
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Fast Market Clearing Algorithms

Raghunathan, A.U.; Curtis, F.E.; Takaguchi, Y.; Hashimoto, H.

TR2017-196 December 2017

Abstract
Real-time electricity markets are the main transaction platforms for providing necessary bal-
ancing services, where the market clearing (nodal or zonal prices depending on markets) is
very close to real time operations of power systems. We present single and multiple time pe-
riod decentralized market clearing models based on the DC power flow model. The electricity
market we study consists of a set of Generation Companies (GenCos) and a set of Distri-
bution System Operators (DSOs). The Independent System Operator (ISO) determines the
market clearing generation and demand levels by coordinating with the market participants
(GenCos and DSOs). We exploit the problem structure to obtain a decomposition of the
market-clearing problem where the GenCos and DSOs are decoupled. We propose a novel
semismooth Newton algorithm to compute the competitive equilibrium. Numerical experi-
ments demonstrate that the algorithm can obtain several orders of magnitude speedup over
a typical subgradient algorithm with no modification to the existing communication protocol
between the ISO and market participants.

IMA Workshop Volume

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2017
201 Broadway, Cambridge, Massachusetts 02139





Chapter 1

Fast Market Clearing Algorithms

Arvind U. Raghunathan, Frank E. Curtis, Yusuke Takaguchi and Hiroyuki
Hashimoto

Abstract Real-time electricity markets are the main transaction platforms
for providing necessary balancing services, where the market clearing (nodal
or zonal prices depending on markets) is very close to real time operations
of power systems. We present single and multiple time period decentralized
market clearing models based on the DC power flow model. The electricity
market we study consists of a set of Generation Companies (GenCos) and a
set of Distribution System Operators (DSOs). The Independent System Op-
erator (ISO) determines the market clearing generation and demand levels
by coordinating with the market participants (GenCos and DSOs). We ex-
ploit the problem structure to obtain a decomposition of the market-clearing
problem where the GenCos and DSOs are decoupled. We propose a novel
semismooth Newton algorithm to compute the competitive equilibrium. Nu-
merical experiments demonstrate that the algorithm can obtain several orders
of magnitude speedup over a typical subgradient algorithm with no modifi-
cation to the existing communication protocol between the ISO and market
participants.
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1.1 Introduction

Electricity markets are commodity markets where: (i) suppliers (electricity
generators) and consumers (electricity customers) are spread across a net-
work and (ii) the flow of the commodity (electricity) is dictated by physical
laws [13]. Competition in electricity markets allows to establish a market price
that is acceptable to all market participants, whereby the market is said to
have reached equilibrium. The design of appropriate market or pricing mech-
anisms is governed by the theory of general equilibria. The non-existence
of such an equilibrium implies the possibility of some market participants
that can unilaterally affect the prices to their own advantage [28]. For exam-
ple, competition [4] and active participation (eg. demand response) [27] in
electricity markets are known to significantly enhance efficiency and reduce
prices. Given the importance of an efficient and reliable grid infrastructure,
the modeling and subsequent analysis of electricity markets has seen exten-
sive research. Hobbs and Helman [11] study market equilibria via competitive
equilibrium models. Oligopolistic price equilibria were investigated by Hobbs,
Metzler and Pang [12] for Direct Current (DC) power flow networks using
supply functions. Baldick [2] compares Cournot and supply function equi-
librium models of bid-based electricity markets. Day, Hobbs and Pang [7]
investigate conjectured supply function models of competition among power
generators on a DC power flow network. The impact of network constraints
on the market performance is analyzed in [4] under different game theory
models. Weber and Overbye [29] study Nash equilibria for electricity mar-
kets by employing a full representation of the transmission system. Motto
et al. [20] formulate a multi-period electricity auction market tool for a DC
power flow network accounting for the transmission congestion, losses and
unit commitment constraints as a mixed integer program. A mathematical
framework to construct dynamic models for electricity markets and study
their competitive equilibria using DC power flow models is provided in Wang
et al [28].

A realistic market model is associated with important nonlinearities, aris-
ing from nonconvex utility functions and nonlinear network constraints [3].
For instance, the DC power flow model may not be a appropriate when
voltage constraints or reactive power constraints are considered. Motto et
al. [21] proposed a single time period decentralized electricity market clear-
ing model that includes reactive power and demand responsiveness, based on
the Alternating Current (AC) power flow network. More recently, Lavaei and
Sojuodi [15] also investigate market efficiency for AC power flow networks by
leveraging the zero duality gap of certain OPF formulations [16, 31].

While research has focused largely on aspects of electricity market design,
there has been little work on algorithmic and computational aspects. This
is especially important in the current context of grid infrastructure modern-
ization and increased penetration of distributed generation. For instance, the
DOE agency ARPA-E envisions a future grid infrastructure that incorporates
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diverse, distributed generation and storage sources, and that is operated un-
der a distributed control architecture [1]. In that context it is important to
develop decentralized or distributed algorithms that scale with network size
and have little overhead in communication. This serves as the motivation and
focus of this chapter.

1.1.1 Our Focus

We consider a mutiple time period pool-based electricity market consisting of:
generation companies (GenCo), load entities called the Distribution System
Operators (DSO) and an Independent System Operator (ISO). We assume
that: (a) the DC power flow model is used by the ISO to model the power
flow in the transmission system, (b) the DSOs are modeled as a single node
neglecting the underlying distribution network, (c) the DSOs have the ability
to defer loads, and (d) the GenCos and DSOs are price-taking and unwilling
to share their cost function to the ISO. Maintaining privacy of the individual
market participants motivates the development of a decentralized framework
whereby the ISO only transmits price signals to the individual participants
and obtains price-sensitive optimal actions from them. Using such informa-
tion, the ISO could employ a subgradient algorithm to converge to an equi-
librium. However, the convergence rate for subgradient algorithms is known
to be quite slow [10, 26] and hence, require significant number of message
communications with the individual participants. This is undesirable in the
current context of rapidly changing grid infrastructure which aims to incor-
porate intermittent distributed generation and distributed architectures for
control and operation [1]. In such a distributed setting, reduction in com-
munication overhead is important. Hence, fast convergence to equilibrium is
desirable for robust grid operation.

In this chapter, we exploit the problem structure to obtain decentralized
optimization problems in the context of multiple time period market clearing.
In such a scheme, the ISO transmits a price signal to the individual partici-
pants, who in turn solve their individual optimization problems, the solutions
of which are communicated back to the ISO so they may update the price.
With this information, we propose that the ISO solves its market clearing
problem by solving an implicit complementarity problem (ICP) as introduced
in Curtis and Raghunathan [5]. To solve the ICP, Curtis and Raghunathan [5]
propose a semismooth Newton algorithm for accelerating convergence when
solving structured quadratic programs. We employ the same algorithm for
solving the ISO’s market clearing problem. The algorithm requires the com-
putation of sensitivity of the market participants’s solution to the price. We
exploit the underlying communication protocol to additionally compute the
sensitivity of their solution to changes in the price. Note that this requires no
change in the computations performed by the GenCos and DSOs. We demon-
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strate through numerical experiments that our approach leads to orders of
magnitude fewer function evaluations as compared to a subgradient method.
The authors previously investigated the approach for single time period mar-
ket clearing in [24] in which the GenCos and DSOs were also assumed to
provide the sensitivity information. The approach described in this chapter
removes this assumption.

We note that a similar approach has been considered when an AC power
flow model is used and only equality constraints are present; see Motto et al
[20]. In this work, the authors propose applying dual decomposition to a non-
convex nonlinear program for which the guarantees of finding a solution with
zero duality gap do not exist. Further, [20] employs a pure Newton strategy
which does not have global convergence guarantees [23]. By contrast, in this
chapter we consider the simpler DC power flow model which is convex and
hence, there exists no duality gap. Further, we allow for inequality constraints
and also argue that from a computational standpoint the problem is better
posed than the equality constrained formulation. We also present numerical
results showing that a pure Newton strategy, such as in [20], is not robust in
converging to the solution. Our approach can also be extended to consider
AC power flow models as in [20]. In fact, [5] also proposed a semismooth
Newton algorithm for solving non-convex structured quadratic programs us-
ing semismooth Newton algorithms. The framework of [5] can be extended
to the case of AC power flow models and will be investigated in a separate
study.

1.1.2 Organization of the Chapter

The rest of the paper is organized as follows. Models of the market partici-
pants and the notions of competitive equilibrium are presented in §1.2. An
implicit complementarity formulation of the ISO’s market-clearing problem
is presented in §1.3. We describe the semismooth formulation and algorithm
in §1.4. Numerical results demonstrating the efficacy of the method are pre-
sented in §1.5 followed by conclusions in §1.6.

1.2 Competitive Equilibrium

In this section, we describe the optimization problems related to each of the
market participants: generation companies (GenCos), Distribution System
Operators (DSOs), and the Independent System Operator (ISO). Based on
these, we present the notion of competitive equilibrium and social welfare
maximization. In what follows, N denotes the set of buses in the transmission
network of the ISO while NG and ND (with N = NG ∪ ND) respectively
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denote the nodes connected to GenCos and DSOs. Further, L denotes the
set of lines in the transmission network. We assume there are T time periods
and the set T = {1, . . . , T} represents the set of time periods. The electricity
price at a node i ∈ N , time period t ∈ T is denoted by λi,t. We use boldface
to denote vector quantities: λi,· = (λi,1, . . . , λi,T ) ∈ RT is the vector of
prices over all time periods at the node i, λ·,t = (λ1,t, . . . , λ|N |,t) is the
vector of prices over the entire set of nodes in the time period t, and λ =
(λ·,1, . . . ,λ·,T ) ∈ R|N |T is the vector of all nodal prices for all time periods.
Note that (λ1,·, . . . ,λ|N |,·) is a different ordering of the vector λ. The power
injection into the network at the node i at time period t is denoted by P ∗i,t(λ).

Similarly, P ∗i,· ∈ RT is the vector of power injections at a node i over all time

periods and, P ∗·,t ∈ R|N | is the vector of all nodal power injections in the
time period t.

1.2.1 Generation Company (GenCo)

The generation company located at node i ∈ NG chooses its optimal power
generation level P ∗i,·(λi,·) over all time periods given the set of nodal prices
over the time periods λi,· from the ISO by solving the optimization problem

P ∗i,·(λi,·) = arg min
P1,...,PT

∑
t∈T

(ci(Pt)− λi,tPt) (1.1a)

s.t. PGi ≤ Pt ≤ P
G

i , ∀ t ∈ T (1.1b)

|Pt+1 − Pt| ≤ ∆P
G

i , ∀ t ∈ T \ {T} (1.1c)

where ci(·) is the cost of generation associated with the GenCo, PGi and

P
G

i are respectively the mimimum and maximum generation levels and ∆P
G

i

represent the limit on the change in power generation over successive time
periods. We assume the following on the cost function of the GenCo, which
implies that (1.1) has a unique solution.

Assumption 1 The function ci(·) is strictly convex.

The optimization problem in (1.1) assumes that the cost function is indepen-
dent of time periods. This is done for sake of simplicity of exposition and is
not a restriction of the approach. When considering multi-period operations
GenCos schedule to operate additional units of generation which typically
incurs a start-up cost. In addition, there are minimum down (up) periods for
generation units once they are shut down (started up). Modeling such opera-
tions requires the introduction of binary variables which renders the GenCo
problem non-convex. However, these non-convexities can be handled by re-
laxing the binary variables to be continuous and replacing the feasible region
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by the convex hull. We do not pursue this further, but refer the interested
reader to [6, 25].

1.2.2 Distribution System Operator (DSO)

The DSO located at node i ∈ ND chooses its optimal power consumption
level −P ∗i,·(λi,·) over all time periods given the set of nodal prices over the
time periods λi,· from the ISO by solving the optimization problem

P ∗i (λi,·) = arg min
P1,...,PT

∑
t∈T

(−λi,tPt − ui(−Pt)) (1.2a)

s.t. PDi ≤ −Pt ≤ P
D

i , (1.2b)

−
∑
t∈T

Pt ≥ PD,toti (1.2c)

where ui(·) is the utility function of the DSO, PDi and P
D

i are minimum and

maximum power consumption levels in a time period and PD,toti represents
a minimum total power consumption over the multiple time periods. Note
that P ∗i (λi,·) is negative since it represents power being withdrawn from the
electrical network. We assume the following on the utility function of the
DSO which ensures that (1.2) has a unique solution.

Assumption 2 The function ui(·) is strictly concave.

The optimization problem in (1.2) assumes that the utility function is inde-
pendent of time periods. This is done for sake of simplicity of exposition and
is not a restriction of the approach. Under Assumption 2, DSO’s optimization
problem (1.2) is strictly convex and hence, has an unique solution.

1.2.3 Independent System Operator (ISO)

The ISO is responsible for maintaining balance between the GenCos and
DSOs, and ensuring that the power flows in the network are within certain
limits. Given a vector of nodal prices λ over all time periods, the ISO chooses
the optimal power injection levels by solving the optimization problem

P ISO(λ) = arg min
(P ·,1,...,P ·,T )

∑
t∈T

λT·,tP ·,t (1.3a)

s.t. 1TP ·,t = 0, ∀ t ∈ T (1.3b)

− P ≤ AP ·,t ≤ P , ∀ t ∈ T (1.3c)
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where P ∈ R|L| denotes the vector of power limits on the lines in the network,
1 ∈ R|N | is a vector of all ones, and A is the matrix of power distribution fac-
tors for the ISO’s transmission network. The constraint (1.3b) imposes power
balance between the GenCos and DSOs at each time period. The DC power
flow model appears in (1.3c) through the power distribution factors [30].

1.2.4 Competitive Equilibrium

A pair (P̂ , λ̂) is said to achieve competitive (or Walrasian) equilibrium for
an electricity market if:

(a) P̂ i,· = P ∗i,·(λ̂i,·) ∀ i ∈ NG,

(b) P̂ i,· = P ∗i,·(λ̂i,·) ∀ i ∈ ND, and

(c) P̂ = P ISO(λ̂).

By the well-known first and second fundamental theorems of welfare eco-
nomics [19], we have the following.

• A competitive equilibrium is Pareto optimal.
• Every Pareto optimal allocation can be decentralized as a competitive

equilibrium.

By the second fundamental theorem of welfare economics [19, 28], a compet-
itive equilibrium can be characterized by maximizing social welfare given as

min
P

∑
t∈T

( ∑
i∈NG

ci(Pi,t)−
∑
i∈ND

ui(−Pi,t)

)
(1.4a)

s.t. 1TP ·,t = 0, ∀ t ∈ T (1.4b)

− P ≤ AP ·,t ≤ P , ∀ t ∈ T (1.4c)

PGi ≤ Pi,t ≤ P
G

i , ∀ i ∈ NG, t ∈ T (1.4d)

|Pi,t+1 − Pi,t| ≤ ∆P
G

i , ∀ i ∈ NG, t ∈ T \ {T} (1.4e)

PDi ≤ −Pi,t ≤ P
D

i , ∀ i ∈ ND, t ∈ T (1.4f)

−
∑
t∈T

Pi,t ≥ PD, ∀ i ∈ ND. (1.4g)

Social welfare maximization achieves Pareto optimal allocation only un-
der certain assumptions. Any electricity dispatch and pricing system is Pareto
optimal only if prices are “right” and maximizes welfare only if all the im-
portant costs and benefits are priced into the system. For instance, it is well
known that electric generation shifts some costs to society such that they are
not priced in this market. Furthermore, even when prices are right, welfare is
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only maximized if willingness to pay is an accurate measure of utility. We do
not delve further into these aspects but refer the reader to the texts [13, 19].

The social welfare maximization formulation in (1.4) is a centralized for-
mulation. This does not lend itself to preserving privacy of the market par-
ticipants. However, the formulation in (1.4) serves as the starting point for
deriving the decentralized formulation which we do next.

1.3 Decentralized Market Formulation

We develop the decentralized market formulation based on Lagrange dualiza-
tion of the coupling constraints in (1.4). For ease of presentation, we represent
the power balance constraint in (1.4b) as two inequalities

−1TP ·,t ≤ 0,1TP ·,t ≤ 0 ∀ t ∈ T . (1.4b’)

Introducing multipliers ξ
t
, ξt for the power balance constraints in (1.4b’) and

ζ
l,t
, ζl,t ∀ l ∈ L for the line limit constraints in (1.4c), the partial Lagrangian

for (1.4) can be written as

L(P , ξ, ξ, ζ, ζ)

=
∑
t∈T

( ∑
i∈NG

ci(Pi,t)−
∑
i∈ND

ui(−Pi,t) + (−ξ
t

+ ξt)(1
TP ·,t)

)

+
∑
t∈T

(
ζT
t

(
−P −AP ·,t

)
+ ζ

T

t

(
AP ·,t − P

))
.

(1.5)

The Lagrangian dualization is restricted to the constraints that fall under
the purview of the ISO’s optimization problem (1.3). Using the partial La-
grangian in (1.5) and duality theory of convex optimization [18] we can decen-
tralize the welfare maximization problem in (1.4) as explained below. Define
the Lagrange dual function as

g(ξ, ξ, ζ, ζ) = min
P

L(P , ξ, ξ, ζ, ζ)

s.t. (1.4d)− (1.4g).
(1.6)

From the definition of the partial Lagrangian in (1.5) it is easy to see that
the objective function and constraints in (1.6) are separable by the GenCos
and DSOs. Indeed, we can express the dual function as
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L(P , ξ, ξ, ζ, ζ)

=
∑
t∈T

( ∑
i∈NG

(ci(Pi,t)− λi,tPi,t) +
∑
i∈ND

(−λi,tPi,t − ui(−Pi,t))

)
−
∑
t∈T

(−ζ
t

+ ζt)
TP

(1.7)

where λ·,t, the vector of nodal prices at time period t, is defined as

λ·,t = (ξ
t
− ξt)1 +AT (ζ

t
− ζt). (1.8)

With this definition of the vector of nodal prices λ·,t, the optimization prob-
lem in (1.6) is precisely the set of optimization problems for GenCos (1.1)
and DSOs (1.2). Thus, the Lagrangian dualization yields a decentralized for-
mulation in which the ISO interacts with GenCos and DSOs through a price
signal and, thereby allowing the market participants to maintain the privacy
of their optimization data.

To obtain the solution to (1.4) we rely on convex duality [18] which states
the equivalence between (1.4) and its dual optimization problem given as

max
ξ,ξ,ζ,ζ

g(ξ, ξ, ζ, ζ)

s.t. (ξ, ξ, ζ, ζ) ≥ 0.

(1.9)

The solution to (1.9) could be obtained through a subgradient algorithm [10,
26] which is stated in Algorithm 1. For ease of presentation we introduce

νt =


ξ
t

ξt

ζ
t

ζt

 ,F t(ν) =


−1TP ∗·,t(λ)

1TP ∗·,t(λ)

AP ∗·,t(λ) + P

−AP ∗·,t(λ) + P

 ∀ t ∈ T
ν = (ν1, . . . ,νT ),F (ν) = (F 1(ν), . . . ,F T (ν))

(1.10)

where F denotes the vector of dualized constraints and ν the corresponding
multipliers. Note that F t is denoted as a function of ν, multipliers over all
time periods, since the optimization problem for GenCos (1.1) and DSOs (1.2)
are coupled across time periods. The update step for the multipliers in Algo-
rithm 1 only requires access to the optimal solution of the GenCos and DSOs.
Thus, they are quite simple to implement and fit the decentralized framework
very well. The typical number of iterations required for convergence of the
algorithm to a solution that is within ε of the optimal solution is O( 1

ε2 ). Thus,
a large number of communication rounds are required between the ISO and
the market participants (GenCos and DSOs) to achieve convergence. This
renders the algorithm quite slow in practice.
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Algorithm 1: Subgradient Algorithm

1 Let ε ∈ (0, 1) be a desired convergence tolerance

2 Choose ν0
t = (ξ0

t
, ξ

0
t , ζ

0
t
, ζ

0
t ) for all t ∈ T as the initial guess.

3 Set k = 0.

4 repeat
5 Set λk according to (1.8)

6 For i ∈ NG, solve (1.1) with λi,· = λki,·
7 For i ∈ ND, solve (1.2) with λi,· = λki,·
8 Choose γk (typically γk = a

k+1
for some some a > 0)

9 Set νk+1 = max
(
0,νk − γkF (νk)

)
10 Set ek+1 = ‖min(νk,F (νk))‖∞
11 Set k = k + 1

12 until ek ≤ ε

1.4 Semismooth Equation Approach

We describe the semismooth equation approach of Curtis and Raghunathan [5]
for computing the competitive equilibrium. The optimality conditions [18] for
the ISO’s problem for all t ∈ T are

λ·,t = (ξ
t
− ξt)1 +AT (ζ

t
− ζt) (1.11a)

0 ≤ ξ
t
⊥ (1TP ·,t) ≥ 0 (1.11b)

0 ≤ ξt ⊥ (−1TP ·,t) ≥ 0 (1.11c)

0 ≤ ζ
t
⊥ (AP ·,t + P ) ≥ 0 (1.11d)

0 ≤ ζt ⊥ (−AP ·,t + P ) ≥ 0 (1.11e)

where for a pair of vectors {a, b} the expression 0 ≤ a ⊥ b ≥ 0 repre-
sents the conditions ai ≥ 0, bi ≥ 0, and aibi = 0 for all i. The constraints
in (1.11b)–(1.11e) are the so-called complementarity constraints [18]. Follow-
ing the definition in §1.2.4, competitive equilibrium is attained when the
conditions in (1.11) hold for P = P ∗(λ). Following [5], we pose the ISO’s
market-clearing problem as the following implicit complementarity problem
(ICP)

0 ≤ ν ⊥ F (ν) ≥ 0 (1.12)

where (ν,F ) ∈ Rm × Rm are as defined in (1.10) with m = (2 + 2|L|)T . We
call the complementarity problem in (1.12) as implicit since P ∗(λ), which
appears in computation of F (ν), is obtained by solving a set of optimization
problems. Observe that the evaluation of P ∗(λ) only requires communication
with the GenCos and DSOs through transmission of the price vector λ. Thus,
the ICP (1.12) has the desired property of decoupling by participants and
allows the participants to mainatain privacy of their optimization problem.
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The following theorem formalizes the equivalence between the ICP (1.12)
and the competitive equilibrium.

Theorem 1. The following are equivalent:

(a) (P̂ , λ̂) is a competitive equilibrium;

(b) ν̂ solves the ICP (1.12) with λ̂·,t = (ξ̂
t
− ξ̂t)1 +AT (ζ̂

t
− ζ̂t).

Proof. First, we show that (a) implies (b). Suppose (a) holds. From the def-

inition of competitive equilibrium in §1.2.4, P̂ = P ∗(λ̂). Since P̂ solves the

ISO’s problem (1.3), we have that there exists multipliers (ξ̂, ξ̂, ζ̂, ζ̂) satis-

fying the optimality conditions in (1.11) with P = P ∗(λ̂). Thus, (b) holds.
Now, suppose (b) holds. By the preceding arguments we have that first order
stationarity conditions of the ISO’s problem (1.3) hold. Since (1.3) is convex,
a first order stationary point is also a minimizer [18]. This completes the
proof.

To solve the ICP we rewrite the complementarity system using the Fischer
operator as

ΦFB(ν) =

 φ(ν1, F1(ν))
...

φ(νm, Fm(ν))

 , (1.13)

where, given scalars a and b, the Fischer-Burmeister function [9] has the form

φ(a, b) =
√
a2 + b2 − a− b. (1.14)

Clearly, this latter function satisfies

φ(a, b) = 0⇐⇒ {a ≥ 0, b ≥ 0, and ab = 0}. (1.15)

The articles [8, 22] discuss regularity properties and sophisticated imple-
mentations of semismooth Newton algorithms for complementarity problems
using the Fischer-Burmeister function. However, our formulation here is dif-
ferent in the sense that, in our context, the complementarity components ν
and F (ν) are both functions of ν; hence, our formulation is somewhat more
straightforward.

At each iteration k of the semismooth Newton algorithm [14] the step dνk

is obtained as the solution of

ΦFB(νk) +Hkdνk = 0, (1.16)

where Hk represents the first-order variation of the function ΦFB at the point
νk. We postpone the discussion on the computation of the matrix Hk to
§1.4.3 and instead focus on the local convergence properties and algorithmic
details. The step dνk obtained by solving (1.16) is called the Semismooth
Newton step.
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1.4.1 Fast Local Convergence

Semismooth functions such as ΦFB are almost everywhere differentiable [14].
Further, at points of non-differentiability, ΦFB is directionally differentiable
and can be approached through a sequence of differentiable points. Conse-
quently, for any sequence of directions dν → 0 with associated Jacobians
H ∈ ∂Φ(ν + dν) and directional derivatives (ΦFB)′(ν; dν), we have that

‖Hdν − (ΦFB)′(ν; dν)‖ = o(‖dν‖). (1.17)

This Taylor-series-like property is sufficient to show that iterations defined
by (1.16) can converge locally superlinearly.

Theorem 2 ([14]). Suppose that F is continuously differentiable and ν∗

satisfies ΦFB(ν∗) = 0 such that all H ∈ ∂ΦFB(ν∗) are non-singular. Then,
for any νk in a sufficiently small neighborhood of ν∗, it follows that ‖νk+1−
ν∗‖ ≤ C‖νk − ν∗‖1+γ for some C > 0 and γ > 0.

In the present setting, F is not continuously differentiable, only piece-
wise differentiable (PC1) since P ∗i,·(·) are PC1 [5]. The main result in [5]
proves local superlinear convergence for F ∈ PC1. Hence, the semismooth
Newton iteration [5] converges fast locally, unlike a conventional subgradient
approach. We provide numerical evidence for this in §1.5.

1.4.2 Algorithm

To promote global convergence, we employ a line-search based on the merit
function ΨFB(ν) := ‖ΦFB(ν)‖22, the 2-norm of the vector ΦFB(ν). Ob-
serve that the minimum of ΨFB(ν) is 0 corresponding to a solution of the
ICP (1.12). Thus, reduction of the merit function ΨFB(ν) can be used to
certify that the steps of the algorithm ultimately decrease the distance to a
solution of the ICP. Given a direction dνk, the step length αk is determined
as the largest αk ∈ (0, 1] such that the sufficient decrease condition

ΨFB(νk + αkdνk) ≤ ΨFB(νk) + ηαk∇ΨFB(νk)T dνk (1.18)

holds where η ∈ (0, 1); e.g., one typically chooses η = 10−4. The step-length
αk may be obtained using a backtracking line-search starting from 1 and
multiplying by a constant factor ρ ∈ (0, 1) until the sufficient decrease con-
dition holds (1.18). The complete steps of the algorithm are provided in
Algorithm 2. At each iteration of the algorithm the ISO computes the price
vector λ (Step 5) and communicates the nodal price vector λki,· to the GenCos
and DSOs to obtain their optimal power generation and consumption levels
(Steps 6 and 7). The sensitivity of these power levels to the nodal prices are
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computed by finite difference in Step 8. To compute the sensitivity of a par-
ticular participant i ∈ N requires 2 · T calls to the participant to solve the
respective optimization problems (1.1) or (1.2) for different perturbations of
the price vector. This operation can be performed in parallel for each par-
ticipant i ∈ N . We emphasize again that the computation of the sensitivity
does not require any modification in the optimization problems of the mar-
ket participants. The computation of the matrix Hk in Step 9 is described
in §1.4.3.

Algorithm 2: Semismooth Newton Algorithm

1 Choose a convergence tolerance ε ∈ (0, 1).

2 Choose an initial guess ν0
t = (ξ0

t
, ξ

0
t , ζ

0
t
, ζ

0
t ) for all t ∈ T . Choose {η, ρ} ⊂ (0, 1).

3 Set k = 0.

4 repeat
5 Set λk according to (1.8).

6 For i ∈ NG, compute P ∗i,·(λ
k
i,·) from (1.1)

7 For i ∈ ND, compute P ∗i,·(λ
k
i,·) from (1.2).

8 For i ∈ N , t ∈ T compute
∂P ∗

i,·
∂λi,t

as

Set λ±i′,t′ =

{
λi′,t′ for i′ 6= i, t′ 6= t

λi,t ± δ for i′ = i, t′ = t
for some δ > 0.

Compute P ∗i,·(λ
+
i,·),P

∗
i,·(λ

−
i,·) from (1.1) for i ∈ NG or (1.2) for i ∈ ND

Set
∂P ∗i,·

∂λi,t
=
P ∗i,·(λ

+
i,·)−P ∗(λ

−
i,·)

2δ
.

9 Compute Hk using (1.19) and dνk using (1.16).

10 Find the smallest integer n ≥ 0 such that (1.18) holds for αk = ρn.

11 Set νk+1 = νk + αkdνk and k = k + 1

12 until ‖ΦFB(νk)‖∞ ≤ ε

1.4.3 Computing Hk

The matrix Hk is defined as

Hk = Dk
ν +Dk

F∇νF (νk)T (1.19)

where
∇νF (νk) = [∇νF1(νk) · · · ∇νFm(νk)] (1.20)
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with Fj(·) in (1.20) denoting the j-th component of F , and ∇νFj(·) is the
gradient of Fj(·) with respect to ν. Note that Fj(·) is different from the
boldface notation F j(·) used in (1.10) and is being used to simplify the pre-
sentation of the matrices Dk

ν , D
k
F . Likewise, νj represents the j-th component

of the m-dimensional vector ν and is different from the boldface notation νj
in (1.10). The matrices Dk

ν and Dk
F are diagonal and are defined as described

next. Introducing the set βk = {j | νkj = 0 = Fj(ν
k)}, the diagonal matrices

can be obtained as

[Dk
ν ]jj =



(
νkj

‖(νkj , Fj(νk))‖
− 1

)
∀ j /∈ βk(

zj
‖(zj , zT∇Fj(νk))‖

− 1

)
∀ j ∈ βk

[Dk
F ]jj =



(
Fj(ν

k)

‖(νkj , Fj(νk))‖
− 1

)
∀ j /∈ βk(

zT∇Fj(νk)

‖(zj , zT∇Fj(νk))‖
− 1

)
∀ j ∈ βk

where z is chosen such that zj = 1 for j ∈ βk and 0 otherwise [17].
To present the expression for the matrix ∇νF (νk)T we recall from (1.8)

and (1.10) that the vectors ν and F have the following structure

ν = (ν1, . . . ,νT ), λ·,t = Bνt,

and F (ν) = (F 1(ν), . . . ,F T (ν)), F t(ν) = BTP ∗·,t(λ) + b,

where B =
[
−1 1 −AT AT

]
, bT =

[
0 0 P

T
P
T
]
.

(1.21)

Then the change in the function F t(ν
k) due to a perturbation ∆ν in the

variables νk can be approximated to the first order as

F t(ν
k +∆ν)− F t(νk) = BT (P ∗·,t(λ

k +∆λ)− P ∗·,t(λ
k))

≈BT

(
T∑
s=1

∇λ·,sP
∗
·,t(λ

k)T∆λ·,s

)
= BT

(
T∑
s=1

∂P ∗·,t(λ
k)

∂λ·,s
B∆ν·,s

)

where in the last equality we have used ∆λ·,s = B∆νs by (1.21) and
∂P ∗·,t(λ

k)

∂λ·,s

is a diagonal matrix with

[
∂P ∗·,t(λ

k)

∂λ·,s

]
jj

=
∂P∗j,t(λ

k)

∂λj,s
for j = 1, . . . , |N | and is

obtained using the computed sensitivities (step 8 in Algorithm 2). Thus, the
Jacobian ∇νF (νk)T can be expressed as
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∇νF (νk)T =


BT ∂P

∗
·,1(λ

k)

∂λ·,1
B · · · BT ∂P

∗
·,1(λ

k)

∂λ·,T
B

...
. . .

...

BT ∂P
∗
·,T (λ

k)

∂λ·,1
B · · · BT ∂P

∗
·,T (λ

k)

∂λ·,T
B

 .
The matrix Hk is dense and there is no discernible structure that can be
exploited in the solution of the linear system (1.16).

1.5 Numerical Results

We consider IEEE networks for testing the performance of the Algorithms 1
and 2. The algorithms were implemented in MATLAB and executed on a
machine with 3.2 GHz Intel Core i7-3930K CPU, 32 GB RAM. Table 1.1
presents information on the number of GenCos, DSOs and lines in the differ-
ent test cases. The rest of the section is organized as follows: §1.5.1 presents
the results for single time period market clearing while §1.5.2 presents the
multiple time period market clearing.

Name |NG| |ND| |L|
case9 3 3 9
case14 5 11 20
case30 6 20 41
case39 10 21 46
case57 7 42 80
case118 54 99 186
case300 69 191 411

Table 1.1 Problem size information for the test instances.

1.5.1 Single Period Market Clearing

We choose the cost function for the GenCos as a strictly convex quadratic
function, ci(P ) = c1iP + c2iP

2 where c2i > 0. The values for the coefficients
c1i and c2i are generated randomly. The utility function for the DSOs is
chosen as a strictly concave quadratic function, ui(−P ) = ui1(−P ) + u2iP

2

where u2i < 0. The coefficient values u1i and u2i are generated randomly.
The demands at the buses are allowed to vary between 80% and 120% of the
nominal demand specified in the test cases available in MATPOWER [32].
Table 1.2 summarizes the performance statistics of Algorithm 2 versus Algo-
rithm 1 (a subgradient algorithm) for a single time period (T = 1) market
clearing problem. The reported numbers are averaged over 10 different runs
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in which the DSO’s utility functions and demands are varied. The conver-
gence tolerance for both algorithms was set to ε = 10−6. Note that the error
measures used for Algorithms 1 and 2 are distinct but equivalent measures
of the error in satisfying the ICP (1.12). The subgradient algorithm hits the
iteration limit of 100000 on most instances, whereas Algorithm 2 solves the
problems in very few iterations with modest function evaluation counts. Fur-
ther, Algorithm 2 is 2-3 orders of magnitude faster than the subgradient
algorithm in terms of CPU time. The number of function evaluations in Ta-
ble 1.2 also includes those required for the sensitivity matrices ∂P ∗·,t′/∂λ·,t
in Step 8 of Algorithm 2.

Figure 1.1 plots the typical progress of the error (‖ΦFB(νk)‖2) in satisfying
ICP (1.12) against the iteration index. The semismooth Newton algorithm
dominates the subgradient method for all tolerance levels. Further, the con-
vergence rate is indeed superlinear as predicted by Theorem 2 and is key
to explaining the observed acceleration in convergence over the subgradient
method.

Fig. 1.1 Plot of error against iteration index for the algorithms.

Name m Algo. 2 - Semismooth Algo. 1 - Subgradient
Avg. #Iters. Avg. #Fcn. Avg. CPU (s) Avg. #Iters. Avg. CPU (s)

case9 20 5.4 28.7 0.03 100000 1.8
case14 42 5.7 59.0 0.06 100000 2.1
case30 84 5.2 26.5 0.05 100000 3.1
case39 94 10.0 109.7 0.13 43262 1.6
case57 162 6.8 33.1 0.12 100000 2.7
case118 374 6.2 42.0 0.86 100000 4.5
case300 824 7.2 28.7 4.03 100000 20.1

Table 1.2 Results for the single time period (T = 1) market clearing problem using
Algorithms. m - size of the vector ν, Avg. #Iters. - average number of iterations,
Avg. #Fcn. - Average number of function evaluations, Avg. CPU (s) - average CPU
time in seconds.
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As mentioned in the introduction, Motto et al [20] had also proposed an
approach that is quite similar to the implicit equation approach. The authors
employed a pure Newton strategy without any line-search. Table 1.3 presents
the results using the pure Newton algorithm of [20]. The algorithm was set
a limit of 1000 iterations. Table 1.3 clearly shows that employing the pure
Newton strategy is not robust. The algorithm of [20] stops on attaining the
iteration limit on all instances of case14, case57, case118 and on 9 of the 10
instances of case30. On the test cases where all the instances were solved
- case9, case39 and case300 - the iteration count is comparable to that of
the semismooth Newton algorithm proposed in this paper. Thus, it is quite
evident that in the single period market clearing the semismooth Newton
algorithm (Algorithm 2) based on the implicit complementarity (ICP) for-
mulation (1.12) is computationally efficient and robust in its convergence.

Name Algorithm in Motto et al. [20]
Avg. #Iters. Avg. #Fcn. Avg. CPU (s)

case9 5.0 16.0 0.02
case14 1000.0 3000.0 4.71
case30 901.4 2705.2 6.58
case39 8.0 25.0 0.07
case57 1000.0 3000.0 13.91
case118 1000.0 3000.0 83.31
case300 24.1 73.3 13.64

Table 1.3 Results for the single time period (T = 1) market clearing problem. Avg.
#Iters. - average number of iterations, Avg. #Fcn. - Average number of function
evaluations, Avg. CPU (s) - average CPU time in seconds.

1.5.2 Multiperiod Market Clearing

We now explore the computational performance of the multiperiod market
clearing problems as the number of time periods is varied. We consider 5 dif-
ferent time periods T ∈ {2, 4, 8, 16, 32}. In the multiperiod setting we impose

that ∆P
G

i = 0.25(P
G

i − P
G
i ) and PD,toti to be the nominal demand specified

in the input file multiplied by the number of time periods. Table 1.4 lists
the size of the vector of unknowns ν ∈ Rm in the implicit complementarity
formulation (1.12) for the different problem instances and time periods. The
size of the problem m dictates the number of floating point operations re-
quired to solve the linear system in (1.16) in order to compute the Newton
step dνk at each iteration of Algorithm 2. Since the matrix Hk is expected
to be dense, the number of number floating point operations required scales
as m3 and will be reflected in the computational time of the algorithm. We
will highlight this aspect in our discussion on CPU times.
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Tables 1.5 and 1.6 list the number of iterations and function evaluations
taken by Algorithm 2 on the different instances and time periods. From the
tables it is clear that the number of iterations of Algorithm 2 is independent
of the increase in the number of time periods. This is a very desirable feature
for practical algorithms. However, the number of function evaluations scales
linearly with the number of time periods.

Table 1.7 lists the CPU time in seconds taken by the algorithm on the
different problem instances and time periods. The reported times include the
time performing the step computation in (1.16) and also for the function eval-
uations. The number reported in the parenthesis is the percentage of time
that is spent in computing the sensitivity matrices ∂P ∗i /∂λi. In our imple-
mentation the sensitivity computations for all the participants are performed
serially. If these computations are performed in parallel as will be the case
in a practical implementation, then the expected speed-ups are reported in
Table 1.8. The speed up is computed as

speedup =
τcpu

τcpu − τsen + τsen/|N |

where τcpu is the total CPU time taken by Algorithm 2 as reported in Ta-
ble 1.7 and τsen is the CPU time spent in sensitivity evaluation. Note that
this computation does include the communication overheads that are typi-
cally involved in a parallel computing framework. From Table 1.8 it is evident
that we can attain almost an order of magnitude speedup up to time peri-
ods T ≤ 4 on the larger instances. However as the number of time periods
increases the time involved in the step computation (1.16) dominates the
overall CPU time and as a consequence the speedups are not significant.

Name T = 2 T = 4 T = 8 T = 16 T = 32
case9 40 80 160 320 640
case14 84 168 336 672 1344
case30 168 336 672 1344 2688
case39 188 376 752 1504 3008
case57 324 648 1296 2592 5184
case118 748 1496 2992 5984 11968
case300 1648 3296 6592 13184 26368

Table 1.4 Summary of the number of constraints in the implicit complementarity
problem (ICP) formulation (1.12) for the different instances and time periods.

1.6 Conclusions

In this paper, we have presented a novel semismooth Newton algorithm for
multiperiod electricity markets. The approach is decentralized in that it only
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Name T = 2 T = 4 T = 8 T = 16 T = 32
case9 5 5 5 5 5
case14 6 6 6 5 5
case30 5 5 5 4 4
case39 10 10 10 10 10
case57 4 4 4 4 4
case118 5 5 5 5 5
case300 7 6 6 6 6

Table 1.5 Summary of the iterations taken by the semismooth Newton algorithm
(Algorithm 2) to solve the multiperiod market clearing problem.

Name T = 2 T = 4 T = 8 T = 16 T = 32
case9 36 76 156 316 636
case14 94 142 238 367 687
case30 41 81 161 258 514
case39 154 234 394 714 1354
case57 29 61 125 253 509
case118 49 89 169 329 649
case300 74 115 211 403 787

Table 1.6 Summary of the function evaluations taken by the semismooth Newton
algorithm (Algorithm 2) to solve the multiperiod market clearing problem.

Name T = 2 T = 4 T = 8 T = 16 T = 32
case9 0.2 (93.6%) 0.5 (96.9%) 1.0 (98.0%) 2.2 (97.5%) 5.0 (96.9%)
case14 0.7 (86.7%) 1.6 (92.0%) 3.4 (93.8%) 6.3 (93.6%) 14.6 (90.7%)
case30 0.9 (96.3%) 2.1 (96.4%) 4.9 (95.7%) 9.3 (93.8%) 22.9 (86.6%)
case39 2.1 (90.1%) 4.9 (93.2%) 11.3 (92.7%) 26.5 (88.6%) 67.9 (79.2%)
case57 1.4 (97.6%) 3.8 (95.6%) 8.9 (92.8%) 22.0 (85.6%) 70.9 (74.7%)
case118 7.3 (96.0%) 20.8 (93.3%) 49.5 (88.4%) 169.9 (77.4%) 736.4 (64.1%)
case300 36.3 (93.7%) 75.0 (88.2%) 278.2 (78.4%) 1253.0 (64.9%) 9182.8 (37.4%)

Table 1.7 Summary of the CPU time in seconds taken by the semismooth Newton
algorithm (Algorithm 2) to solve the multiperiod market clearing problem. The num-
ber in the parenthesis is the percentage of time spent in evaluating the sensitivities.

Name T = 2 T = 4 T = 8 T = 16 T = 32
case9 4.54 5.19 5.46 5.33 5.19
case14 5.34 7.27 8.29 8.17 6.70
case30 13.48 13.73 12.49 10.21 5.96
case39 7.78 10.19 9.69 7.00 4.29
case57 22.83 15.72 11.02 6.19 3.73
case118 21.73 13.64 8.22 4.32 2.75
case300 15.12 8.24 4.56 2.83 1.59

Table 1.8 Summary of the potential speedup in computations when parallel com-
putations are taken into consideration.

requires the GenCos and DSOs to communicate their optimal response to the
price signal from the ISO. The proposed approach is shown to be robust in
converging to a tight tolerance of 10−6. For the single period market clearing
the proposed algorithm requires about 4 orders of magnitude fewer func-
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tion evaluations than a subgradient algorithm. Our numerical experiments
demonstrate that the algorithm scales very well with the number of time
periods. The communication requirement for the semismooth Newton algo-
rithm (Algorithm 2) is identical to that of that of the subgradient algorithm
(Algorithm 1). Hence, the proposed approach can be readily implemented in
practice.

There are a number of extensions for this work. We outline some of them
below.

• In the current paper, the GenCo problem (1.1) does not include startup or
shutdown costs and minimum up or down time for generators. Modeling
such operations requires the introduction of binary variables which renders
the GenCo problem non-convex. Our algorithm can be easily extended to
the GenCo problem resulting from relaxing the binary variables to be
continuous and replacing the feasible region by the convex hull [25, 6].

• The current chapter assumes a lumped model for DSOs and no distributed
generation. The proposed approach to DSOs where the electrical network
of the DSO is also modeled and distributed generation is included. We
believe this is a straightforward extension.

• We will also investigate the applicability of the approach when the DSO’s
power flow is modeled using AC power flow equations. In this context, we
will also explore the convex SDP relaxation [15] which has shown to have
zero duality gap in a number of instances.

Acknowledgements We are grateful to the referees for a careful reading of the
manuscript and bringing to our attention the subtleties of social welfare maximization.
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6. P. Damcı-Kurt, S. Küçükyavuz, D. Rajan, and A. Atamtürk. A polyhedral study
of production ramping. Mathematical Programming, 158(1-2):175–205, 2016.



1 Fast Market Clearing Algorithms 21

7. C. J. Day, B. F. Hobbs, and J. S. Pang. Oligopolistic competition in power
networks: a conjectured supply function approach. IEEE Transactions on Power
Systems, 17(3):597–607, 2002.

8. F. Facchinei, A. Fischer, and C. Kanzow. Regularity properties of a semismooth
reformulation of variational inequalities. SIAM Journal on Optimization, 8:850–
869, 1998.

9. A. Fischer. A special Newton-type optimization method. Optimization, 24:269–
284, 1992.

10. J.-L. Goffin. On the convergence rate of subgradient optimization methods. Math-
ematical Programming, 13:329–347, 1977.

11. B. F. Hobbs and U. Helman. Complementarity-Based Equilibrium Modeling for
Electric Power Markets. In Modeling Prices in Competitive Electricity Markets,
Wiley Series in Financial Economics, pages 69–98. Wiley, 2004.

12. B. F. Hobbs, C. B. Metzler, and J. S. Pang. Strategic gaming analysis for electric
power systems: an MPEC approach. IEEE Transactions on Power Systems,
15(2):638–645, 2000.

13. D. S. Kirschen and G. Strbac. Fundamentals of Power System Economics. John
Wiley & Sons, 2004.

14. L. Qi and J. Sun. A nonsmooth version of Newton’s method. Mathematical
Programming, 58:353–368, 1993.

15. J. Lavaei and S. H. Low. Zero duality gap in optimal power flow problem. IEEE
Transactions on Power Systems, 27(1):92–107, 2012.

16. J. Lavaei and S. Sojoudi. Competitive Equilibria in Electricity Markets with
Nonlinearities. In Americal Control Conference, pages 3081–3088, 2012.

17. T. De Luca, F. Facchinei, and C. Kanzow. A semismooth equation approach to
the solution of nonlinear complementarity problems. Mathematical Programming,
75:407–439, 1996.

18. O.L. Mangasarian. Nonlinear Programming. Classics in Applied Mathematics.
Society for Industrial and Applied Mathematics, 1969.

19. A. Mas-Colell, M. D. Whinston, and J. R. Green. Microeconomic Theory. Oxford
University Press, 1991.

20. A. L. Motto, F. D. Galiana, A. J. Conejo, and J M. Arroyo. Network constrained
multiperiod auction for a pool-based electricity market. IEEE Transactions on
Power Systems, 17(3):646–653, 2002.

21. A. L. Motto, F. D. Galiana, A. J. Conejo, and M. Huneault. On Walrasian
equilibrium for pool-based electricity markets. IEEE Transactions on Power
Systems, 17(3):774–781, 2002.

22. T. S. Munson, F. Facchinei, M. Ferris, A. Fischer, and C. Kanzow. The Semis-
mooth algorithm for large scale complementarity problems. Journal on Comput-
ing, 13:294–311, 2001.

23. J. Nocedal and S.J. Wright. Numerical Optimization. Springer series in opera-
tions research and financial engineering. Springer, 1999.

24. A. U. Raghunathan, F. E. Curtis, Y. Takaguchi, and H. Hashimoto. Accelerating
Convergence to Competitive Equilibrium in Electricity Markets. In IEEE Power
& Energy Society General Meeting, pages PESGM2016–000221, 2016.

25. D. Rajan and S. Takriti. Minimum up/down polytopes of the unit commitment
problem with start-up costs. Technical Report IBM Research Report RC23628,
IBM, Yorktown Heights, NY, 2005.

26. N. Z. Shor. Minimization Methods for Non-Differentiable Functions. Springer-
Verlag, Berlin, 1985.

27. C. L. Su and D. Kirschen. Quantifying the effect of demand response on electricity
markets. IEEE Transactions on Power Systems, 24(3):1199–1207, 2009.

28. G. Wang, M. Negrete-Pincetic, A. Kowli, E. Shafieepoorfard, S. Meyn, and U. V.
Shanbhag. Dynamic competitive equilibria in electricity markets. In Aranya



22 Raghunathan, Curtis, Takaguchi and Hashimoto

Chakrabortty and Marija D. Ili, editors, Control and Optimization Methods for
Electric Smart Grids, volume 3 of Power Electronics and Power Systems, pages
35–62. Springer New York, 2012.

29. J. D. Weber and T. J. Overbye. An individual welfare maximization algorithm
for electricity markets. IEEE Transactions on Power Systems, 17(3):590–596,
2002.

30. A. J. Wood and B. F. Wollenberg. Power Generation Operation and Control.
Wiley-Interscience, 2nd edition, 1996.

31. B. Zhang and D. Tse. Geometry of the Injection Region of Power Networks.
IEEE Transactions on Power Systems, 28(2), 2013.

32. R. D. Zimmerman, C. E. Murillo-Snchez, and R. J. Thomas. MATPOWER:
Steady-state operations, planning, and analysis tools for power systems research
and education. IEEE Transactions on Power Systems, 26(1):12–19, 2011.


	Title Page
	page 2

	/projects/www/html/publications/docs/TR2017-196.pdf
	Fast Market Clearing Algorithms
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22



