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Abstract—To reduce the cost of storing, processing and vi-
sualizing a large-scale point cloud, we propose a randomized
resampling strategy that selects a representative subset of points
while preserving application-dependent features. The strategy is
based on graphs, which can represent underlying surfaces and
lend themselves well to efficient computation. We use a general
feature-extraction operator to represent application-dependent
features and propose a general reconstruction error to evaluate
the quality of resampling; by minimizing the error, we obtain a
general form of optimal resampling distribution. The proposed
resampling distribution is guaranteed to be shift-, rotation- and
scale-invariant in the 3D space. We then specify the feature-
extraction operator to be a graph filter and study specific resam-
pling strategies based on allpass, lowpass, highpass graph filtering
and graph filter banks. We validate the proposed methods on
three applications: large-scale visualization, accurate registration
and robust shape modeling demonstrating the effectiveness and
efficiency of the proposed resampling methods.

Index Terms—3D point clouds, sampling,graph signal process-
ing, graph filtering, contour detection, visualization, registration,
shape modeling

I. INTRODUCTION

With the advent of 3D sensing technologies, one can now
represent objects and surrounding environments by 3D point
clouds—collections of large numbers of 3D points on an
object’s surface measured by a sensing device. These 3D
point clouds have become popular representation tools in
applications such as virtual reality, mobile mapping, scanning
of historical artifacts, 3D printing and digital elevation mod-
eling [2], among others.

A 3D point cloud is described by its 3D coordinates as well
as attributes such as color, temperature and texture. Based on
the storage order and spatial connectivity among 3D points,
we distinguish between two types of point clouds: organized,
such as those collected by a camera-like 3D sensors or 3D
laser scanners and arranged on a grid, and unorganized, such
as those that, due to their complex structure, are scanned from
multiple view points and are subsequently merged leading to
the loss of ordering of indices. Organized point clouds are eas-
ier to process as the underlying grids produce a natural spatial
connectivity and reflect the sensing order. For generality, we
here consider unorganized point clouds.

3D point cloud processing has become an important com-
ponent in many 3D imaging and vision systems. It broadly
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includes compression [3], [4], [5], [6], [7], visualization [8],
[9], surface reconstruction [10], [11], rendering [12], [13],
editing [14], [15] and feature extraction [16], [17], [18], [19],
[20]. A particular challenge is how to handle a large number of
incoming 3D points [21], [22]; for example, real-time sensing
systems generate millions of data points per second while
in digital documentation of historical buildings and terrain
visualization, we need to store billions of 3D points, making
storage and subsequent processing challenging.

(a) Uniform resampling. (b) Contour-enhanced resampling.

Fig. 1: Proposed resampling framework enhances important
information based on user’s preferences, for example, enhanc-
ing contours of a 3D point cloud. Plots (a) and (b) show clouds
with 2% resampled out of 381,903 total points from a 3D point
cloud of a building using two different strategies. Because of
contour enhancement, Plot (b) is more visually pleasing and
caries more information than Plot (a).

An approach to solving the problem is to consider efficient
data structures to represent 3D point clouds. For example, [23],
[24] partition the 3D space into voxels and then discretize
point clouds over those voxels; to achieve fine resolution,
however, a dense grid is required causing storage challenges.
[25], [26] use an octree representation of point clouds, which
is space efficient but suffers from discretization errors, while
[27], [28] propose a probabilistic generative model to model
the distribution of point clouds; such parametric models may
not capture the true surface, however, and may be inefficient
in terms of inferring model parameters [29], [30].

Another approach is to consider reducing the number of
points through mesh simplification by constructing a triangular
or polygonal mesh where nodes are 3D points (not necessarily
input points) and edges are connectivities between those points
respecting certain restrictions (belonging to a manifold, for ex-
ampe) [31], [32], [33]. The mesh is then simplified by reducing
the number of nodes or edges; for example, several nodes
may be merged into one with local structure preserved. Mesh
construction requires costly computation, however, and mesh
simplification displaces original points, causing distortion.

We here resample 3D point clouds, keeping a subset of
points from the original object and reducing the number of
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3D points without changing the locations of the original ones
in the process. We then design application-dependent resam-
pling strategies to preserve application-crucial information. For
example, conventional contour detection in 3D point clouds
requires careful and costly computation to obtain surface
normals and classification models [34], [28]. Instead, we
efficiently resample a small subset of points that carries the re-
quired contour information, making the subsequent processing
cheaper without losing accuracy; see Figure 1 for an example.
Note that after resampling, we unavoidably lose information
from the original 3D point cloud.

The proposed method is rooted in graph signal processing,
a framework to explore the interaction between signals and
graph structure [35], [36]. We use a graph to capture local
dependencies among points, representing a discrete version
of the surface of an original object. The advantage of using
a graph is that one is able to capture both local and global
structure of point clouds. Each of the 3D coordinates and
other attributes associated with 3D points constitute a graph
signal indexed by the nodes of the underlying graph. We thus
formulate a resampling problem as graph signal sampling. As
graph sampling methods usually select samples in a deter-
ministic fashion necessitating solving nonconvex optimization
problems to obtain samples sequentially and requiring costly
computation [37], [38], [39], [40], we aim to reduce compu-
tational complexity. We thus propose an efficient randomized
resampling strategy to select a subset of points; we choose
subsamples according to a nonuniform resampling distribution,
which provably preserves application-dependent information
in the original 3D point cloud and is computational efficient
(since the computational complexity scales linearly with the
number of input 3D points).
• We start by proposing a feature-extraction based resam-

pling framework. We use a general feature-extraction opera-
tor to represent application-dependent information, based on
which we quantify the quality of resampling by using a simple,
yet general reconstruction error, where we can derive the
mean-squared error (MSE). We obtain the resampling distri-
bution by optimizing that MSE; this distribution is guaranteed
to be shift-/rotation-/scale-invariant.
• Next, we specify the feature-extraction operator to be

a graph filter and study optimal resampling distributions
based on allpass, lowpass and highpass graph filtering. In
each case, we derive an optimal resampling distribution and
validate the performance on both simulated and real data.
The total computational cost to obtain the optimal resampling
distribution scales linearly with the number of 3D points. We
further combine all the proposed techniques into an efficient
surface reconstruction system based on graph filter banks,
which enables us to enhance features in a 3D point cloud.
• Finally, we validate these methods on three applications:

(1) For large-scale visualization, we use the highpass graph
filtering based resampling strategy to highlight the contours
of buildings and streets in an urban scene, which avoids
saturation problems in visualization. (2) For accurate regis-
tration, we use the highpass graph filtering based resampling
strategy to extract the key points of a sofa, which makes
the registration precise. (3) For robust shape modeling, we

use the lowpass graph filtering based resampling strategy to
reconstruct a surface, which makes the reconstruction robust
to noise. The performances in these three applications validate
the effectiveness and efficiency of the proposed resampling
methods.

Contributions. In many large-scale 3D point cloud process-
ing tasks including commercial software packages, resampling
point clouds uniformly is widely used as a preprocessing step;
despite this, this step is often approached heuristically. We
instead consider 3D point cloud resampling from a novel
theoretical perspective. For example, Theorem 4 shows that
uniform resampling is a suboptimal resampling distribution
when all 3D points are associated with the same feature value.

The main contributions of the paper are thus:
• Section III: We propose a novel framework for 3D

point cloud resampling. We obtain the exact MSE and
optimal resampling distribution for invariant features
(Theorems 1, 2) and an upper bound on the MSE and
corresponding resampling distribution for variant features
(Theorems 3, 4).

• Section IV: We propose a novel feature-extraction oper-
ator for 3D point clouds based on graph filtering. We
use Haar-like low/highpass graph filters, which is both
effective and efficient (scales linearly with the number of
3D points).

• Section V: We validate the proposed resampling strate-
gies on both simulated data and real point clouds, in-
cluding accurate registration, large-scale visualization and
robust shape modeling.

We discuss a number of possible future directions in Sec-
tion VI, such as efficient 3D point cloud compression system
based on graph filter banks, surface reconstruction based on
arbitrary graphs and robust metric to evaluate the visualization
quality of a 3D point cloud.

II. PROBLEM FORMULATION AND BACKGROUND

We now cover the background material necessary for the
rest of the paper. We start by formulating the task of resam-
pling a 3D point cloud. We then introduce graph signal pro-
cessing, which lays the foundation for our proposed methods.
A. Resampling a Point Cloud

Consider a matrix representation of a point cloud with N
points and K attributes,

X =
[
s1 s2 . . . sK

]
=


xT1
xT2
...

xTN

 ∈ RN×K , (1)

where si ∈ RN denotes the ith attribute and xj ∈ RK denotes
the jth point; depending on the sensing device, attributes can
be 3D coordinates, RGB colors, textures, and many others.
To distinguish 3D coordinates from other attributes, we store
them in the first three columns of X and call that submatrix
Xc ∈ RN×3 while storing the rest of the attributes in the last
K−3 columns of X and call that submatrix Xo ∈ RN×(K−3).

Our task is resampling the original 3D point cloud while pe-
serving application-crucial information by selecting M (M <
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N) original points (M rows from the point cloud matrix X).
Let the resampled point cloud be XM = Ψ X ∈ RM×K ,
where M = (M1, . . . ,MM ) denotes the sequence of resam-
pled indices, called resampled set, Mi ∈ {1, . . . , N} with
|M| = M and the resampling operator Ψ is a linear mapping
from RN to RM , defined as

Ψi,j =

{
1, j =Mi;
0, otherwise. (2)

As the efficiency of the proposed resampling strategy is
critical, we consider a randomized resampling strategy by
choosing resampled indices from a resampling distribution. Let
π ∈ RN be a resampling distribution, where πi denotes the
probability of selecting the ith sample in each random trial.
Our goal is to find a resampling distribution that preserves
information in the original point cloud.

The invariance properties of the proposed resampling strat-
egy are also critical. When we shift, rotate or scale a point
cloud, the intrinsic distribution of 3D points does not change
and neither should the proposed resampling strategy.

Definition 1. A resampling strategy is called shift-invariant
when, for any shift vector a ∈ R3, input 3D point cloud X =[
Xc Xo

]
and corresponding resampling distribution π ∈ RN ,

the corresponding resampling distribution to
[
Xc +1aT Xo

]
is π.

Definition 2. A resampling strategy is called rotation-
invariant when, for any rotation matrix R ∈ R3×3, input 3D
point cloud X =

[
Xc Xo

]
and corresponding resampling dis-

tribution π ∈ RN , the corresponding resampling distribution
to
[
Xc R Xo

]
is π.

Definition 3. A resampling strategy is called scale-invariant
when, for any scaling factor c ∈ R, input 3D point cloud X =[
Xc Xo

]
and corresponding resampling distribution π ∈ RN ,

the corresponding resampling distribution to
[
cXc Xo

]
is π.

Our aim is to guarantee that the proposed resampling
strategy is shift-, rotation- and scale-invariant.

B. Graph Signal Processing for Point Clouds

A graph is a natural and efficient way of representing
a 3D point cloud as a discretized version of an original
surface. In computer graphics, a class of graphs with par-
ticular connectivity restrictions called polygon meshes are
extensively used to represent the shape of an object [41]; mesh
construction usually requires sophisticated geometry analysis,
however, such as calculating surface normals, and the mesh
representation may not be suitable for point clouds because
of connectivity restrictions. We here extend the ideas behind
polygon meshes to general graphs by relaxing those con-
nectivity restrictions, gaining flexibility to capture geometry
information and simplifying construction in the process.

Graph signal processing (GSP) is a theoretical framework
that extends classical signal processing concepts to the anal-
ysis of high-dimensional data with complex, irregular struc-
ture [36], [42]. In particular, GSP models such data by graphs
and graph signals and generalizes the concepts and tools, such
as filtering and Fourier transform, from classical discrete signal

processing to graph signal processing. In our work, we model
all pairwise proximities between 3D points as a graph and each
of 3D coordinates and attributes as a graph signal, allowing
us to leverage tools from graph signal processing to deal with
3D point clouds.

Graph Construction. The graph consists of a set of N
nodes, our input 3D points, and a set of edges among them
that we construct by encoding the local geometry information
through an adjacency matrix W ∈ RN×N . Let x(c)

i ∈ R3 be
the 3D coordinates of the ith point (the ith row of Xc). We
assign the edge weight between two points x

(c)
i and x

(c)
j as

Wi,j =

 e−
‖x(c)
i
−x

(c)
j ‖

2

2
σ2 ,

∥∥∥x(c)
i − x

(c)
j

∥∥∥
2
≤ τ ;

0, otherwise,
(3)

where variance σ and threshold τ are parameters. Equation (3)
shows that when the Euclidean distance of two points is
smaller than a threshold τ , we connect these two points by an
edge with the edge weight depending on the distance between
the two points in the 3D space (the closer they are, the higher
the weight). The threshold τ controls the sparsity of the graph.
When τ is small, only a few connections exist, which may
not carry enough geometric information; when τ is large, a
large number of connections esist, which may not capture local
geometric information and makes it hard to process the entire
graph. Since the intrinsic resolution of a point cloud can be
either given as per the spacing of a 3D sensor or estimated
directly from the point cloud, we choose τ as three times that
intrinsic resolution. The advantage of this construction is that
we need to compute the weights only when points are within
a certain range. This can be efficiently implemented by using
Octree [25], [43], [26], an efficient, hierarchical data structure
to represent 3D point clouds. While we here only use the 3D
coordinates to construct a graph, one could also take other
attributes into account.

Given this graph, the attributes of point clouds si (the
columns of X) are called graph signals.

Graph Filtering. A graph filter is a system that takes a
graph signal as an input and produces another graph signal as
an output. Let A ∈ RN×N be a graph shift operator, which
is the most elementary nontrivial graph filter. Some common
choices for a graph shift operator include the adjacency matrix
W from (3), the transition matrix D−1 W (D is the weighted
degree matrix, a diagonal matrix with Di,i =

∑
j Wi,j

reflecting the density around the ith point), the graph Laplacian
matrix D−W, and many other structure-related matrices.
The graph shift replaces the signal value at a node with a
weighted linear combination of values at its neighbors; that is,
y = A s ∈ RN , where s ∈ RN is an input graph signal (an
attribute of a point cloud). Every linear, shift-invariant graph
filter is a polynomial in the graph shift [35],

h(A) =

L−1∑
`=0

h` A` = h0 I +h1 A + . . .+ hL−1 AL−1, (4)

where h`, ` = 0, 1, . . . , L − 1 are filter coefficients and L
is the graph filter length. Its output is given by the matrix-
vector product y = h(A)s. For more details on graph filtering,
see [44], [45].
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Graph Fourier Transform. The eigendecomposition of a
graph shift operator A is [46]

A = V Λ V−1, (5)

where the eigenvectors of A form the columns of matrix
V, and the eigenvalue matrix Λ ∈ RN×N is the diagonal
matrix of corresponding eigenvalues λ1, . . . , λN of A. These
eigenvalues are called frequencies on the graph [46]. By con-
vention, for A = W or D−1 W, the eigenvalues are arranged
in descending order; for A = D−W, the eigenvalues are
arranged in ascending order. In either case, we here ensure that
λ1 is the lowest frequency and λN is the highest frequency. In
other words, v1 captures the smallest variations in the graph
and vN captures the highest variations in the graph.

In the above, V is called graph Fourier basis and the graph
Fourier transform of a graph signal s ∈ RN is defined as

ŝ = V−1 s. (6)

The inverse graph Fourier transform is s = V ŝ =∑N
k=1 ŝkvk, where vk is the kth column of V and ŝk is the

kth component in ŝ. The vector ŝ in (6) represents the signal’s
expansion in the eigenvector basis and describes the frequency
components of the graph signal s. The inverse graph Fourier
transform reconstructs the graph signal by combining graph
frequency components. For more details on the graph Fourier
transform, see [47], [48], [49].

Graph-based Sampling. The interest in sampling of graph
signals has increased in the last few years. Sampling theory for
graph signals in [50], [51], [37], [52] showed perfect recovery
for bandlimited graph signals based on a few subsamples; the
sampling and recovery framework in [53] is based on local-
set-based sampling; [54] proposed local-aggregated sampling;
[55] proposed percolation from selected seeding nodes; [56]
studied greedy sampling of bandlimited graph signals; [57]
explored the connection between sampling and sketching to
handle streaming data. These sampling methods select samples
in a greedy fashion and thus, the complexity does not scale
linearly with the number of nodes making it impractical for
handling large-scale graphs. [58], [59] proposed randomized
sampling strategies for approximately bandlimited graph sig-
nals; [60] considered fast spectral clustering based on random
sampling of bandlimited graph signals; [61] showed that active
sampling does not asymptotically outperform experimentally
designed sampling; however, all these results are rooted in the
assumption that graph signals are smooth.

Instead, here we intend to sample 3D points according to
the salient features, which are not necessarily smooth over the
constructed graph. Further, in terms of geometric properties
of 3D point clouds, we want to ensure that the proposed
resampling strategy is shift-/rotation-/scale-invariant.

III. RESAMPLING BASED ON FEATURE EXTRACTION

During resampling, the loss of information is unavoidable;
our goal is thus to design an application-dependent resampling
strategy that preserves application-crucial information. For
example, to efficiently detect the contour in a large-scale 3D
point cloud, we want to reduce the number of points while

preserving the contour information. We thus select more points
along the contour and fewer points outside of the contour; see
Figure 1. We consider such application-dependent information
as features and call this process feature-based resampling.
To preserve as many features as possible, we formulate an
optimization problem for designing a resampling operator.
To adapt to the geometric nature of 3D point clouds, we
also guarantee that the proposed resampling strategy is shift-
/rotation-/scale-invariant no matter which features are given.

Let f(X) ∈ RN×K be a feature-extraction operator that
extracts application-crucial information from a point cloud1

X ∈ RN×K . Depending on the application, those features
can be edges, key points and flatness [17], [18], [19], [62],
[20]. In this section, we consider feature-extraction operators
in an abstract level and use graph filters to implement specific
feature-extraction operation the next section.

We consider both invariant and variant features.

Definition 4. A feature-extraction operator f(·) is called shift-
invariant when, for any shift vector a ∈ R3, input 3D
point cloud X =

[
Xc Xo

]
and corresponding feature

f(
[
Xc Xo

]
), the corresponding feature to

[
Xc +1aT Xo

]
is f(

[
Xc Xo

]
)

Definition 5. A feature-extraction operator f(·) is
called rotation-invariant when, for any 3D rotation matrix
R ∈ R3×3, input 3D point cloud X =

[
Xc Xo

]
and

corresponding feature f(
[
Xc Xo

]
), the corresponding

feature to
[
Xc R Xo

]
is f(

[
Xc Xo

]
)

Definition 6. A feature-extraction operator f(·) is
called scale-invariant when, for any scaling factor c ∈ R, input
3D point cloud X =

[
Xc Xo

]
and corresponding feature

f(
[
Xc Xo

]
), the corresponding feature to

[
cXc Xo

]
is

f(
[
Xc Xo

]
)

In what follows, we discuss resampling strategies based on
each type of features.

A. Resampling Based on Invariant Features

To evaluate the performance of a resampling operator, we
quantify how many features are lost during resampling; that is,
we sample features, interpolate to get back the original features
and compute the recovery error. The features are considered
to reflect the targeted information contained in each 3D point.

We resample a point cloud M times. At the jth step, we
independently choose a point Mj = i with probability πi.
Let Ψ ∈ RM×N be the resampling operator from (2) and S ∈
RN×N be a diagonal rescaling matrix with Si,i = 1/(Mπi).
We quantify the performance of a resampling operator through

Df(X)(Ψ) =
∥∥S ΨTΨf(X)− f(X)

∥∥2

F
, (7)

where ‖·‖F is the Frobenius norm. ΨTΨ ∈ RN×N is a zero-
padding operator, a diagonal matrix with diagonal elements
(ΨTΨ)i,i > 0 when the ith point is sampled and 0, otherwise,
which ensures that the resampled and the original point clouds
are of the same size. S is used to compensate for nonuniform

1While for simplicity, we consider the number of features to be the same
as the number of attributes, this is not a limitation of the method.
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weights during resampling. S ΨT is the naive interpolation
operator that reconstructs the original feature f(X) from its
resampled version Ψf(X) and S ΨTΨf(X) represents the
preserved features after resampling in a zero-padded form. We
consider the interpolation operator S ΨT for two reasons. (1)
The formulation is simple and leads to a closed-form solution
that will be shown in Theorems 2 and 4. (2) To ensure the
robustness of the resampling operator, we want to minimize
the worst-case interpolation error; this interpolation operator
provides a reasonable upper bound on the interpolation error.

Note that in practice, practical interpolation operators may
consider reconstructing the underlying surface, instead of orig-
inal 3D points (that may not be known exactly). Because 3D
points may not live on a grid, it would be hard to interpolate
all points from the resampled ones without knowing the graph;
however, storing the graph could be even more expensive than
storing all 3D points. This is why, in practice, we prefer to
reconstruct the underlying surface from resampled points and
compare it with the surface reconstructed by using all 3D
points. We leave this surface setting to future work.

Lemma 1 shows that S aids in providing an unbiased
estimator; the proof is given in Appendix A.

Lemma 1. Let f(X) ∈ RN×K be features extracted from a
point cloud X. Then,

EΨ∼π
(
ΨTΨf(X)

)
∝ π � f(X),

EΨ∼π
(
S ΨTΨf(X)

)
= f(X),

with EΨ∼π the expectation over samples, which are generated
from a distribution π independently and randomly and � row-
wise multiplication.

The evaluation metric Df(X)(Ψ) measures the interpolation
error, that is, how much feature information is lost during
resampling, while EΨ∼π

(
Df(X)(Ψ)

)
is the expected error

caused by resampling and quantifies the performance of a
resampling distribution π.

Here f(·) is shift-/rotation-/scale-invariant, (7) does not
change through shifting, rotation or scaling, leading to a
shift-/rotation-/scale-invariant resampling strategy. Our goal
is thus to minimize the MSE of the objective function (7),
EΨ∼π

(
Df(X)(Ψ)

)
over π to obtain an optimal resampling

distribution.
We now derive that MSE; the proof is given in Appendix B.

Theorem 1. Let f(·) be a rotation-invariant feature-extraction
operator. The MSE of the objective function (7) is

EΨ∼πDf(X)(Ψ) = Tr
(
f(X) Q f(X)T

)
, (8)

where Q ∈ RN×N is a diagonal matrix with the ith element
Qi,i = (1− π)/(Mπ).

We now derive the optimal resampling distributions by
minimizing the MSE in (8); the proof is given in Appendix D.

Theorem 2. Let f(·) be a rotation-invariant feature-extraction
operator. The resampling distribution π∗ minimizing (8) is,

π∗i ∝ ‖fi(X)‖2 , (9)

where fi(X) ∈ RK is the ith row of f(X).

The optimal resampling distribution is proportional to the
magnitude of the features; that is, points with higher magni-
tudes have higher probability to be selected, while points with
smaller magnitudes have smaller probability to be selected.
The intuition is that the response after appying the feature-
exaction operator reflects the information contained in each
3D point and determines the resampling probability for each.

B. Resampling Based on Variant Features

When f(·) is shift-/rotation-/scale-variant, (7) may change
through shifting, rotation or scaling, leading to a shift-
/rotation-/scale-variant resampling strategy.

Before processing, we first recenter the point cloud to the
origin to handle shift variance; that is, we normalize the
mean of the 3D coordinates to zeros. We then normalize the
magnitude of the 3D coordinates to handle scale variance; that
is, we normalize the spectral norm ‖Xc‖2 = c with constant
c > 0. From now, we will perform this normalization to
guarantee the shift/scale invariance of any 3D point cloud. The
choice of c depends on users’ preference and we will show that
c is a trade-off between 3D coordinates and the values of other
attributes. Note that those normalization procedures may not
perfectly remove the influence of shift and scale-variance due
to noise; we thus still prefer to work with invariant features.

To handle rotation variance, a straightforward approach is
to align principal directions of point clouds; this procedure
cannot, however, handle ball-shaped point clouda. We here
consider a rotation-invariant evaluation metric,

Df (Ψ) = max
X′c:‖X′c‖2=c

Df([X′c Xo]) (Ψ) (10)

= max
X′c:‖X′c‖2=c

∥∥(S ΨTΨ− I
)
f
([

X′c Xo

])∥∥2

F
,

where constant c = ‖Xc‖2 is the normalized spectral norm of
3D coordinates.

Unlike the evaluation metric Df(X)(Ψ) from (7), the one
Df (Ψ) from (10) removes the influence of rotation by con-
sidering the worst possible reconstruction error caused by
rotation. In (10), we consider 3D coordinates as variables due
to rotation. We constrain their spectral norm because it does
not change during rotation (a rotation matrix is orthonormal).
We then minimize EΨ∼π (Df (Ψ)) to obtain a resampling
strategy that is rotation-invariant even when f(·) is not.

For simplicity, we show the derivation for linear feature-
extraction operators only, those of the form of f(X) = F X,
where X is a 3D point cloud and F ∈ RN×N is a feature-
extraction matrix; the proof is given in Appendix C.

Theorem 3. Let f(X) = F X be a linear, rotation-variant
feature-extraction operator, with F ∈ RN×N . The MSE of the
objective function (10) is

EΨ∼π (Df (Ψ))

= c2EΨ∼π

(
3∑
k=1

σ2
k

((
S ΨTΨ− I

)
F
))

+Tr
(
F Xo Q(F Xo)T

)
(11)

≤ c2Tr
(
F Q FT

)
+ Tr

(
F Xo Q(F Xo)T

)
, (12)



6

where σk
((

S ΨTΨ− I
)

F
)

is the kth singular value of(
S ΨTΨ− I

)
F in a descending order and Q ∈ RN×N is a

diagonal matrix with the ith element Qi,i = (1− π)/(Mπ).

Given a rotation-variant linear feature-extraction operator, it
is computational expensive to minimize the exact form (11);
instead, we minimize its upper bound (12); the proof is given
in Appendix E.

Theorem 4. Let f(X) = F X be a linear, rotation-variant
feature-extraction operator, with F ∈ RN×N . The resampling
strategy π∗ minimizing (12) is,

π∗i ∝
√
c2 ‖Fi‖22 + ‖(F Xo)i‖

2
2
, (13)

where constant c = ‖Xc‖2, Fi is the ith row of F and (F Xo)i
is the ith row of F Xo.

We see that the proposed resampling distribution is also pro-
portional to the magnitude of features. The tuning parameter
c in (13) is the normalized spectral norm used to remove the
scale variance. The choice of c trades off the contribution from
3D coordinates from the other attributes.

Theorems 2 and 4 show that regardless of whether the
feature-extraction operator is rotation-invariant or not, the pro-
posed resampling operator is designed to be rotation-invariant.

C. Computational Complexity

To obtain the rotation-invariant feature-based resampling
strategy (9), we compute the row norms of f(X); thus, the
computational complexity is O(NK), which scales linearly
with the number of 3D points. To obtain the rotation-variant
feature-based resampling strategy (13), we compute the row
norms of F and F Xo; thus, the computational complexity
is O (‖vec (F)‖0 +N)K), with ‖vec (F)‖0 the number of
nonzero elements in F. In Section IV, we show that the
proposed feature-extraction matrix F is sparse, ensuring that
the computational complexity still scales linearly with the
number of 3D points.

IV. RESAMPLING BASED ON GRAPH FILTERING

The previous section studied resampling based on an ar-
bitrary feature-extraction operator. In this section, we extract
features from a point cloud by using specific graph filters (4),
sparse matrices that ensure low computational complexity.

Let features extracted from a point cloud X be

f(X) = h(A) X =

L−1∑
`=0

h` A` X .

A graph filter is a linear operator; thus, the corresponding
resampling distribution follows from Theorems 2 and 4 by
setting F =

∑L−1
`=0 h` A`. All graph filtering-based feature-

extraction operators are scale-variant due to linearity, and thus,
as discussed earlier, we normalize the spectral norm of the
3D coordinates. We will see that by carefully choosing the
graph shift A and filter coefficients his, a graph filtering-based
feature-extraction operator may be shift or rotation invariant.

Similarly to filter design in classical signal processing, we
design a graph filter either in the graph vertex domain or in

the graph spectral domain. In the graph vertex domain, for
each point, a graph filter outputs a linear combination of the
attributes of its neighboring points. For example, the output
of the ith point, fi(X) =

∑L−1
`=0 h`

(
A` X

)
i

is a weighted
average of the attributes of points that are within L hops
away from the ith point. The `th graph filter coefficient, h`,
quantifies the contribution from the `th-hop neighbors. We
design the filter coefficients to change the weights in local
averaging.

In the graph spectral domain, we first design a desired
spectral distribution and then use graph filter coefficients to
fit this distribution. For example, an L-length graph filter is

h(A) = V h(Λ) V−1

= V


∑L−1
`=0 h`λ

`
1 · · · 0

...
...

. . .
...

0 · · ·
∑L−1
`=0 h`λ

`
N

V−1,

where V is the graph Fourier basis and λi are graph frequen-
cies (5). When we want the response of the ith graph frequency
to be ci, we set

h(λi) =

L−1∑
`=0

h`λ
`
i = ci,

and solve a set of linear equations to obtain the graph filter
coefficients h`. It is also possible to use the Chebyshev
polynomial to design graph filter coefficients [63]. We now
consider some special cases of graph filters.

A. Allpass Graph Filtering

Let h(λi) = 1 for all i; that is, h(A) = I is an identity
matrix with h0 = 1 and hi = 0 for i = 1, . . . , L − 1. This
is the setting where the original point cloud is trustworthy
and all points are uniformly sampled from an object without
noise, reflecting the true geometric structure of the object. We
want to preserve all the information and thus, the features
are the original attributes themselves. Since f(X) = X, the
feature-extraction operator f(·) is rotation-variant. Based on
Theorem 4, the corresponding resampling strategy is

π∗i ∝
√
c2 + ‖(Xo)i‖

2
2
. (14)

Here the feature-extraction matrix F in (9) is an identity matrix
and the norm of each row of F is 1. When we only preserve
3D coordinates and ignore other attributes, Xo, we obtain a
constant resampling probability for each point, meaning that
uniform resampling is the resampling strategy that preserves
the overall geometry information. We compute the row norms
of Xo to obtain the optimal resampling strategy in (14);
thus, the computational complexity is O(NK), which scales
linearly with the number of 3D points.

B. Highpass Graph Filtering

In image processing, a highpass filter is used to extract edges
and contours; similarly, we here use a highpass graph filter to
extract contours in a point cloud. We only consider the 3D
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coordinates as attributes (X = Xc = RN×3), but the proposed
method can be easily extended to other attributes as well.

A critical question is how to define a contour in a 3D point
cloud; some authors propose sophisticated geometry-related
computations, such as surface normals, to detect contours [34].
We instead use the response of highpass graph filtering to
measure local variation on graphs to detect contour points;
that local variation at the ith point is

fi(X) = ‖(h(A) X)i‖
2
2
, (15)

where h(A) is a highpass graph filter. The local variation
f(X) ∈ RN quantifies the energy of the response after
highpass graph filtering; when the local variation at a point
is high, its 3D coordinates cannot be well approximated from
those of its neighboring points, and the point is thus likely to
be a contour point.

The following theorem characterizes the invariance of the
local variation; the proof is given in Appendix F.

Theorem 5. Let f(X) = diag
(
h(A) X XT h(A)T

)
∈ RN ,

where diag(·) extracts the diagonal elements. f(X) is rotation
invariant and shift invariant unless h(A)1 = 0 ∈ RN .

To guarantee shift invariance of local variation without
recentering the cloud, we can use a transition matrix as a graph
shift operator; that is, A = D−1 W, where D is the diagonal
degree matrix. This is because 1 ∈ RN is the eigenvector of
a transition matrix, A1 = D−1 W 1 = 1. Thus,

h(A)1 =

N−1∑
`=0

h` A` 1 =

N−1∑
`=0

h`1 = 0,

when
∑N−1
`=0 h` = 0; an example is a Haar-like highpass filter

hHH(A) = I−A (16)

= V


1− λ1 0 · · · 0

0 1− λ2 · · · 0
...

...
. . .

...
0 0 · · · 1− λN

V−1 .

Note that λmax = maxi |λi| = 1, where λi are eigenvalues of
A, because the graph shift operator is a transition matrix. Then,
h0 = 1, h1 = −1 and hi = 0 for all i > 1, and

∑N−1
`=0 h` =

0. Thus, a Haar-like highpass graph filter is both shift- and
rotation-invariant. The graph frequency response of the filter
is hHH(λi) = 1 − λi. Since the eigenvalues are arranged in
descending order, 1−λi ≤ 1−λi+1, meaning low frequencies
are attenuated and high frequencies are amplified.

(a) Lines. (b) Circle.

Fig. 2: Red line shows the local variation.

In the graph vertex domain, the response of the ith point is

(hHH(A) X)i = xi −
∑
j∈Ni

Ai,j xj .

Because A is a transition matrix,
∑
j∈Ni Ai,j = 1 and hHH(A)

compares the difference between a point and the convex
combination of its neighbors. The geometric interpretation of
the proposed local variation is the Euclidean distance between
the original point and the convex combination of its neighbors,
reflecting how much information we can glean about a point
from its neighbors. When the local variation at a point is
large, the Euclidean distance between this point and the convex
combination of its neighbors is large and the point provides a
large amount of variation.

We validate the proposed local variation on simple exam-
ples.

Example 1. When a point cloud forms a line in 3D, the two
endpoints belong to the contour.

Example 2. When a point cloud forms a polygon/polyhedron
in 3D, the vertices (corner points) and the edges (line segment
connecting two adjacent vertices) belong to the contour.

Example 3. When a point cloud forms a circle/sphere in 3D,
there is no contour.

When the points are uniformly spread along the defined
shape, the proposed local variation (15) satisfies Examples 1, 2
and 3 from the geometric perspective. In Figure 2(a), Point 2
is the convex combination of Points 1 and 3, and the local
variation of Point 2 is thus zero. However, Point 4 is not the
convex combination of Points 3 and 5 and the length of the red
line indicates the local variation of Point 4. Only Points 1, 4
and 7 have nonzero local variation, as expected. In Figure 2(b),
all the nodes are evenly spread on a circle and have the same
amount of variation, which is represented as a red line. Similar
arguments show that the proposed local variation (15) satisfies
Examples 1, 2 and 3.

The feature-extraction operator f(X) = ‖hHH(A) X‖2F is
shift and rotation-invariant. Based on Theorem 2, the optimal
resampling distribution is

π∗i ∝
∥∥∥∥ (hHH(A) X)i

∥∥∥∥2

2

=

∥∥∥∥∥∥xi −
∑
j∈Ni

Ai,j xj

∥∥∥∥∥∥
2

2

,(17)

where A = D−1 W is a transition matrix. We also recognize
that hHH(A) = I−D−1 W is the random-walk graph Lapla-
cian matrix [64].

Note that the standard graph Laplacian matrix is commonly
used to measure variation. Let L = D−W ∈ RN×N be a
graph Laplacian matrix [64]. The graph Laplacian based total
variation is

Tr
(
XT L X

)
=
∑
i

∑
j∈Ni

Wi,j ‖xi − xj‖22 , (18)

where Ni denotes the neighbors of the ith node and the
variation contributed by the ith point is

fi(X) =
∑
j∈Ni

Wi,j ‖xi − xj‖22 . (19)
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Fig. 3: The pairwise difference based local variation cannot
capture the contour points connecting the two faces.

The variation here is defined based on the accumulation of
pairwise differences. We call (19) pairwise difference based
local variation; it cannot, however, capture geometry change,
for example, it violates Example 2. Figure 3 shows another
example. The points are uniformly spread along the faces of
a cube with each point connecting to its adjacent four points
with the same edge weight. The pairwise difference based local
variations of all points are the same, implying the absence of a
contour; clearly, however, this is not the case (see, for example,
the point to which the black arrow points in the figure).

Computational Complexity. To obtain the resampling
strategy in (17), we compute the row norms of hHH(A) X;
the total computational complexity is thus O(K ‖A‖0), where
‖A‖0 is the number of nonzero elements in the graph shift
A. Because we construct a sparse graph in (3), ‖A‖0 scales
linearly with the number of 3D points. Note that the proposed
Haar-based highpass graph filter simply considers the first-hop
neighbors with a low computational complexity; higher-order
highpass graph filters could also be used at the expense of
higher computational complexity.

Experimental Validation. Figure 4 compares the Haar-like
highpass graph filtering based local variation (15) (second
column) with that computed from the difference of normals
(DoN) method (first column) [65], which is used to analyze
point clouds for segmentation and contour detection. As a
contour detection technique, DoN computes the difference

(a) Hinge: Difference of normals. (b) Hinge: Local variation.

(c) Table: Difference of normals. (d) Table: Local variation.

Fig. 4: Haar-like highpass graph filtering based local varia-
tion (15) outperforms the DoN method.

between surface normals calculated at two scales. In each
plot, we highlight the points that have tje top 10% largest
DoN scores or local variations. In Figure 4(a), we see that
DoN cannot find the boundary in the plane because the surface
normal does not change. The performance of DoN is also sen-
sitive to predetermined radius. For example, the DoN cannot
capture precise contours in the hinge. On the other hand, local
variation captures all the contours precisely in Figure 4(b). We
see similar results in Figures 4(c) and (d). Further, for each
3D point, DoN computes the first principle component of the
neighboring points, a computationally inefficient procedure.
The local variation only involves a sparse matrix and vector
multiplication, a computationally efficient procedure.

Figure 5 shows the local variation based resampling distri-
bution on example point clouds—hinge, cone, table, chair and
trash container. The first row shows the original point clouds;
the second and third rows show the resampled versions with
respect to two local variations: pairwise difference based local
variation (19) and Haar-like highpass graph filtering based
local variation (15). The two resampled versions have the same
number of points—10% of points in the original point cloud.

For the two simulated objects, the hinge and the cone
(first two columns), the pairwise difference based local vari-
ation (19) fails to detect the contours while the Haar-like
highpass graph filtering based local variation (15) detects all of
the contours. For the real objects, the Haar-like highpass graph
filtering based resampling (15) also outperform the pairwise
difference based local variation (19). In summary, the Haar-
like highpass graph filtering based local variation (15) detects
object contours using only 10% of points.

The highpass graph filtering based resampling strategy
can be easily extended to detect transient changes in other
attributes. Figure 6(a) simulates a hinge with two different
textures. Black points have the same texture with value 0 and
the green-circle points have a different texture with value 1.
We consider texture as a new attribute in the point cloud
matrix X ∈ RN×4, where the first three columns are 3D
coordinates and the fourth column is the texture. We resample
10% of points based on the highpass graph filtering based
local variation (15). Figure 6(b) shows the resampled point
cloud, which clearly detects both the geometric contour and
the texture contour.

C. Lowpass Graph Filtering
In classical signal processing, a lowpass filter is used to

capture a rough shape of a smooth signal and reduce noise.
Similarly, we here use a lowpass graph filter to capture rough
shape of a point cloud and reduce sampling noise during
resampling. Since we use the 3D coordinates of points to
construct a graph (3), these 3D coordinates are naturally
smooth on the graph (two adjacent points in the graph have
similar coordinates in the 3D space). When a 3D point cloud
is corrupted by noise and outliers, a lowpass graph filter, as
a denoising operator, uses local neighboring information to
approximate a true position for each point. Since the output
after lowpass graph filtering is a denoised version of the
original point cloud, it is more appropriate to resample from
denoised points than from original points.
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Fig. 5: Haar-like highpass graph filtering based local variation (15) outperforms pairwise difference based local variation (19).
We use local variation to capture the contour. The first row shows the original point clouds; the second and third rows show the
resampled versions with respect to two local variations: pairwise difference based local variation (19) and Haar-like highpass
graph filtering based local variation (15). Two resampled versions have the same number of points, which is 10% of points in
the original point cloud.

1) Ideal Lowpass Graph Filter: A straightforward choice is
an ideal lowpass graph filter, which completely eliminates all
graph frequencies above a given one while passing those below
unchanged. An ideal lowpass graph filter with bandwidth b is

hIL(A) = V

[
Ib×b 0b×(N−b)
0(N−b)×b 0(N−b)×(N−b)

]
V−1

= V(b) VT
(b) ∈ RN×N ,

where V(b) denotes the first b columns of V, and the graph
frequency response is

hIL(λi) =

{
1, i ≤ b;
0, otherwise. (20)

The ideal lowpass graph filter hIL projects an input graph
signal onto a bandlimited subspace [37] and hIL(A)s is a
bandlimited approximation of the original graph signal s. We
show an example in Figure 7. Figure 7(b)—(d) shows that
the bandlimited approximation of the 3D coordinates of a
teapot gets better as the bandwidth b increases. We see that
the bandwidth influences the shape of the teapot rapidly: with
only ten graph frequencies, we obtain a rough structure of the
teapot. Figure 7(e) shows that the main energy is concentrated
in the lowpass graph frequency band.

The feature-extraction operator f(X) = V(b) VT
(b) X is shift

and rotation-varying. Based on Theorem 4, the corresponding
resampling strategy is

π∗i ∝
√
c2
∥∥(V(b)

)
i

∥∥2

2
+
∥∥∥(V(b) VT

(b) Xo

)
i

∥∥∥2

2
(21)

=

√
c2 ‖vi‖22 +

∥∥Xo
T V(b) vi

∥∥2

2
,

where vi ∈ Rb is the ith row of V(b). When we ignore
other attributes Xo, the resampling strategy (21) is the same as

the randomized resampling strategy designed for bandlimited
graph signals [58], [59].

Computational Complexity. A direct way to obtain ‖vi‖2
requires the truncated eigendecomposition (6), whose com-
putational cost is O(Nb2), where b is the bandwidth. It is
potentially possible to approximate the leverage scores through
a fast algorithm [66], [67] by using randomized techniques
to avoid the eigendecomposition; the computational cost is
O(N log(N)). One can also partition the graph into several
subgraphs and obtain leverage scores for each. Since this
ideal lowpass graph filter may lead to high computational
complexity, we now consider a simple, Haar-like lowpass
graph filter.

2) Haar-like Lowpass Graph Filter: A Haar-like lowpass
graph filter is

hHL(A) = I +
1

|λmax|
A (22)

= V


1 + λ1

|λmax| 0 · · · 0

0 1 + λ2

|λmax| · · · 0
...

...
. . .

...
0 0 · · · 1 + λN

|λmax|

V−1,

where λmax = maxi |λi| (with λi eigenvalues of A) helps
avoid magnitude amplification. We denote Anorm = A /|λmax|
for simplicity. The graph frequency response is hHL(λi) = 1+
λi/|λmax|. Since the eigenvalues are arranged in a descending
order, we have 1 + λi ≥ 1 + λi+1, meaning low frequencies
are amplified while high frequencies are attenuated.

In the graph vertex domain, the response of the ith point
is (hHL(A) X)i = xi +

∑
j∈Ni(Anorm)i,jxj , with Ni its
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neighborhood; hHL(A) averages the attributes of each point
and its neighbors to provide a smooth output.

The feature-extraction operator f(X) = hHL(A) X is shift
and rotation-varying. Based on Theorem 4, the corresponding
resampling strategy is

π∗i ∝
√
c2 ‖(I + Anorm)i‖

2
2

+ ‖((I + Anorm) Xo)i‖
2
2
. (23)

Note that we can replace Anorm by either D−
1
2 W D−

1
2 or

D−1 W; in either case, the largest eigenvalue is one, and thus
A = Anorm.

Computational Complexity. Similarly to the Haar-based
highpass graph filter, the Haar-based lowpass graph filter
also uses first-hop neighbors, with low computational cost;
we could consider higher-order graph filters at the expense
of more expensive computation. To obtain the resampling
distribution (23), we compute the largest magnitude eigenvalue
λmax at O(N) and ‖(I + Anorm)i‖

2
2 and ‖((I + Anorm) Xo)i‖

2
2

for each row at O(‖vec(A)‖0) with ‖vec(A)‖0 the nonzero
elements in the A, which still scales linearly with the number
of 3D points.

Experimental Validation. We use a lowpass graph filter to
handle a noisy point cloud. Figure 8(a) shows a fitness ball
point cloud that contains 62,235 points collected from a Kinect
device. In this noiseless case, the surface of the fitness ball
can be modeled by a sphere. Figure 8(b) fits a green sphere
to the fitness ball 2. The radius and the central point of this
sphere are 0.3171 and (0.0954, 0.2077, 1.3498), respectively.
To simplify computation, we resample and then fit another
sphere to the resampled points. We want the spheres generated
by the original point cloud and the resampled point cloud to
be as close as possible.

In many real-world problems, the point cloud is noisy;
to simulate it, we add Gaussian noise with mean zero and
variance 0.02 to each point. Figures 9(a) and (b) show a
noisy point cloud and its resampled version based on uni-
form resampling, respectively. Figures 9(c) and (d) show a
denoised point cloud and its resampled version, respectively.
Since ideal lowpass graph filtering tends to be over-smooth
leading to distortion (see Figure 7), we use the Haar-like

2We use CloudCompare, a public software, to generate Figure 8(b).

(a) Hinge with textures. (b) Resampled version.

Fig. 6: Highpass graph filtering based resampling strategy
detects both the geometric contour and the texture contour.

lowpass graph filtering (22) to obtain the denoised point cloud.
Figure 10 compares its denoising performance with the partial
differential equation (PDE)-based method [68], a standard
point cloud denoising algorithm; the Haar-like lowpass graph
filtering achieves a slightly better performance and is 18 times
faster than the PDE-based method.

The resampling strategy can be designed based on either
the Haar-like (22) or the ideal (21) lowpass graph filtering.
When we set the graph shift A = D−1 W, the corresponding
Haar-like lowpass graph filtering based resampling strategy is
exactly uniform sampling. Here we compare uniform sampling
and the resampling strategy based on the ideal lowpass graph
filtering. We fit a sphere to each of the four point clouds and
show the statistics in Table I with relative errors, defined as
Error = |(x−x̂)/x|, where x is the ground truth, and x̂ is the
estimation, in parentheses. The denoised ball (fourth column)
significantly outperforms the noisy ball (third column), as the
estimated radius and central point are closer to the original
radius and central point. Based on the denoised ball, the
ideal lowpass graph filtering based resampling (sixth column)
slightly outperforms uniform sampling (fifth column). This the
proposed resampling strategy as the one that provides robust
shape modeling for noisy point clouds.

D. Graph Filter Banks

In classical signal processing, a filter bank is an array
of bandpass filters that break an input signal in multiple
subbands and synthesize the original signal from all of the
subbands [69], [70], [71]. We use a similar idea to analyze a
3D point cloud: separate an input 3D point cloud into multiple
components via different resampling operators, allowing us
to enhance its different components. For example, we can
resample both contour points and noncontour points to recon-
struct the original surfaces; we do need more contour points
to emphasize contours.

Figure 11 shows a surface reconstruction system for a 3D
point cloud based on graph filter banks. In the analysis part,
we separate a 3D point cloud X into k subbands. In each
subband, the information preserved is determined by a specific
graph filter and we resample a subset of 3D points according
to (9) and (13). The number of samples in each subband
is determined by a sampling ratio α. We have flexibility
to use either the original 3D points or the 3D points after
graph filtering. In the synthesis part, we use the resampled
points to reconstruct the surface. (A good literature review on
surface reconstruction algorithms can be found in [72].) Since
each surface reconstruction algorithm has its own specific
set of assumptions, different surface reconstruction algorithms
perform differently on the same set of 3D points.

We measure the overall performance of a surface recon-
struction system by reconstruction error—the difference be-
tween the surface reconstructed from resampled points and the
original surface. This leads to a rate-distortion like tradeoff:
when we resample more points, we encode more bits and
the reconstruction error is smaller; when we resample fewer
points, we encode fewer bits and the reconstruction error
is larger. The overall goal is: given a reconstruction error
tolerance, we use as few samples as possible to reconstruct
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(a) Teapot. (b) Approximation with (c) Approximation with (d) Approximation with (e) Graph spectral distribution.
10 graph frequencies. 100 graph frequencies. 500 graph frequencies.

Fig. 7: Lowpass approximation represents the main shape of the original point clouds. Plot (a) shows a point cloud with 8,000
points representing a teapot. Plots (b)—(d) show the approximations with 10, 100 and 500 graph frequencies. We see that the
approximation with 10 graph frequencies shows a rough structure of a teapot; the approximation with 100 graph frequencies
can be recognized as a teapot; the approximation with 500 graph frequencies show some details of the teapot. Plot (e) shows
the graph spectral distribution, which clearly shows that most energy is concentrated in the lowpass band.

Original ball Noisy ball Denoised ball Uniform resampling Lowpass graph filtering based resampling
(Figure 8(a) ) (Figure 9(a) ) (Figure 9(b) ) (Figure 9(c) ) (Figure 9(d) )

Radius 0.3171 0.3312 (4.4485%) 0.3156(0.4847%) 0.3147 (0.7452%) 0.3176 (0.1476%)
Center-x 0.0954 0.0875 (8.2184%) 0.0969 (1.5797%) 0.0952 (0.1816%) 0.0956 (0.2933%)
Center-y 0.2077 0.2115 (1.8557%) 0.2083 (0.3053%) 0.2086 (0.4627%) 0.2086 (0.4603%)
Center-z 1.3498 1.3702 (1.5061%) 1.3516 (0.1326%) 1.3518 (0.1482%) 1.3517 (0.1356%)

TABLE I: Proposed resampling strategy with lowpass graph filtering provides a robust shape modeling for a fitness ball. The
first column is the ground truth. The relative error is shown in the parentheses. Best results are marked in bold.

(a) Fitness ball. (b) Sphere fitting.

Fig. 8: Shape modeling for a fitness ball.

a surface by carefully choosing a graph filter and sampling
ratio in each subband. Such a surface reconstruction system
will benefit a 3D point cloud storage and compression because
we only need to store a few resampled points. Since a surface
reconstruction system is application-dependent, the design
details are beyond the scope of this paper.

V. APPLICATIONS

In this section, we apply the proposed resampling strategies
to three applications: accurate registration, large-scale visual-
ization, and robust shape modeling. Due to the limited space,
robust shape modeling is presented in Appendix H.

A. Large-Scale Visualization

We use the proposed resampling strategy (17) to efficiently
visualize large-scale urban scenes. Since our visual system
is sensitive to the contours of buildings and streets in a
urban scene, instead of showing an entire point cloud, we
only show a selected subset of points, which is useful for
large-scale visualization and efficient data summarization. We

(a) Noisy ball. (b) Denoised ball.

(c) Uniform sampling. (d) Lowpass graph
based resampling.

Fig. 9: Denoising and resampling of a noisy fitness ball. Plot
(b) denoises Plot (a). Plots (c) and (d) resample from Plot (b)
according to uniform sampling and resampling strategy (21),
respectively.

consider a large-scale dataset 3, which involves several natural
scenes with over 3 billion points in total and covers a range
of diverse urban scenes: churches, streets, railroad tracks,

3http://semantic3d.net/view dbase.php?chl=1

http://semantic3d.net/view_dbase.php?chl=1
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Fig. 10: Comparison of denoising performance. The proposed
lowpass graph filtering is 18 times faster than PDE-based
denoising algorithm.

Fig. 11: Graph filter bank analysis for 3D point clouds. In
the analysis part, we separate a 3D point cloud into multiple
subbands. In each subband, we resample a subset of 3D points
based on a specific graph filter h(A). The number of samples
in each subband is determined by a sampling ratio α. In the
synthesis part, we use all of the resampled points to reconstruct
a surface via a reconstruction operator Φ.

squares, villages, soccer fields, castles; see more details in
Appendix V-A.

Figure 12(a) shows a point cloud of domfountain3 with
15,105,667 points (we ignore the points on the ground).
We compare the resampled point clouds based on two re-
sampling strategies: uniform resampling in Figure 12(b) and
highpass graph filtering based resampling in Figure 12(c), each
with 151,057 (1%) points. Contours in (c) are much clearer
demonstrating the potential of highpass graph filtering based
resampling strategy for large-scale urban scene visualization.
The entire computation, including graph construction, local
variation computation and resampling (in Matlab on a desktop)
took less than 1,000 seconds. To test scalability, we randomly
select a subset of this point cloud, run the same resampling
process, and record the total elapsed time. Figure 13 shows
that the total computational complexity scales linearly with
the number of input 3D points.

We do acknowledge that our conclusions are based soley on
visual evaluation; we lack proper models of human perception
to provide quantitative results. For example, while we do
know that our eyes are more sensitive to contours, a reliable
perception model for 3D point clouds is unknown. We leave
the quality evaluation for 3D point clouds for future work.

RMSE Errorshift Errorrotation

All points 4.22 8.76 2.30× 10−3

Uniform resampling 4.27 9.38 3.76× 10−3

Highpass graph filtering 1.49 0.01 4.29× 10−5

based resampling (17)

TABLE II: Proposed highpass graph filtering based resam-
pling strategy provides an accurate registration for a sofa.
Best results are marked in bold. Highpass graph filtering
based resampling chooses key points and provides the best
registration performance.

B. Contour-Based Registration

In this task, we use the proposed resampling strategy (17)
to register two point clouds efficiently and accurately. Fig-
ure 14(a) shows a point cloud of a sofa with 1,204,055 points
collected from a Kinect based SLAM system [62]. We split the
original point cloud into two overlapping point clouds marked
in red and blue, respectively (Figure 14). We intentionally shift
and rotate the red part. The task is to invert the process and
retrieve the shift and rotation. We use the iterative closest
point (ICP) algorithm to register the two point clouds—a
standard algorithm to rotate and shift different scans into a
consistent coordinate frame [73]. The ICP algorithm iteratively
revises the rigid body transformation (combination of shift
and rotation) needed to minimize the distance from the source
to the reference point cloud. Figures 14(b) and (c) show the
registered sofa and the details of the overlapping part after
registration, respectively. We see that the registration process
recovers the overall structure of the original point cloud; some
mismatch is still seen at a detailed level.

As it is inefficient to register two large-scale point clouds,
we resample a subset of 3D points from each point cloud
and then register. We compare the registration performance
between a uniformly resampled point cloud and highpass
graph filtering based resampled point cloud. Note that highpass
graph filtering based resampling can enhance the contours
and key points. Figures 14(d) and (g) show the resampled
point clouds based on uniform resampling and highpass graph
filtering based resampling, respectively. The two resampled
versions have the same number of points (5% of points in
the original point cloud). Figure 14(g) shows more contours
than Figure 14(d). Based on the uniformly resampled version
in Figureq 14(d), Figures 14(e) and (f) show the registered
sofa and the details of the overlapping part after registration,
respectively. Based on the contour-enhanced resampled ver-
sion Figure 14(g), Figures 14(h) and (i) show the registered
sofa and the details of the overlapping part after registration,
respectively. The registration based on highpass graph filtering
based resampling precisely recovers the original point cloud,
even at a detailed level. The intuition is that the highpass
graph filtering based resampling enhances the contour points,
which emphasizes the skeletons of both the source point cloud
and the target point cloud, and reduces the interior points
to remove redundant and misleading information; thus, the
overall registration becomes easier. The quantitative results are
shown in Table II, with the root mean-squared error RMSE
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(a) Original. (b) Uniform resampling (c) Highpass graph filtering based resampling
(↓ 100). (↓ 100).

Fig. 12: Proposed resampling strategy (17) helps efficiently visualize a large-scale urban scene. (a) A point cloud of Station3 of
domfountain. (b) The resampled point clouds based on uniform resampling with 151,057 (1%) points. (c) The resampled point
cloud based on highpass graph filtering based resampling with 151,057 (1%) points. Highpass graph filtering based resampling
provides clear contours.
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Fig. 13: Proposed resampling strategy scales linearly with
the number of input 3D points. We process 15 million 3D
points within 1,000 seconds by using Matlab on a standard
desktop (2.3 GHz Intel Core i7, 16 GB memory); no parallel
processing or code optimization was used.

=
√∑N

i=1 minj=1,...,N ‖x̂i − xj‖22 in the first column, the
shift error Errorshift = ‖â− a‖2 in the second column and
the rotation error Errorrotation =

∥∥∥R̂− R
∥∥∥

Frobenius
in the

third column. Here, x̂i, â and R̂ are the 3D coordinates of
the ith point, recovered shift vector and rotation matrix after
registration, respectively; xi, a and R are the ground-truth
3D coordinates of the ith point, shift vector and recovered
rotation matrix. Highpass graph filtering based resampled point
cloud uses 20 times fewer points and achieves even better
results than using all of the points. The shift and rotation
errors of using highpass graph filtering based resampling are
significantly smaller than those of using all the points or using
uniform resampling.

VI. CONCLUSIONS

We proposed a resampling framework to extract application-
dependent features from a subset of points and reduce the sub-
sequent computation in a large-scale point cloud. We formu-
lated an optimization problem to obtain the optimal resampling
distribution, which is also guaranteed to be shift-/rotation-
/scale-invariant. We then specified the feature-extraction oper-
ator to be a graph filter and studied the resampling strategies

based on allpass, lowpass and highpass graph filtering. A
surface reconstruction system based on graph filter banks was
introduced to compress 3D point clouds. Three applications,
including large-scale visualization, accurate registration and
robust shape modeling were presented to validate the effec-
tiveness and efficiency of the proposed resampling methods.
We also discussed future directions, such as efficient 3D point
cloud compression system based on graph filter banks, surface
reconstruction based on arbitrary graphs and a robust metric
to evaluate the quality of a 3D point cloud.
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APPENDIX

A. Proof of Lemma 1
Proof. Let M,Ψ be the resampling set under the resampling
distribution π and the corresponding resampling operator,
respectively. Let δi=Mj be a Bernoulli random variable in-
dicating whether the ith point is selected in the jth selection.
According to the resampling distribution π, we have

δi=Mj
=

{
1, with probability πi;
0, with probability 1− πi.

According to (2), ΨTΨ is a diagonal, zero-padding matrix,
whose ith element along the diagonal is(

ΨTΨ
)
i,i

=
∑
Mj∈M

δi=Mj ,

which accumulates the number of times that the ith point
is selected; in other words,

(
ΨTΨ

)
i,i

is a Binomial random
variable, following B(M,πi). We thus have

EΨ∼π
(
ΨTΨ

)
i,i

= Mπi, (24)

EΨ∼π
(
ΨTΨ

)2
i,i

= M2π2
i +Mπi(1− πi). (25)

For the nonweighted version, the ith row of
EΨ∼π

(
ΨTΨf(X)

)
is

EΨ∼π
(
ΨTΨf(X)

)
i

(a)
= EΨ∼π

(
ΨTΨ

)
i,i
fi(X)

(b)
= Mπifi(X),

where (a) follows from that ΨTΨ is a diagonal matrix and (b)
follows from (24). Thus, EΨ∼π

(
ΨTΨf(X)

)
= Mπ � f(X),

with � the row-wise multiplication.
For the reweighted version, S ∈ RN×N is a diagonal

rescaling matrix, whose the ith element along the diagonal
is Si,i = 1/(Mπi). The ith row of EΨ∼π

(
S ΨTΨf(X)

)
is

EΨ∼π
(
S ΨTΨf(X)

)
i

= Si,i EΨ∼π
(
ΨTΨ

)
i,i
fi(X)

= Si,iMπifi(X) = fi(X).

Thus, EΨ∼π
(
ΨTΨf(X)

)
= f(X).

http://pointclouds.org/documentation/tutorials/compression.php#octree-compression
http://pointclouds.org/documentation/tutorials/compression.php#octree-compression
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B. Proof of Theorem 1

Proof. The mean square error of the estimator S ΨTΨf(X) is

EΨ∼π
∥∥S ΨTΨf(X)− f(X)

∥∥2

F

(a)
= EΨ∼π

[
Tr
(
f(X)T

(
S ΨTΨ− I

)T (
S ΨTΨ− I

)
f(X)

)]
= Tr

(
f(X)TEΨ∼π
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where (a) follows from the property of the Frobenius norm.
We next want to show
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where (a) follows from the property of the diagonal matrix and
(b) follows from (24) and (25). Thus, the mean square error
is EΨ∼π
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.
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