircraft can

be modeled by stochastic von Kármán and Dryden’s models [21] but no similar deterministic models

appear to exist. Loads or failures in electrical power grids, prices of financial assets, weather (temperature,

humidity, wind speed and directions), computational loads in data centers, demand for a product in mar-

keting/supply chain management are frequently modeled stochastically thereby facilitating the application

of the SMPC framework.

A comprehensive overview of various approaches and applications of SMPC has been given in the

article [33]. Another overview article [27] in Encyclopedia of Systems and Control is focused on tube

SMPC approaches. This chapter provides a tutorial exposition of several SMPC approaches.

II. STOCHASTIC OPTIMAL CONTROL AND MPC WITH CHANCE CONSTRAINTS

Consider a stochastic, discrete-time system,

xt+1 = f (xt ,ut ,wt), (1a)

yt = h(xt ,vt), (1b)

where t is the time index; xt ∈ R
nx , ut ∈ R

nu , and yt ∈ R
ny are the system states, inputs, and outputs,

respectively; wt ∈Rnw denotes stochastic system noise; vk ∈Rnv denotes measurement noise; and functions
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f : Rnx ×Rnu ×Rnw →Rnx and h : Rnx ×Rnv →Rny define system state and output equations, respectively.

The uncertain initial state x0 is described by the known probability distribution P[x0]. The independent

and identically distributed random variables in the noise sequences {wt} and {vt} have known probability

distributions P[w] and P[v], respectively.

The system (1) represents a Markov decision process, as the successor state xt+1 can be determined

from the current state xt and input ut [29]. Let It denote the vector of system information that is causally

available at time instance t,

It := [yt , . . . ,y0,ut−1, . . . ,u0],

with I0 := [y0]. The conditional probability of state xt given It , i.e., P[xt |It ], can be computed via recursive

Bayesian estimation [15]

P[xt |It ] =
P[yt |xt ]P[xt |It−1]

P[yt |It−1]
, (2a)

P[xt+1|It ] =
∫

P[xt+1|xt ,ut ]P[xt |It ]dxt , (2b)

with P[x0|I−1] := P[x0]. We use Ext and Pxt to denote, respectively, the expected value and probability

with respect to the stochastic state xt (with uncertainty P[xt |It ]) as well as the random variables wk and

vk for all k > t.

Let N ∈ N be the prediction horizon.1 Consider an N-stage control policy

Π := {π0,π1, . . . ,πN−1}, (3)

where πk ∈ U⊂ Rnu is a nonanticipatory feedback control law; and U is a nonempty measurable set for

the inputs. At the kth stage of control, uk = πk. Define the control cost function as

JN(xt ,Π) = Ext

[

ct+N(xt+N)+
N−1

∑
k=0

ct+k(xt+k,πt+k)
]

, (4)

where ct+k : Rnx ×U→ [0, ∞) and ct+N : Rnx → [0, ∞) denote the stage-wise cost incurred at the (t+k)th

stage of control and at the terminal stage, respectively. Define a joint chance constraint of the form

Pxt+k
[g(xt+k)≤ 0 ]≥ 1−δ , k = 1, . . . ,N, (5)

where g : Rnx → Rnc denotes state constraints, composed of nc > 1 inequalities; and δ ∈ [0, 1) denotes

the maximum allowed probability of state constraint violation. The chance constraint (5) is generally

nonconvex and intractable [3], [7]; see [36], [18] for treatment of chance-constrained optimization.

1For notational convenience, the control and prediction horizons are considered to be identical.
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Remark 1: When the probabilistic uncertainties in (1) are bounded, hard state constraints can be

enforced by setting δ = 0 in (5). This implies that g(xt) ≤ 0 must be satisfied for all realizations of

system uncertainties.

Given the (uncertain) knowledge of the system state at sampling time t, i.e., P[xt |It ], the stochastic

optimal control problem (OCP) for system (1) is stated as

min
Π

JN(xt ,Π) (6a)

s.t.: xt+k+1|t = f (xt+k|t,πt+k|t ,wk|t), k = 0, . . . ,N −1, (6b)

πt+k|t ∈ U, k = 0, . . . ,N −1, (6c)

Pxt+k|t [g(xt+k|t)≤ 0 ]≥ 1−δ , k = 1, . . . ,N, (6d)

wk|t ∼ P[w], k = 0, . . . ,N −1, (6e)

xt|t ∼ P[xt |It ], (6f)

where t+k|t denotes the state and input computed at time t+k based on the knowledge of P[xt |It ]. Note

that the chance constraint (6d) enforces the state constraints with respect to P[xt |It ] as well as the future

noise sequence over the horizon N.

In theory, the stochastic OCP (6) can be solved offline using Bellman’s principle of optimality [2]. The

resulting optimal control policy Π∗ can then be implemented in a receding-horizon manner by applying

ut = π∗
t to the stochastic system (1) at every sampling time t that P[xt |It ] is estimated from (2). The

principle of optimality requires that the optimal control cost at each control stage satisfy the Bellman

equation for stochastic dynamic programming. To this end, the control input πt at each stage t must

be designed via a nested minimization of the expected sum of the current control cost and the optimal

future control cost, which is computed based on the knowledge of the future state P[xt+1|It+1] (e.g., see

[34]). Although solving the Bellman equation will result in an optimal closed-loop control policy, it is

well-known that stochastic dynamic programming suffers from the so-called curse of dimensionality for

practically-sized systems [6].

In recent years, a plethora of SMPC strategies have been presented that seek online solution of an

approximate surrogate for the stochastic OCP (6) in a receding-horizon manner. Generally speaking,

SMPC strategies neglect the effect of the control input πt on the knowledge of the future state P[xt+1|It+1]

to avoid the formidable challenge of solving the Bellman equation [26], [33]. In the remainder of this

chapter, three SMPC strategies are introduced for receding-horizon control of stochastic linear systems.
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III. SCENARIO TREE-BASED MPC

The scenario tree-based stochastic MPC approach was introduced in [4], and relies upon multi-stage

stochastic programming [9]. The general idea behind tree-based stochastic MPC is to compute a closed-

loop policy based on scenarios determined by predictions of the stochastic disturbance sequences. Due

to causality, the predicted states and related control sequences result arranged in a tree structure. A first

application of this methodology, in the context of robust min-max MPC was in [45]. In the stochastic

context, each tree node is further associated with a probability of reaching it, based on the probability

of the scenario to realize. Such a probability can be used to selectively trim parts of the tree that are

unlikely to realize in order to reduce the computational effort. For other scenario-based approaches, see

[10], [44] and references in [33].

In this section we modify the notations slightly, reserving subscripts to designate the nodes of the

scenario tree, and using x(t), u(t), w(t), etc. to denote the variables at the current time instant, t.

The system is modeled as a parameter varying discrete-time linear system, possibly with an additive

disturbance,

x(t +1) = A(w(t))x(t)+B(w(t))u(t)+F(w(t)), (7)

where x(t) ∈ Rnx is the state, u(t) ∈ Rnu is the input, and w(t) ∈ W is a scalar stochastic disturbance,

which takes values in a finite set {w̄1, . . . , w̄s} ⊂ R. The state and input vectors in (7) are subject to the

pointwise-in-time constraints

x(t) ∈ X , u(t) ∈ U , ∀t ∈ Z0+, (8)

which must hold for all t ≥ 0, where X ⊆ Rnx , U ⊆ Rnu , are polyhedral sets. The probability mass

function p(t) of w is assumed to be known or predictable, at all times, that is, for all t ∈ R0+, p j(t) =

Pr[w j(k) = w̄ j], such that p j(t)≥ 0,
s

∑
j=1

p j(t) = 1 is known, and it can be predicted for τ > t based only

on the information known at time t. This includes the cases when p(t) is constant, or varies in a pre-

defined way, or when it is defined by a stochastic Markov process with state z, and z(t +1) = fM(z(t)),

p(t)= p(z(t)), where z(t) is known at time t. In the latter case, the disturbance realization in W represents

the combinations of disturbances on the system and the (discrete) transitions of the Markov process. The

main restriction imposed by this assumption is that p cannot depend on the system state x, since the

system evolution is affected by the input u, and hence p(τ), τ > t, will not be predictable based only on

data at time t.
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A. Scenario-tree Construction

Due to the presence of the stochastic disturbance, the MPC aims at minimizing the expected value of

a given cost function, that is

E[JN(t)] =E

[

N

∑
k=1

x(t + k|t)⊤Qx(t + k|t)+
N−1

∑
k=0

u(t + k)⊤Ru(t+ k)

]

, (9)

where N ∈Z+ is the prediction horizon, and Q = Q⊤ ≥ 0, R = R⊤ > 0 are weight matrices of appropriate

dimensions. Since |W | is finite, p(t) is known, and p(t+k) can be predicted based only on the information

at time t, one can enumerate all the admissible realizations of the stochastic disturbance sequence along

the finite horizon N, and their corresponding probabilities. An N-steps scenario, ωN
ℓ ∈W N , is a sequence

of N disturbance realizations ωN = [w(0), . . . ,w(N −1)], and its q steps prefix ωN,q is the subsequence

composed of only its first q elements ωN,q = [w(0), . . . ,w(q−1)]. Thus, one can optimize (9) by optimizing

E[JN(t)] =
sN

∑
ℓ=1

JN(t|ωN
ℓ (t))P(ω

N
ℓ (t)|z(t)),

with constraints that enforce causality, i.e., u(t + k|ωN
j ) = u(t + k|ωN

i ) for all i, j such that ωN,k
i = ωN,k

j .

However, the optimization problem obtained in this way is large, because it considers all disturbance

sequences, even those that occur with arbitrarily small probability.

In the scenario tree-based MPC, (7), (8), and the predicted evolution of p(t +k) are used to construct

a variable horizon optimization problem where only the disturbance sequences that are more likely to

realize are accounted for, and hence the size of the optimization problem is reduced. The scenario tree

describes the most likely scenarios of future disturbance realizations, and is updated at every time step

using newly available measurements of the state x(t), and updated information to predict the disturbance

probability p(t + k). In order to explain the scenario tree-based approach, we introduce the following

notations:

• T = {N1,N2, . . . ,Nn}: the set of the tree nodes. Nodes are indexed progressively as they are added

to the tree, i.e., N1 is the root node and Nn is the last node added;

• pre(N ) ∈ T : the predecessor of node N ;

• succ(N ,w) ∈ T : the successor of node N for w ∈ W ;

• πN ∈ [0,1]: the probability of reaching N from N1;

• xN ∈Rnx , uN ∈Rnu , wN ∈W : the state, input, and disturbance value, respectively, associated with

node N , where xN1
= x(t), and wN1

= w(t);

• C = {C1,C2, . . . ,Cc}: the set of candidate nodes, i.e., C = {N 6∈ T | ∃(i, j) : N = succ(Ni,w j)};
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• S ⊂ T : the set of leaf nodes, with cardinality denoted by nleaf = |S |, i.e., S = {N ∈ T |
succ(N ,w j) 6∈ T , ∀ j ∈ {1, . . . ,s}}.

Every path from the root node to a leaf node is a scenario in the tree and describes a disturbance realization

that will be accounted for in the optimization problem. The procedure to construct the scenario tree is

as follows.

Starting from the root node N1, which is associated with w(t), we construct a list C of candidate nodes

by considering all the possible s future values of the disturbance in W and their realization probabilities.

The candidate with maximum probability Ci∗ is added to the tree and removed from C . The procedure is

repeated by adding at every step new candidates as children of the last node added to the tree, until the

tree contains nmax nodes. The scenario-tree construction, summarized in Algorithm 1, expands the tree

in the most likely direction, so that the paths with higher probability are extended longer in the future,

because they may have larger impact on the overall performance. This leads to a tree with variable depth,

where the paths from the root to the leaves may have different lengths and hence different prediction

horizons, see Fig. 1.

Algorithm 1 SMPC tree generation procedure

1: At any step k:

2: set T = {N1}, πN1
= 1, n = 1, c = s;

3: set C =
⋃s

j=1

{

succ(N1,w j)
}

4: while n < nmax do

5: for all i ∈ {1,2, . . . ,c}, do

6: compute πCi
;

7: end for

8: set i∗ = argmaxi∈{1,2,...,c} πCi
;

9: set Nn+1 = Ci∗;

10: set T = T ∪{Nn+1};

11: set C =
⋃s

j=1{succ(Ci∗, w j)}∪ (C \Ci∗);

12: set c = c+ s−1, n = n+1;

13: end while
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N1

S

Ni

pre(Ni)

succ(Ni, j)

k k+1 k+2 k+3

prediction step

Fig. 1. Graphical representation of a multiple-horizon optimization tree. Some roof-to-leaves paths have length 2, others have

length 3. Hence, different scenarios may have different prediction horizons.

B. Scenario-tree Stochastic Optimization Problem

The scenario-tree constructed with Algorithm 1 is exploited to repeatedly construct the MPC optimiza-

tion problem. For the sake of notation, in what follows we use xi, ui, yi, wi, πi and pre(i) to denote xNi
,

uNi
, yNi

, wNi
, πNi

and pre(Ni), respectively.

Given the maximum number of nodes, nmax, at any time t, the Scenario-tree based Stochastic MPC

performs the following operations: (i) it constructs the tree T (t,nmax) based on w(t); (ii) it solves the
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the following stochastic MPC based on T (t,nmax):

min
u

∑
i∈T (t,nmax)\{N1}

πix
⊤
i Qxi + ∑

i∈T (t,nmax)\S
πiu

⊤
i Rui (10a)

s.t. x1 = x(t) (10b)

xi = Apre(i)xpre(i)+Bpre(i)upre(i)+Fpre(i), i ∈ T (t,nmax)\{N1} (10c)

xi ∈ X , i ∈ T (t,nmax)\{N1} (10d)

ui ∈ U , i ∈ T (t,nmax)\S (10e)

where u = {ui : Ni ∈ T (t,nmax)\S } is the multiple-horizon input sequence; (iii) it applies u(t) = u1 =

uN1
as a control input to the system (7).

In Problem (10), causality is enforced by the tree structure, since if ωN,k
i = ωN,k

j , the two scenarios

share the same path in the tree, at least until the kth level, and since a single control input is associated

to each node in the tree, it follows automatically that u(t + h|ωN
j ) = u(t + h|ωN

i ) for all h = 0, . . . ,k.

Indeed, causality is enforced based on equal disturbance sequences, as opposed to, for instance, [45],

where causality is enforced based on reaching the same state, possibly by different disturbance sequences.

Thus, the approach of (10) may result in redundant decision variables, but it allows for simpler formulation

as an optimization problem.

In fact, Problem (10) is a quadratic program (QP) with nu(nmax −nleaf) variables. If the scenario tree

T is fully expanded, i.e., all the leaf nodes are at depth N and all parent nodes have s successors, which

obviously requires nmax = 2N+1−1, the objective function (10a) is equivalent to (9). Otherwise, (10a) is

an approximation of (9) based on the scenarios with highest probability, and thus nmax determines the

representativeness-complexity tradeoff of the approximation.

Based on Problem (10), the scenario-tree stochastic MPC results in a closed-loop prediction policy.

Since there are multiple predictions, i.e, multiple tree nodes, of the predicted state values and to each a

possibly different control action is associated, the control action at any predicted step changes as function

of the disturbance realizations up to such step. Thus, the control action implicitly encodes feedback from

the past disturbances.

C. Extensions and Applications

The Scenario-tree based MPC is a fairly general framework that allows to solve stochastic MPC

problems with a precision that related to the amount of available computational resources. Several

extensions have been presented in the literature.
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In terms of modeling, in [5] it is shown that p(t) can be generated by several classes of stochastic

processes, possibly in an approximate discretization, such as the generalized autoregressive conditional

heteroskedasticity (GARCH), and Markov chains with transition matrix T , and emission matrix E , where

z is the Markov chain state and

Ti j = P[z(t +1) = z j|z(t) = zi], (11a)

Ei j = P[w(t) = w j|z(t) = zi] = p j(zi). (11b)

A simplified formulation of the Markov chain is the case where z = w, resulting in P[w(t + 1)] =

fM(w(t))so that Ti j = P[w(t +1) = w j|w(t) = wi] and E = I.

For the case where F(w) = 0, for all w ∈W , and there are no (hard) constraints, uniform mean square

exponential stability of the closed-loop system is demonstrated in [5] by designing offline a stochastic

Lyapunov function satisfying V (x) = xTSx, E[V (x(t+1))]−V(x(t))≤ x(t)TLx(t), where S,L > 0, which

is then enforced as constraint at the root node of the scenario tree N1 in Problem (10) by the quadratic

constraint
s

∑
i=1

P[wi(k)](Aix1 +Biu1)
⊤S(Aix1 +Biu1)≤ x⊤1 (S−L)x1.

For the constrained case, in [5] it is suggested to construct an invariant ellipsoid [25]

E = {x : x⊤Sx ≤ γ} ⊂ X ,

and a linear controller u =Kx, such that E is robust positive positive invariant for the polytopic difference

inclusion with vertices [A(w),B(w)], w∈W controlled by u=Kx, and for all x∈ E , Kx∈U . The invariant

ellipsoid is exploited to construct another constraint to be added in Problem (10),

(Aix1 +Biu1)
⊤S(Aix1 +Biu1)≤ γ , ∀i : pi(t)> 0,

which guarantees recursive constraint satisfaction.

The scenario tree-based MPC is applied to energy management of a hybrid electric powertrain in [43].

In [16], once again motivated by the application to the energy management of hybrid electric powertains,

the case where the stochastic disturbance is learned during execution has been presented. In particular,

in [16] the actions of the vehicle driver are modeled as a Markov chain whose transition probability is

time-varying and initially unknown, which is then estimated from the transition frequencies

P[w(t +1) = w j|w(t) = wi] =
ni j

ni

, (12)

with an iterative algorithm. The so-estimated Markov chain is used to adapt the scenario tree construction

in the stochastic MPC for optimizing the energy efficiency of the hybrid electric vehicle, and it is shown
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that with the learning of the Markov chain, the overall performance is very close to the one from an MPC

with exact preview, on both synthetic and experimental data. Along these lines, [8] reports an application

of the scenario tree-based stochastic MPC to adaptive cruise control where the Markov chain is used to

model the actions of the surrounding traffic,

In terms of numerical algorithms, the scenario tree-based MPC results in QPs that are larger than those

from nominal MPC, but these have a special structure that can be exploited to reduce the computational

burden. For instance, in [23] an algorithm based on the alternating direction method of multipliers

(ADMM) was proposed, that exploits the structure and scales more favorably with the number of nodes

in the tree than structure-ignoring algorithms, and allows for parallel implementation.

IV. POLYNOMIAL CHAOS-BASED MPC

Polynomial chaos-based MPC strategies have been developed for receding-horizon control of stochastic

linear [24], [39] and nonlinear systems [17], [1], [38] subject to probabilistic model uncertainty in

initial conditions and parameters. The term polynomial chaos was introduced by Norbert Wiener in

the seminal paper [47], in which a generalized harmonic analysis was applied to Brownian motion-

like processes. The basic notion of polynomial chaos is to expand finite-variance random variables by

an infinite series of Hermite polynomials, which are functions of a normally distributed input random

variable [11]. The polynomial chaos framework has recently been generalized to non-Gaussian random

variables by establishing the convergence properties of polynomials that are orthogonal with respect to

possibly non-Gaussian input random variables [48]. The orthogonality of polynomials in generalized

polynomial chaos (gPC) enables obtaining sample-free, closed-form expressions for propagation of high-

order moments of states through the system dynamics. Alternatively, polynomial chaos expansions can be

used as a surrogate for the system model for performing Monte Carlo simulations efficiently via algebraic

operations in order to construct the probability distribution of states. This section uses gPC to present a

sample-free formulation for SMPC of stochastic linear systems with probabilistic model uncertainty.

A. System model, constraints, and control input parameterization

Consider a stochastic, linear system described by the prediction model

xt+k+1|t = A(θ )xt+k|t +B(θ )ut+k|t +Dwt+k|t, (13)

where θ ∈Rnθ denotes the unknown system parameters that are modeled as (time-invariant) probabilistic

uncertainties with probability distribution P[θ ]; and the stochastic noise wt+k|t is a zero-mean Gaussian
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process with covariance Σw. The notation in (13) is as in (1). The probability distribution of parameters,

P[θ ], quantifies our subjective belief in the unknown parameters, whereas the parameters are fixed in the

true system.

A joint chance constraint of the form (5) is imposed, where the state constraint g(xt+k|t)≤ 0 takes the

form of a polytope

Pxt+k|t [ C⊤xt+k|t ≤ d ]≥ 1−δ , k = 1, . . . ,N, (14)

with C ∈ Rnx×nc and d ∈ Rnc . The control cost function is defined as

JN(xt,U) = Ext

[

N−1

∑
k=0

||xt+k|t ||2Q + ||ut+k|t ||2R
]

, (15)

where Q and R are symmetric and positive definite weight matrices; and U := [ut|t , . . . ,ut+N−1|t] denotes

the vector of control inputs over the prediction horizon. We choose to parameterize the control inputs

ut+k|t as an affine function of state [20]

ut+k|t = Lkxt+k|t +mk, k = 1, . . . ,N, (16)

where Lk ∈ Rnu×nx and mk ∈ Rnu denote the feedback gains and control actions over the prediction

horizon, respectively. The affine-state feedback parameterization (16) allows to account for the effect of

state feedback over the prediction horizon. The underlying notion of (16) is that the system state will be

known at the future time instants. Thus, the controller will have the state/disturbance information when

designing the future control inputs over the prediction horizon.

Remark 2: It is generally impossible to guarantee satisfaction of the input bounds, i.e., ut(xt) ∈ U,

when the stochastic noise wt is unbounded. To alleviate this shortcoming of (16), a saturation function

can be incorporated into the affine feedback control policy to enable direct handling of hard input bounds

in the presence of unbounded stochastic noise [22].

The key challenges in the above discussed setup for SMPC arise from: (i) propagation of the proba-

bilistic model uncertainty and stochastic noise through the prediction model (13), and (ii) computational

intractability of the joint chance constraint (14). A gPC-based uncertainty propagation method, however,

can be used to obtain closed-form expressions for the mean and covariance of the predicted state as

explicit functions of the control input. A moment-based surrogate is then presented for (14) in terms of

the Mahalanobis distance [30], which is exact when the system state has a multivariate normal distribution.
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B. Generalized polynomial chaos for uncertainty propagation

GPC seeks to approximate a stochastic variable ψ(ξ ) in terms of a finite expansion of orthogonal

polynomial basis functions

ψ(ξ )≈ ψ̂(ξ ) :=
p

∑
i=0

aiφi(ξ ) = a⊤Λ(ξ ), (17)

where a := [a0, . . . ,ap]
⊤ denotes the vector of expansion coefficients; Λ(ξ ) := [φ0(ξ ), . . . ,φp(ξ )]

⊤ denotes

the vector of multivariate polynomial basis functions φi of maximum degree l with respect to the random

variables ξ ∈ R
nξ ; and p+1 =

(nξ+l)!

nξ !l!
denotes the total number of expansion terms. The basis functions

belong to the Askey scheme of polynomials, which includes a set of orthogonal basis functions in the

Hilbert space defined on the support of the random variables. Thus, the basis functions φi must be

chosen in accordance with the probability distribution of the random variables ξ , as established in [48].

The orthogonality of the basis functions implies that 〈φi(ξ ),φ j(ξ )〉= 〈φ 2
i (ξ )〉δi j, where 〈h(ξ ),g(ξ )〉=

∫

Ω h(ξ )g(ξ )P[ξ ]dξ denotes the inner product induced by P[ξ ] and δi j denotes the Kronecker delta

function. Hence, the expansion coefficients ai in (17) can be obtained via

ai =
〈ψ̂(ξ ),φi(ξ )〉
〈φi(ξ ),φi(ξ )〉

,

which can be computed analytically for linear and polynomial systems [19].

For a particular realization of the stochastic system noise w in (13), the polynomial chaos expansions

(PCEs) (17) can be used for efficient propagation of the model uncertainty θ through (13). Propagation

of model uncertainty will yield the probability distribution of state conditioned on the noise realization,

i.e., P[x̂t+k|t |w], which can then be integrated over all possible realizations of w to obtain the complete

probability distribution of the (polynomial chaos-approximated) state

P[x̂t+k|t ] =
∫ ∞

−∞
P[x̂t+k|t |w]P[w]dw. (18)

When the distribution of stochastic noise, P[w], is Gaussian, the moments of the probability distri-

bution P[x̂t+k|t ] in (18) can be readily defined in terms of the coefficients of x̂t+k|t . To this end, we

approximate each predicted state and control input as well as the unknown parameters in the system

matrices A(θ ) and B(θ ) in (13) by PCEs of the form (17). Define x̃i,t+k|t = [ai0,t+k|t , . . . ,aip,t+k|t ]
⊤

and ũi,t+k|t = [bi0,t+k|t , . . . ,bip,t+k|t ]
⊤ to denote the coefficients of PCEs for the ith predicted state and

control input, respectively. The coefficients of PCEs for all states and control inputs can be concatenated

into vectors x̃t+k|t := [x̃⊤
1,t+k|t, . . . , x̃

⊤
nx,t+k|t ]

⊤ ∈ Rnx(p+1) and ũt+k|t := [ũ⊤
1,t+k|t, . . . , ũ

⊤
nu,t+k|t ]

⊤ ∈ Rnu(p+1),

respectively. Using the Galerkin projection [19], the error in a gPC-based approximation of the prediction
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model (13), which arises from truncation in PCEs, can be projected onto the space of the multivariate

basis functions {φi}p
i=0. This allows for expressing the prediction model (13) in terms of the coefficients

of the PCEs for states and control inputs

x̃t+k+1|t = Ax̃t+k|t +Bũt+k|t +Dwt+k|t, (19)

where

A =
p

∑
i=0

Ai ⊗Ψi; B =
p

∑
i=0

Bi ⊗Ψi; D = D⊗ ep+1;

Ψi :=











σ0i0 · · · σ0ip

...
. . .

...

σpi0 · · · σpip











;

Ai and Bi are the projections of A(θ ) and B(θ ) onto the ith basis function φi; σlmn = 〈φl,φm,φn〉/〈φ 2
l 〉;

and ea = [1,0, . . . ,0]⊤ ∈ R
a.

The orthogonality property of the multivariate polynomial basis functions can now be used to efficiently

compute the moments of the conditional probability distribution P[x̂t+k|t |w] in terms of the coefficients

x̃t+k|t . The conditional mean and variance of the ith predicted state are defined by

E[x̂i,t+k|t|w]≈ x̃i0,t+k|t(w) (20a)

E
[

x̂2
i,t+k|t|w

]

≈
p

∑
j=0

x̃2
i j,t+k|t(w)〈φ 2

j 〉. (20b)

Similarly, the state feedback control law (16) is projected as

ũt+k|t = Lt+k|t x̃t+k|t +mt+k|t , (21)

where Lt+k|t = Lt+k|t ⊗ Ip+1 and mt+k|t = mt+k|t ⊗ ep+1. When w is a zero-mean Gaussian white noise

with covariance Σw, x̃t+k|t will be a Gaussian process with mean x̄t+k|t and covariance Γt+k|t as defined

by

x̄t+k+1|t = (A+BLt+k|t)x̄t+k|t +Bmt+k|t (22a)

ΣΣΣt+k+1|t = (A+BLt+k|t)ΣΣΣt+k|t(A+BLt+k|t)
⊤+DΣΣΣwD⊤. (22b)

Note that (x̄t|t ,ΣΣΣt|t) is initialized based on the knowledge of state xt . Using (20)-(22) and the law of iterated

expectation, tractable expressions are derived for describing the mean and variance of each (polynomial
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chaos-approximated) state x̂i,t+k|t

E[x̂i,t+k|t] = E
[

E[x̂i,t+k|t |w]
]

(23)

≈ E[x̃i0,t+k|t(w)] = x̄i0,t+k|t

and

E[x̂2
i,t+k|t] = E

[

E[x̂2
i,t+k|t|w]

]

(24)

≈ E
[

p

∑
j=0

x̃2
i j ,t+k|t(w)〈φ 2

j 〉
]

=
p

∑
j=0

E[x̃2
i j ,t+k|t]〈φ 2

j 〉

=
p

∑
j=0

[

x̄ 2
i j ,t+k|t +ΣΣΣi ji j ,t+k|t

]

〈φ 2
j 〉,

respectively. It is important to note that the moments (23)-(24) can be expressed as explicit functions of the

control inputs, i.e., the decision variables L and m in (22). The sample-free, closed-form expressions (23)-

(24) for the moments of the predicted states are highly advantageous for gradient-based optimization

methods since they avoid possible convergence problems associated with sampling.

C. Moment-based surrogate for joint chance constraint

We look to replace the joint chance constraint (14) with a deterministic surrogate defined in terms

of the mean and covariance of the predicted state xt+k|t . Consider x ∼ N (x̄,Σ) as a nx-dimensional

multivariate Gaussian random vector and let X := {ζ : C⊤ζ ≤ d}. This allows for rewriting the joint

chance constraint (14) as

P(x ∈ X ) =
1

√

(2π)nxdet(Σ)

∫

X

e−
1
2 (ζ−x̄)⊤Σ−1(ζ−x̄)dζ ≥ 1−δ . (25)

To obtain a relaxation for (25), define the ellipsoid Er := {ζ : ζ⊤Σ−1ζ ≤ r2} with radius r. Expression (25)

is guaranteed to hold when

x̄⊕Er ⊂ X =⇒ P(x ∈ X )> P(x ∈ x̄⊕Er) = 1−δ ,

which indicates that the smallest radius of ellipsoid Er must be chosen such that P(x∈ x̄⊕Er) = 1−δ [46].

Equivalently, P(x ∈ x̄⊕Er) = 1−δ can be represented in terms of a chi-squared cumulative distribution

function Fχ2
n

with n degrees of freedom

P(x ∈ x̄⊕Er) = P
(

(x− x̄)⊤Σ−1(x− x̄)≤ r2
)

= Fχ2
n
(r2) =

γ
(

n
2
, r2

2

)

Γ
(

n
2

) , (26)
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where γ is the lower incomplete Gamma function and Γ is the complete Gamma function. This implies

that the radius r can be selected such that Fχ2
n
(r2) = 1− δ in order to guarantee that x̄⊕ Er ⊂ X is

satisfied. For the expression (26) to hold, the ellipsoid Er must lie in the intersection of half-spaces

H j := {ζ : c⊤j ζ ≤ d j}, where c j ∈ Rnx is the jth column of C and d j ∈ R is the jth element of d. We

use the result of the following lemma to derive an expression for guaranteeing the inclusion of Er in the

half-spaces H j, which relies on the Mahalanobis distance dM(x) =
√

(x− x̄)⊤Σ−1(x− x̄) [30].

Lemma 1: The Mahalanobis distance to the hyperplane h⊤x = g is given by dM(x⋆) = (g−h⊤x̄)√
h⊤Σh

, where

x⋆ = x̄+ (g−h⊤x̄)√
h⊤Σh

δx and δx = Σh√
h⊤Σh

.

Lemma 1 indicates that x⋆ is the “worst-case” vector at which the ellipsoid Er with radius dM(x⋆)

intersects the hyperplane, while δx is the direction along which x⋆ lies. Lemma 1 leads to the assertion

that x̄⊕Er ⊂ X is equivalent to

(d j − c⊤j x̄)
√

c⊤j Σc j

≥ r, j = 1, . . . ,nc. (27)

Expression (27) results in an exact moment-based surrogate for the joint chance constraint (14)

c⊤j x̄t+k|t + r

√

c⊤j Σt+k|tc j ≤ d j, j = 1, . . . ,nc, (28)

where x̄t+k|t and Σt+k|t are, respectively, the mean and covariance of the predicted state xt+k|t in (13); and

r must satisfy Fχ2
nc
(r2) = 1−δ . The mean and covariance of the predicted state can be approximated in

terms of the gPC-based moment expressions (23)-(24).

D. Sample-free, moment-based SMPC formulation

We now present a sample-free formulation for SMPC of system (13). Using the gPC-based prediction

model (19) and the input parameterization (21), the control cost function (15) can be (approximately)

rewritten as

JN(xt,L
N,mN) = Ext

[

N−1

∑
k=0

‖x̃t+k|t‖2
Q +‖Lt+k|t x̃t+k|t +mt+k|t‖2

R

]

,

where Q=Q⊗W ; R= R⊗W ; W = diag(〈φ 2
0 〉,〈φ 2

1 〉, . . . ,〈φ 2
p〉); and LN and mN are the vectors of decision

variables over the prediction horizon N. The sample-free SMPC algorithm involves solving the following
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OCP

min
LN,mN

JN(xt ,L
N,mN)

s.t.: x̄t+k+1|t = (A+BLt+k|t)x̄t+k|t +Bmt+k|t, k = 0, . . . ,N −1,

ΣΣΣt+k+1|t = (A+BLt+k|t)ΣΣΣt+k|t(A+BLt+k|t)
⊤+DΣΣΣwD⊤, k = 0, . . . ,N −1,

c⊤j E[x̂t+k|t ]+ r
√

c⊤j
(

E[x̂t+k|t x̂⊤t+k|t ]−E[x̂t+k|t]E[x̂t+k|t ]⊤
)

c j ≤ d j, ∀ j, k = 1, . . . ,N,

Lt+k|t x̃t+k|t +mt+k|t ∈ U, k = 0, . . . ,N −1.

The prediction model in the above OCP describes the evolution of the mean x̄t+k|t and covariance

ΣΣΣt+k|t of the coefficients of the PCEs of the states, x̃t+k|t , over the prediction horizon. The prediction

model is initialized using the knowledge of the true state xt at each sampling time t. The surrogate for

the joint chance constraint is defined in terms of the mean and covariance of the polynomial chaos-

approximated states x̂t+k|t , which are computed in terms of the mean x̄t+k|t and covariance ΣΣΣt+k|t using

the expressions (23)-(24).

E. Extensions

A limitation of gPC is the ability to handle correlated random variables. When the random variables ξ

are correlated, the PCE (17) is not guaranteed to converge. An alternative to gPC, termed arbitrary

polynomial chaos (aPC), that can address this shortcoming has recently been presented [37]. APC

allows for constructing a set of orthogonal polynomial basis in terms of the raw moments of the

uncertainties using a multivariate generalization of the Gram-Schmidt process [35]. APC holds promise

for devising efficient, sample-free algorithms for stochastic optimization and SMPC of systems with

correlated probability uncertainty.

V. STOCHASTIC TUBE MPC

Tube MPC for control of deterministic systems under uncertainty has been developed in [32], [31], [40],

[41], [42]. Stochastic tube MPC approaches have been proposed in [12], [14], [28], [13] and described

in the book [26]. The approach in [28] exploits linear models affected by stochastic disturbances without

assuming that disturbance values are normally distributed. This approach is further discussed in this

Section and illustrated with an example.
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A. System model, disturbance model and constraints

The control design exploits a linear prediction model of the form,

xt+k+1|t = Axt+k|t +But+k|t +Dwt+k|t, (30)

where xt+k|t ∈ Rnx and ut+k|t ∈ Rnu are the predicted state and control sequences k steps ahead starting

from the current time t, and the elements of the disturbance sequence, wt+k|t ∈ Rnw , are assumed to be

zero mean, identically distributed, and independent for different k. Furthermore, these disturbance values

are compactly-supported,

wt+k|t ∈ Π = {w : |wi| ≤ αi, i = 1, · · · ,nw}. (31)

Probabilistic chance constraints are imposed as

P[yt+k|t =Cxt+k|t ≤ ymax]≥ 1− ε , (32)

where, to simplify the exposition, the case of the scalar output, y ∈ R1, is considered.

B. Tube MPC design

The tube MPC controller is formed as a combination of the nominal state feedback and manipulatable

input adjusted by the MPC controller,

ut+k|t = Kxt+k|t +gt+k|t, (33)

where the matrix Φ = (A+BK) is Schur and the sequence gt+k|t , k = 0, · · · ,N − 1, is optimized, with

gk|t = 0 for k ≥ N. The receding horizon implementation involves using the first element of the optimized

sequence, g∗
t|t , leading to a feedback law,

ut = uMPC(xt) = Kxt +g∗t|t, (34)

where xt is the current state at the time instance t and ut is the control input at t.

The linearity of the prediction model permits to decompose the predicted state based on the superpo-

sition principle as

xt+k|t = zt+k|t + et+k|t, (35)

where zt+k|t is the state prediction based on the nominal system,

zt+k+1|t = Φzt+k|t +Bgt+k|t, (36)

and et+k|t is the error induced by the disturbance, given by

et+k+1|t = Φet+k|t +Dwt+k|t. (37)
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Tube MPC approaches generally proceed by steering the state of the nominal system (36) with tightened

constraints to account for the contributions of the error system (37).

The constraint (32) imposed over the prediction horizon can now be re-stated as

C[Φk−1B Φk−2B · · · B 0 · · ·0]Gt +CΦkzt ≤ ymax − γk, k = 1,2, · · · (38)

where

Prob{C[Φk−1D Φk−2D · · · D 0 · · ·0]Wt ≤ γk}= 1− ε , (39)

and

Gt =

















gt|t

gt+1|t
...

gt+N−1|t

















, Wt =

















wt|t

wt+1|t
...

wt+N−1|t

















.

The computation of γk in (39) requires constructing the distribution of

C(Φk−1Dwt|t + · · ·+Dwt+k−1|t),

for t = 0 (since problem characteristics are time-invariant). This can be performed offline by numerical

approximation of the convolution integrals or by random sampling methods. In the random sampling

approach, Nw disturbance sequence scenarios are generated and the smallest number γ̃k is found such that

N∗/Nw ≥ 1−ε , where N∗ is the number of sequences for which C(Φk−1Dwt|t + · · ·+Dwt+k−1|t)≤ γ̃k. As

Nw → ∞, we expect that γ̃k → γk.

In the case of wk|t being independent and identically distributed, the Chebyshev inequality can be used

to replace γk with bounds based on

γk ≤ κ
√

CPkC
T, κ2 =

1− ε

ε
, Pk+1 = ΦPkΦT +DE[wwT]DT , P0 = 0, k = 0,1,2, · · · . (40)

To guarantee recursive feasibility, the constraint (38) is tightened to ensure that a feasible extension

of Gt of the type “shift by 1 and pad by 0” exists at time t +1. This can be assured, as the disturbance

takes values in a compact set, by the following “worst-case” constraints:

C[Φk−1B Φk−2B · · · B 0 · · ·0]Gt +CΦkzt ≤ ymax −βk, k = 1,2, · · · , (41)

βk = max{γk,γk−1 +ak−1,γk−2 +ak−2+ak−1, · · · ,γ1 +a1 + · · · ,ak−1,0}, (42)

ak = max
w∈Π

CΦkDw.

The sequence {βk} is monotonically nondecreasing and upper bounded by a computable upper bound.
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Minimizing the cost function defined by

JN = E

N−1

∑
k=0

[x⊤t+k|tQxt+k|t +u⊤t+k|tRut+k|t]+E[x⊤t+N|tPxt+N|t], (43)

is replaced equivalently by minimizing

J̃N =
N−1

∑
k=0

[z⊤t+k|tQzt+k|t +u⊤t+k|tRut+k|t]+ z⊤t+N|tPzt+N|t,

which is a quadratic function of Gt . Hence the following optimization problem is solved

G
∗
t = argmin

Gt

J̃,

subject to

C[Φk−1B Φk−2B · · · B 0 · · ·0]Gt +CΦkzt ≤ ymax −βk, k = 1,2, · · · ,N,

zN|t ∈ S,

where S is a finitely determined inner approximation of the maximum output admissible set defined by

constraints,

{zN : CΦ jzN ≤ ymax −βN+ j, j = 0,1, · · · }.

The terminal constraint set can be constructed as

S = {zN : CΦ jzN ≤ ymax −βN+ j, j = 1, · · · , N̂,

CΦlzN ≤ ymax − β̄ , l = N̂ +1, · · · , N̂ +n∗},

where n∗ must be sufficiently large, and

β̄ = γ1 +
N̄

∑
j=1

a j

for N̄ sufficiently large.

C. Theoretical guarantees

Theoretical guarantees for the closed-loop behavior under the tube SMPC law are available for the

case when J̃N in (43) is modified to an infinite prediction horizon cost (the control horizon is still N),

J̃N = E

∞

∑
k=0

[x⊤t+k|tQxt+k|t +u⊤t+k|tRut+k|t − lss], (44)

where

lss = lim
k→∞

E(x⊤t+k|tQxt+k|t +u⊤t+k|tRut+k|t),
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is the steady-state value of the stage cost under the control ut+k|t = Kxt+k|t . This value can be computed

as

lss = trace(Θ(Q+K⊤RK)), Θ−ΦΘΦ⊤ = DE[ww⊤]D⊤.

Note that (44) is a quadratic function of Gt (the details of the computations of this function are given

in Chapter 6 of [26]). Then, under suitable assumptions, given feasibility at the time instant t = 0, the

problem remains feasible at all future time instants, and causes the closed loop system to satisfy the

probabilistic constraint (39) and the quadratic stability condition,

lim
t→∞

1

t

t

∑
k=0

E

[

x⊤k Qxk +u⊤k Ruk

]

≤ lss.

D. Mass-spring-damper example

We consider a mass-spring-damper example with the model and constraint given by

mẍ1 + cẋ1+ kx1 = w−u, (45)

y = x1 ≤ ymax, (46)

with m= 1, c= 0.1, k = 7, and ymax = 1. The model is converted to the form (30) by defining x= [x1, x2]
T

and using the sampling period, ∆T = 0.1 sec. The disturbance force samples, wt , are assumed to be

distributed according to the truncated Gaussian distribution, with zero mean, standard deviation of 1
12

and truncation interval [−0.2,0.2].

Two methods to compute γk were considered, one based on random sampling and the other one based

on Chebyshev’s inequality. Over a 1000 simulated trajectories, a constraint violation rate metric was

defined, as the maximum over t of the fraction of trajectories violating the constraints at the instant t.

See Figure 2. The trajectories for ε = 0.2, corresponding to 80% confidence of constraint satisfaction,

are shown in Figure 3.

E. Extensions

The above approach utilizes the so-called polytopic stochastic tubes. Stochastic tubes with ellipsoidal

cross-section to bound ek|t with probability at least 1−ε can also be used. Polytopic tubes can be extended

to handle both additive and multiplicative uncertainties. Typical assumptions involve

(A(q),B(q),w(q))= (A(0),B(0),0)+
m

∑
j=1

(A( j),B( j),w j)q( j)

where q( j) are scalar random variables and qt = [q
(1)
t ,q

(2)
t , · · · ,q(m)

t ]⊤ are independent for different time

instants, identically distributed and have known probability distribution.
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Fig. 2. Expected and estimated rate of constraint violations.
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