
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

FoldingNet: Interpretable Unsupervised Learning on 3D
Point Clouds

Yang, Y.; Feng, C.; Shen, Y.; Tian, D.

TR2017-193 December 2017

Abstract
Recent deep networks that directly handle points in a point set, e.g., PointNet, have been
state-of-the-art for supervised semantic learning tasks on point clouds such as classification
and segmentation. In this work, a novel endto-end deep auto-encoder is proposed to address
unsupervised learning challenges on point clouds. On the encoder side, a graph-based en-
hancement is enforced to promote local structures on top of PointNet. Then, a novel folding
based approach is proposed in the decoder, which folds a 2D grid onto the underlying 3D
object surface of a point cloud. The proposed decoder only uses about 7% parameters of a
decoder with fully-connected neural networks, yet leads to a more discriminative representa-
tion that achieves higher linear SVM classification accuracy than the benchmark. In addition,
the proposed decoder structure is shown, in theory, to be a generic architecture that is able
to reconstruct an arbitrary point cloud from a 2D grid. Finally, this folding-based decoder
is interpretable since the reconstruction could be viewed as a fine granular warping from the
2D grid to the point cloud surface.

arXiv

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2017
201 Broadway, Cambridge, Massachusetts 02139

FoldingNet: Interpretable Unsupervised Learning on 3D Point Clouds

Yaoqing Yang∗ †

yyaoqing@andrew.cmu.edu

Chen Feng‡

cfeng@merl.com

Yiru Shen§

yirus@g.clemson.edu

Dong Tian‡

tian@merl.com

†Carnegie Mellon University ‡Mitsubishi Electric Research Laboratories (MERL) §Clemson University

Abstract
Recent deep networks that directly handle points in a

point set, e.g., PointNet, have been state-of-the-art for su-
pervised semantic learning tasks on point clouds such as
classification and segmentation. In this work, a novel end-
to-end deep auto-encoder is proposed to address unsuper-
vised learning challenges on point clouds. On the encoder
side, a graph-based enhancement is enforced to promote lo-
cal structures on top of PointNet. Then, a novel folding-
based approach is proposed in the decoder, which folds a
2D grid onto the underlying 3D object surface of a point
cloud. The proposed decoder only uses about 7% parame-
ters of a decoder with fully-connected neural networks, yet
leads to a more discriminative representation that achieves
higher linear SVM classification accuracy than the bench-
mark. In addition, the proposed decoder structure is shown,
in theory, to be a generic architecture that is able to recon-
struct an arbitrary point cloud from a 2D grid. Finally, this
folding-based decoder is interpretable since the reconstruc-
tion could be viewed as a fine granular warping from the 2D
grid to the point cloud surface.

1. Introduction
3D point cloud processing and understanding are usu-

ally deemed more challenging than 2D images mainly due
to a fact that point cloud samples live on an irregular struc-
ture while 2D image samples (pixels) rely on a 2D grid in
the image plane with a regular spacing. Point cloud geom-
etry is typically represented by a set of sparse 3D points.
Such a data format makes it difficult to apply traditional
deep learning framework on point clouds. E.g. for each
sample, traditional convolutional neural network (CNN) re-
quires its neighboring samples to appear at some fixed spa-
tial orientations and distances so as to facilitate the convo-
lution. Unfortunately, point cloud samples typically do not
follow such constraints. One way to alleviate the problem
is to voxelize a point cloud to mimic the image represen-
tation and then to operate on voxels. The downside of this
approach is that voxelization has to either sacrifice the rep-

∗This work is supported by MERL.

Input 2D grid 1st folding 2nd folding

Table 1. Illustration of the two-step-folding decoding. Column
one contains the original point cloud samples from the ShapeNet
dataset [54]. Column two illustrates the 2D grid points to be folded
during decoding. Column three contains the output after one fold-
ing operation. Column four contains the output after two folding
operations. This output is also the reconstructed point cloud. We
use a color gradient to illustrate the correspondence between the
2D grid in column two and the reconstructed point clouds after
folding operations in the last two columns. Best viewed in color.

resentation accuracy or incurs huge redundancies, that may
pose an unnecessary cost in the subsequent processing, ei-
ther at a compromised performance or an rapidly increased
processing complexity. Related prior-arts will be reviewed
in Section 1.1.

In this work, we focus on the emerging field of unsu-
pervised learning for point clouds. We propose an auto-
encoder (AE) that is referenced as FoldingNet. The out-
put from the bottleneck layer in the auto-encoder is called

1

n×
12

39layer
perceptron

n×
64

29graph
layers

n×
10

24

global
max-pooling

1×
10

24

1×
51

2

29layer
perceptron

m×2
2D9grid9points

replicate
m9times

codeword

m
×

51
2

Graph-based Encoder

m
×

51
4

concatenate

39layer
perceptron

39layer
perceptron

m
×

3

m
×

51
5

Folding-based Decoder

1st9
folding9

2nd9
folding9

n×
3

n-
by

-9

local
covariance

concatenate

input

output

C
ha

m
fe

r9
D

is
ta

nc
e

m×3
intermediate9
point9cloud

Figure 1. FoldingNet Architecture. The graph-layers are the graph-based max-pooling layers mentioned in (2) in Section 2.1. The 1st
and the 2nd folding are both implemented by concatenating the codeword to the feature vectors followed by a 3-layer perceptron. Each
perceptron independently applies to the feature vector of a single point as in [39], i.e., applies to the rows of the m-by-k matrix.

a codeword that can be used as a high-dimensional embed-
ding of an input point cloud. We are going to show that a 2D
grid structure is not only a sampling structure for imaging,
but can indeed be used to construct a point cloud through
the proposed folding operation. This is based on the obser-
vation that the 3D point clouds of our interest are obtained
from object surfaces: either discretized from boundary rep-
resentations in CAD and computer graphics, or sampled
from line-of-sight sensors like LIDAR. Intuitively, any 3D
object surface could be transformed to a 2D plane through
certain operations like cutting, squeezing, and stretching.
The inverse procedure is to glue those 2D point samples
back onto an object surface via certain folding operations,
which are initialized as 2D grid samples. As illustrated
in Table 1, to reconstruct a point cloud, successive fold-
ing operations are joined to reproduce the surface structure.
The points are colorized to show the correspondence be-
tween the initial 2D grid samples and the reconstructed 3D
point samples. Using the folding-based method, the chal-
lenges from the irregular structure of point clouds are well
addressed by directly introducing such an implicit 2D grid
constrain in the decoder, which avoids the costly 3D vox-
elization in other works [53]. It will be demonstrated later
that the folding operations can build an arbitrary surface
provided a proper codeword.

Despite being strongly expressive in reconstructing point
clouds, the folding operation is simple: it is started by aug-
menting the 2D grid points with the codeword obtained
from the encoder, which is then processed through a 3-
layer perceptron. The proposed decoder is simply a con-
catenation of two folding operations. This design makes the
proposed decoder much smaller in parameter size than the
fully-connected decoder proposed in the recent work [1].
In Section 4.3, we show that the number of parameters of
our folding-based decoder is about 7% of the fully con-
nected decoder in [1]. Although the proposed decoder has a

simple structure, we theoretically show in Theorem 3.2 that
the folding-based decoding structure is universal in that one
folding operation that uses only a 2-layer perceptron can
already reproduce arbitrary point-cloud structure. There-
fore, it is not surprising that our FoldingNet auto-encoder
exploiting two consecutive folding operations can produce
elaborate structures. Notice that when data are from volu-
metric format instead of 2D surfaces, 3D grid may perform
better.

To show the efficiency of FoldingNet auto-encoder for
unsupervised representation learning, we follow the experi-
mental settings in [1] and test the transfer classification ac-
curacy from ShapeNet dataset [7] to ModelNet dataset [54].
The FoldingNet auto-encoder is trained using ShapeNet
dataset, and tested out by extracting codewords from Mod-
elNet dataset. Then, we train a linear SVM classifier to
test the discrimination effectiveness of the extracted code-
words. The transfer classification accuracy is 88.4% on the
ModelNet dataset with 40 shape categories. This classifi-
cation accuracy is even close to the state-of-the-art super-
vised training result [39]. To achieve the best classification
performance and least reconstruction loss, we use a graph-
based encoder structure that is different from [39]. This
graph-based encoder is based on the idea of local feature
pooling operations and is able to retrieve and propagate lo-
cal structural information along the graph structure.

Interpretabilitiy is an important aspect that people care
about when using deep neural networks. In the proposed
FoldingNet, the interpretability comes from two aspects.
First, the proposed folding architecture is designed with a
clear geometric interpretation: we want to impose a “vir-
tual force” to deform/cut/stretch a 2D grid lattice onto a 3D
object surface, while such a deformation force should be
influenced or regulated by interconnections induced by the
lattice neighborhood. Second, the intermediate steps of the
folding process and the training process can be illustrated

by network outputs, and hence the gradual change of the
folding forces can be visualized.

Now we summarize our contributions in this work:
• We train an end-to-end unsupervised deep auto-

encoder that consumes point clouds directly without
preprocessing.
• We propose a new decoding operation called folding

and theoretically show it is universal in point cloud re-
construction.
• We show by experiments on major datasets that folding

can achieve higher classification accuracy than other
unsupervised methods.
• We show that the folding-based decoder is inter-

pretable by visualizing the training process and the
“folding” process on different point models.

1.1. Related works

Applications of learning on point clouds include shape
completion and recognition [54], unmanned autonomous
vehicles [34], 3D object detection, recognition and clas-
sification [9, 31, 38, 39, 45, 46, 50], contour detection [20],
layout inference [16], scene labeling [29], category discov-
ery [57], point classification, dense labeling and segmenta-
tion [3, 10, 13, 19, 21, 24, 26, 35, 39, 51, 52, 55],

Most deep neural networks designed for 3D point clouds
are based on the idea of partitioning the 3D space into
regular voxels and extending 2D CNNs to voxels, such
as [4, 11, 35], including the the work on 3D generative ad-
versarial network [53]. The main problem of voxel-based
networks is the fast growth of neural-network size with the
increasing spatial resolution. Some other options include
octree-based [42] and kd-tree-based [28] neural networks.
Recently, it is shown that neural networks based on purely
3D point representations [1, 39–41] work quite efficiently
for point clouds. The point-based neural networks can re-
duce the overhead of converting point clouds into other data
formats (such as octrees and voxels), and in the meantime
avoid the information loss due to the conversion.

The only work that we are aware of on end-to-end deep
auto-encoder that directly work on point clouds is [1]. The
AE designed in [1] is for the purpose of extracting features
for generative networks. To encode, it sorts the 3D points
using the lexicographic order and applies a 1D CNN on the
point sequence. To decode, it applies a three-layer fully
connected network. This simple structure turns out to out-
perform all existing unsupervised works on representation
extraction of point clouds in terms of the transfer classifi-
cation accuracy from the ShapeNet dataset to the ModelNet
dataset [1]. Our method, which has a graph-based encoder
and a folding-based decoder, outperforms this method in
transfer classification accuracy on the ModelNet40 dataset
[1]. Moreover, compared to [1], our AE design is much
more interpretable: the encoder learns the local shape in-

formation and combines information by max-pooling on a
nearest-neighbor graph, and the decoder learns a force to
fold a two-dimensional grid twice in order to warp the grid
into the shape of the point cloud, using the information ob-
tained by the encoder.

It is hard for purely point-based neural networks to
extract local neighborhood structure around points, i.e.,
features of neighboring points instead of individual ones.
Some attempts for this are made in [1, 40]. In this work,
we exploit local neighborhood features using a graph-based
framework. Deep learning on graph-structured data is not
a new idea. There are tremendous amount of works on ap-
plying deep learning onto irregular data such as graphs and
point sets [2,5,6,12,14,15,22,23,27,30,33,36,37,41,44,49,
56]. Although using graphs as a processing framework for
deep learning on point clouds is a natural idea, only several
seminal works made attempts in this direction [5, 36, 44].
These works try to generalize the convolution operations
from 2D images to graphs. However, since it is hard to
define convolution operations on graphs, we use a simple
graph-based neural network layer that is different from pre-
vious works: we construct the K-nearest neighbor graph (k-
NNG) and repeatedly conduct the max-pooling operations
in each node’s neighborhood. It generalizes the global max-
pooling operation proposed in [39] in that the max-pooling
is only applied to each local neighborhood to generate local
data signatures. Compared to the above graph based convo-
lution networks, our design is simpler and computationally
efficient as in [39]. K-NNGs are also used in other applica-
tions of point clouds without the deep learning framework
such as surface detection, 3D object recognition, 3D object
segmentation and compression [18, 47, 48].

1.2. Preliminaries and Notation

We will often denote the point set by S. We use bold
lower-case letters to represent vectors, such as x, and use
bold upper-case letters to represent matrices, such as A.
The codeword is always represented by θ. We call a ma-
trix m-by-n or m× n if it has m rows and n columns.

2. FoldingNet Auto-encoder on Point Clouds

Now we propose the FoldingNet deep auto-encoder. The
structure of the auto-encoder is shown in Figure 1. The in-
put to the encoder is an n-by-3 matrix. Each row of the
matrix is composed of the 3D position (x, y, z). The output
is an m-by-3 matrix, representing the reconstructed point
positions. The number of reconstructed pointsm is not nec-
essarily the same as n. Suppose the input contains the point
set S and the reconstructed point set is the set Ŝ. Then, the
reconstruction error for Ŝ is computed using a layer defined

as the (extended) Chamfer distance,

dCH(S, Ŝ) = max

{
1

|S|
∑
x∈S

min
x̂∈Ŝ
‖x− x̂‖2,

1

|Ŝ|

∑
x̂∈Ŝ

min
x∈S
‖x̂− x‖2

 .

(1)

The term minx̂∈Ŝ ‖x − x̂‖2 enforces that any 3D point x
in the original point cloud has a matching 3D point x̂ in the
reconstructed point cloud, and the term minx∈S ‖x̂ − x‖2
enforces the matching vice versa. The max operation en-
forces that the distance from S to Ŝ and the distance vice
versa have to be small simultaneously. The encoder com-
putes a representation (codeword) of each input point cloud
and the decoder reconstructs the point cloud using this code-
word. In our experiments, the codeword length is set as 512
in accordance with [1].

2.1. Graph-based Encoder Architecture

The encoder is a concatenation of multi-layer percep-
trons and graph-based max-pooling layers. The graph is
the K-nearest-neighbor graph (K-NNG) constructed from
the 3D positions of the nodes in the input point cloud. In
our experiments, we choose K = 16. First, for each single
point v, we compute its local covariance matrix of size 3-by-
3 and vectorize it to size 1-by-9. The local covariance of v
is computed along the xyz directions using the 3D positions
of the points that are one-hop neighbors of v (including v)
in the K-NNG. We concatenate the matrix of point positions
with size n-by-3 and the local covariances for all points of
size n-by-9 into a matrix of size n-by-12 and input them to
a 3-layer perceptron. The perceptron is applied in parallel
to each row of the input matrix of size n-by-12. It can be
viewed as a per-point function on each 3D point. The out-
put of the perceptron is fed to two consecutive graph layers,
where each layer applies max-pooling to the neighborhood
of each node. More specifically, suppose the K-NN graph
has adjacency matrix A and the input matrix to the graph
layer is X. Then, the output matrix is

Y = Amax(X)K, (2)

where K is a feature mapping matrix, and the (i,j)-th entry
of the matrix Amax(X) is

(Amax(X))ij = ReLU(max
k∈N (i)

xkj). (3)

The local max-pooling operation maxk∈N (i) in (3) essen-
tially computes a local signature based on the graph struc-
ture. This signature can represent the (aggregated) topology
information of the local neighborhood. Through concatena-
tions of the graph-based max-pooling layers, the network
propagates the topology information into larger areas.

2.2. Folding-based Decoder Architecture

The main purpose of this paper is to design a decoder
that can be used to reconstruct a point cloud from the infor-
mation obtained by the encoder.

The proposed decoder uses two consecutive 3-layer per-
ceptrons to warp a 2-dimensional grid into the shape of the
input point cloud. The input codeword is obtained from the
graph-based encoder. Before we feed the codeword into the
decoder, we replicate it m times and concatenate the m-by-
512 matrix with an m-by-2 matrix that contains the m grid
points on a square centered at the origin. The result of the
concatenation is a matrix of size m-by-514. The matrix is
processed row-wise by a 3-layer perceptron and the output
is a matrix of size m-by-3. After that, we again concatenate
the replicated codewords to the m-by-3 output and feed it
into a 3-layer perceptron. This output is the reconstructed
point cloud. The parameter n is set as per the input point
cloud size, e.g. n = 2048 in our experiments, which is the
same as [1].We choose m grid points in a square, so m is
chosen as 2025 which is the closest square number to 2048.

Notice that the concatenation of the codewords to the 2-
dimensional grids, followed by a 3-layer perceptron essen-
tially implements a folding operation. To see this, denote
the input 2D grid points by matrix U. Each row of U is a
two dimensional grid point. Denote the i-th row of U by
ui and the codeword output from the encoder by θ. Then,
after concatenation, the i-th row of the input matrix to the
3-layer perceptron is [ui,θ]. Since the 3-layer perceptron is
applied in parallel to each row of the input matrix, the i-th
row of the output matrix can be written as f([ui,θ]), where
f indicates the function conducted by the 3-layer percep-
tron. This function can be viewed as a parameterized high-
dimensional function with the codeword θ being a parame-
ter to guide the structure of the function (the folding opera-
tion). Since multilayer perceptrons are good at approximat-
ing non-linear functions, they can perform elaborate folding
operations on the 2D grids. The high-dimensional code-
word essentially stores the force that is needed to do the
folding, which makes the folding operation more diverse.

The proposed decoder has two successive folding opera-
tions. The first one folds the 2D grid to 3D space, and the
second one folds inside the 3D space. We show the outputs
after these two folding operations in Table 1. From column
C and column D in Table 1, we can see that each folding
operation conducts a relatively simple operation, and the
composition of the two folding operations can produce quite
elaborate surface shapes. Although the first folding seems
simpler than the second one, together they lead to substan-
tial changes in the final output. More successive folding
operations can be applied if more elaborate surface shapes
are required.

Input 5K iters 10K iters 20K iters 40K iters 100K iters 500K iters 4M iters

Table 2. Illustration of the training process. Random 2D manifolds gradually transform into the surface of point clouds.

3. Theoretical Analysis
First, we state that the graph-based encoder is

permutation-invariant.

Theorem 3.1. The proposed encoder structure is permuta-
tion invariant, i.e., if the rows of the input point cloud matrix
are permuted, the codeword remains unchanged.

Proof. See Supplementary Section 5.

Then, we state a theorem about the universality of the
proposed folding-based decoder. It shows the existence of a
folding-based decoder such that by changing the codeword
θ, the output can be an arbitrary point cloud.

Theorem 3.2. There exists a 2-layer perceptron that can re-
construct arbitrary point clouds from a 2-dimensional grid
using the folding operation.

More specifically, suppose the input is a matrix U of size
m-by-2 such that each row of U is the 2D position of a
point on a 2-dimensional grid of size m. Then, there exists
an explicit construction of a 2-layer perceptron (with hand-
crafted coefficients) such that for any arbitrary 3D point
cloud matrix S of size m-by-3 (where each row of S is the
(x, y, z) position of a point in the point cloud), there ex-
ists a codeword vector θ such that if we concatenate θ to
each row of U and apply the 2-layer perceptron in parallel
to each row of the matrix after concatenation, we obtain the
point cloud matrix S from the output of the perceptron.

Proof in sketch. The full proof is in Supplementary section
6. In the proof we show the existence by explicitly con-
structing a 2-layer perceptron that satisfies the stated prop-
erties. The main idea is to show that in the worst case, the
points in the 2D grid functions as a selective logic gate to
map the 2D points in the 2D grid to the corresponding 3D
points in the point cloud.

Notice that the above proof is just an existence-based
one to show that our decoder structure is universal. It
does not indicate what happens in reality inside the Fold-
ingNet auto-encoder. The theoretically constructed decoder
requires 3m hidden units while in reality, the size of the
decoder that we use is much smaller. Moreover, the con-
struction in Theroem 3.2 leads to lossless reconstruction
of the point cloud, while the FoldingNet auto-encoder only
achives lossy reconstruction. However, the above theorem
can indeed guarantee that the proposed decoding operation
(i.e., concatenating the codewords to the 2-dimensional grid
points and processing each row using a perceptron) is legit-
imate because in the worst case there exists a folding-based
neural network with hand-crafted edge weights that can re-
construct arbitrary point clouds. In reality, a good param-
eterization of the proposed decoder with suitable training
leads to better performance.

4. Experimental Results

4.1. Visualization of the Training Process

It is still not straightforward to tell how the decoder folds
the 2D grid into the surface of a 3D point cloud. Therefore,
we include an illustration on the training process to show
how a random 2D manifold obtained by random folding
gradually turns into a point cloud. The auto-encoder is a sin-
gle FoldingNet trained using the ShapeNet part dataset [55]
which contains 16 categories of the ShapeNet dataset. We
train the FoldingNet using ADAM with an initial learning
rate of 0.0001 and batch size of 1 for 4 × 106 iterations,
which is approximately 330 epochs. The reconstructed
point clouds of several models after different number of
training iterations are reported in Table 2. From the train-
ing process, we can see that a random 2D manifold can be
warped, cut, squeezed, stretched, and attached to form the
point cloud surface in various ways.

4.2. Transfer Classification Accuracy

In this section, we show the efficiency of FoldingNet
in representation learning and feature extraction from 3D
point clouds. In particular, we follow the routine from
[1, 53] to train a linear SVM classifier on the ModelNet
dataset [54] using the codewords (latent representations)
obtained from the auto-encoder, while training the auto-
encoder from the ShapeNet dataset [7]. The train/test splits
of the ModelNet dataset in our experiment is the same as
in [39,53]. The point-cloud-format of the ShapeNet dataset
is obtained by sampling random points on the triangles from
the mesh models in the dataset. It contains 57447 models
from 55 categories of man-made objects. The ModelNet
datasets are the same one used in [39], and the MN40/MN10
datasets respectively contain 9843/3991 models for training
and 2468/909 models for testing. Each point cloud in the se-
lected datasets contains 2048 points with (x,y,z) positions
that are normalized into the 2-dimensional unit sphere as
in [39].

The codewords obtained from the FoldingNet auto-
encoder is of length 512, which is the same as in [1] and
smaller than 7168 in [54]. When training the auto-encoder,
we used ADAM with an initial learning rate of 0.0001 and
batch size of 1. We train the auto-encoder for 1.6×107 iter-
ations, which is approximately 278 epochs on the ShapeNet
dataset. Similar to [1, 39], when training the AE, we apply
random rotations to each point cloud. Unlike the random
rotations in [1, 39], we apply the rotation that is one of the
24 axis-aligned rotations in the right-handed system. When
training the linear SVM from the codewords obtained by the
AE, we do not apply random rotations. We report our results
in Table 3. The results of [8,17, 25,43] are according to the
report in [1, 53]. Since the training of the AE and the train-
ing of the SVM are based on different datasets, the experi-

0 50 100 150 200 250

Training epochs

0.7

0.75

0.8

0.85

0.9

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

R
ec

on
st

ru
ct

io
n

lo
ss

 (
ch

am
fe

r
di

st
an

ce
)

×10-3
Chamfer distance v.s. classification accuracy on ModelNet40

Test Accuracy

Test Loss

Figure 2. Linear SVM classification accuracy v.s. reconstruction
loss on ModelNet40 dataset. The auto-encoder is trained using
data from the ShapeNet dataset.

ment shows the transfer robustness of the FoldingNet. We
also include a figure (see Figure 2) to show how the recon-
struction loss decreases and the linear SVM classification
accuracy increases during training. From Table 3, we can
see that FoldingNet outperforms all other methods on the
MN40 dataset. On the MN10 dataset, the auto-encoder pro-
posed in [1] performs slightly better. However, the point-
cloud format of the ModelNet10 dataset used in [1] is not
public, so the point-cloud sampling protocol of ours may be
different from the one in [1]. Therefore, it is not conclusive
that the method in [1] is better than ours on MN10 dataset.

Method MN40 MN10
SPH [25] 68.2% 79.8%
LFD [8] 75.5% 79.9%

T-L Network [17] 74.4% -
VConv-DAE [43] 75.5% 80.5%

3D-Gan [53] 83.3% 91.0%
Latent-Gan [1] 85.7% 95.3%

FoldingNet (ours) 88.4% 94.4%
Table 3. The comparison on classification accuracy between Fold-
ingNet and other unsupervised methods. All the methods train
a linear SVM on the high-dimensional representations obtained
from unsupervised training.

4.3. Effectiveness of the Folding-Based Decoder

In this section, we show that the folding-based de-
coder performs better in extracting features than the fully-
connected decoder proposed in [1] in terms of classification
accuracy and reconstruction loss. We use the ModelNet40
dataset to train two deep auto-encoders. The first auto-
encoder uses the folding-based decoder that has the same
structure as in Section 2.2, and the second auto-encoder
uses a fully-connected three-layer perceptron as proposed

in [1]. For the fully-connected decoder, the number of in-
puts and number of outputs in the three layers are respec-
tively {512,1024}, {1024,2048}, {2048,2048×3}, which
are the same as in [1]. The output is a 2048-by-3 matrix that
contains the three-dimensional points in the output point
cloud. The encoders of the two auto-encoders are both the
graph-based encoder mentioned in Section 2.1. When train-
ing the AE, we used ADAM with an initial rate of 0.0001
and batch size of 1. We train the auto-encoder for 4 × 106

iterations, which is approximately 406 epochs on the Mod-
elNet dataset.

After training, we use the encoder to process all data in
the ModelNet40 dataset to obtain a codeword for each point
cloud. Then, similar to Section 4.2, we train a linear SVM
using these codewords and report the classification accu-
racy to see if the codewords are already linearly separable
after encoding. The results are shown in Figure 3. Dur-
ing the training process, the reconstruction loss (measured
in Chamfer distance) keeps decreasing, which means the
reconstructed point cloud is more and more similar to the
input point cloud. At the same time, the classification accu-
racy of the linear SVM trained on the codewords gets higher
and higher accuracy, which means the codeword represen-
tations become more and more linearly separable.

From the figure, we can see that the folding decoder al-
most always has a higher accuracy and lower reconstruction
loss. Compared to the fully-connected decoder that relies
on the unnatural “1D order” of the reconstructed 3D points
in 3D space, the proposed decoder relies on the folding of
an inherently 2D manifold corresponding to the point cloud
inside the 3D space. As we mentioned earlier, this folding
operation is more natural than the fully-connected decoder.
Moreover, the number of parameters in the fully-connected
decoder is 1.52 × 107, while the number of parameters in
our folding decoder is 1.05× 106, which is about 7% of the
fully-connected decoder.

One may wonder if uniformly random sampled 2D
points on a plane can perform better than the 2D grid points
in reconstructing point clouds. From our experimental ob-
servation, 2D grid points indeed provide reduced recon-
struction loss than random points. Notice that our graph-
based max-pooling encoder can be viewed as a generalized
version of the max-pooling neural network PointNet [39].
The main difference is that the pooling operation in our en-
coder is done in local neighborhood instead of globally (see
Section 2.1). In supplementary section 7, we show that the
graph-based encoder architecture is better than an encoder
architecture without the graph-pooling layers mentioned in
Section 2.1 in terms of robustness towards random distur-
bance in point positions.

0 100 200 300 400
Training epochs

0.7

0.75

0.8

0.85

0.9

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

4

6

8

10

12

14

R
ec

on
st

ru
ct

io
n

lo
ss

 (
ch

am
fe

r
di

st
an

ce
)×10-4Comparing FC decoder with Folding decoder

Folding decoder
FC decoder

Test Accuracy

Test Loss

Figure 3. Comparison between the fully-connected (FC) decoder
in [1] and the folding decoder on ModelNet40.

4.4. Semi-supervised Learning: What Happens
when Labeled Data are Rare

One of the main motivations to study unsupervised clas-
sification problems is that the number of labeled data is usu-
ally much smaller compared to the number of unlabeled
data. In Section 4.2, the experiment is very close to this
setting: the number of data in the ShapeNet dataset is large,
which is more than 5.74 × 104, while the number of data
in the labeled ModelNet dataset is small, which is around
1.23 × 104. Since obtaining human-labeled data is usually
hard, we would like to test how the performance of Fold-
ingNet degrades when the number of labeled data is small.
We still use the ShapeNet dataset to train the FoldingNet
auto-encoder. Then, we train the linear SVM using only a%
of the overall training data in the ModelNet dataset, where a
can be 1, 2, 5, 7.5, 10, 15, and 20. The test data for the linear
SVM are always all the data in the test data partition of the
ModelNet dataset. If the codewords obtained by the auto-
encoder are already linearly separable, the required number
of labeled data to train a linear SVM should be small. To
prove this intuitive statement, we report the experiment re-
sults in Figure 4. We can see that even if only 1% of the
labeled training data are available (98 labeled training data,
which is about 1∼3 labeled data per class), the test accuracy
is still more than 55%. When 20% of the training data are
available, the test classification accuracy is already close to
85%, higher than most methods listed in Table 3.

4.5. Illustration of Point Cloud Clustering

Here, we provide an illustration of clustering 3D point
clouds using the codewords obtained from FoldingNet. We
use the ShapeNet dataset to train the AE and obtain code-
words for the ModelNet10 dataset, as we detailed in sec-
tion 4.2. Then, we use T-SNE [32] to obtain an embedding

Source Interpolations Target

Table 4. Illustration of interpolation between different models. The first three rows contain intra-class interpolations and the last three rows
contain inter-class interpolations.

10-2 10-1 100

Available Labeled Data/Overall Labeled Data

0.5

0.6

0.7

0.8

0.9

1

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Classification Accuracy v.s. Number of Labeled Data

5% 7.5%
15%

10%

2%

1%

20%

100%

Figure 4. Linear SVM classification accuracy v.s. percentage of
available labeled training data in ModelNet40 dataset.

of the high-dimensional codewords in R2. The parameter
“perplexity” in T-SNE is set as 50. We show the embedding
result in Figure 5. From the figure, we see that most classes
are easily separable except {dresser (violet) v.s. night stand
(pink)} and {desk (red) v.s. table (yellow)}. The authors
have visually checked these two pairs of classes, and found
that many pairs cannot be easily distinguished even by hu-
man. In Table 5, we list the most common mistakes made
in classifying the ModelNet10 dataset.

Figure 5. The T-SNE clustering visualization of the codewords ob-
tained from FoldingNet auto-encoder.

4.6. Model Interpolation

A common method to experimentally prove that the
codewords have extracted the natural representations of the
images is to see if the auto-encoder can automatically inter-
polate between two models in the dataset. In Table 4, we
show both inter-class and intra-class interpolations between
several classes. The auto-encoder is a single FoldingNet
trained using the ShapeNet part dataset.

Item 1 Item 2 Number of mistakes
dresser night stand 19
table desk 15
bed bath tub 3

night stand table 3
Table 5. The first six types of mistakes made in the classification
of ModelNet10 dataset. Their images are shown in the supplemen-
tary material.

References
[1] P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. Guibas.

Latent-space gans for 3d point clouds. 34th International
Conference on Machine Learning, Implicit Models Work-
shop, 2017. 2, 3, 4, 6, 7

[2] J. Atwood and D. Towsley. Diffusion-convolutional neural
networks. In Advances in Neural Information Processing
Systems, pages 1993–2001, 2016. 3

[3] A. Boulch, B. L. Saux, and N. Audebert. Unstructured
point cloud semantic labeling using deep segmentation net-
works. In Eurographics Workshop on 3D Object Retrieval,
volume 2, 2017. 3

[4] A. Brock, T. Lim, J. M. Ritchie, and N. Weston. Generative
and discriminative voxel modeling with convolutional neu-
ral networks. Advances in Neural Information Processing
Systems, Workshop on 3D learning, 2017. 3

[5] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Van-
dergheynst. Geometric deep learning: going beyond eu-
clidean data. IEEE Signal Processing Magazine, 34(4):18–
42, 2017. 3

[6] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral
networks and locally connected networks on graphs. Inter-
national Conference on Learning Representations (ICLR),
2014. 3

[7] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan,
Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su,
et al. Shapenet: An information-rich 3d model repository.
CoRR, 2015. 2, 6

[8] D.-Y. Chen, X.-P. Tian, Y.-T. Shen, and M. Ouhyoung. On
visual similarity based 3D model retrieval. In Computer
graphics forum, volume 22, pages 223–232. Wiley Online
Library, 2003. 6

[9] X. Chen, K. Kundu, Y. Zhu, A. G. Berneshawi, H. Ma, S. Fi-
dler, and R. Urtasun. 3D object proposals for accurate object
class detection. In Advances in Neural Information Process-
ing Systems, pages 424–432, 2015. 3

[10] S. Christoph Stein, M. Schoeler, J. Papon, and F. Worgot-
ter. Object partitioning using local convexity. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 304–311, 2014. 3

[11] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser,
and M. Nießner. Scannet: Richly-annotated 3D reconstruc-
tions of indoor scenes. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017. 3

[12] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolu-
tional neural networks on graphs with fast localized spectral

filtering. In Advances in Neural Information Processing Sys-
tems, pages 3844–3852, 2016. 3

[13] D. Dohan, B. Matejek, and T. Funkhouser. Learning hier-
archical semantic segmentations of LIDAR data. In Inter-
national Conference on 3D Vision (3DV), pages 273–281.
IEEE, 2015. 3

[14] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bom-
barell, T. Hirzel, A. Aspuru-Guzik, and R. P. Adams. Con-
volutional networks on graphs for learning molecular finger-
prints. In Advances in neural information processing sys-
tems, pages 2224–2232, 2015. 3

[15] M. Edwards and X. Xie. Graph based convolutional neural
network. CoRR, 2016. 3

[16] A. Geiger and C. Wang. Joint 3D object and layout infer-
ence from a single RGB-D image. In German Conference
on Pattern Recognition, pages 183–195. Springer, 2015. 3

[17] R. Girdhar, D. F. Fouhey, M. Rodriguez, and A. Gupta.
Learning a predictable and generative vector representation
for objects. In European Conference on Computer Vision,
pages 484–499. Springer, 2016. 6

[18] A. Golovinskiy, V. G. Kim, and T. Funkhouser. Shape-based
recognition of 3d point clouds in urban environments. In 12th
International Conference on Computer Vision, pages 2154–
2161. IEEE, 2009. 3

[19] T. Hackel, N. Savinov, L. Ladicky, J. D. Wegner,
K. Schindler, and M. Pollefeys. Semantic3D. net: A new
large-scale point cloud classification benchmark. ISPRS An-
nals, 2017. 3

[20] T. Hackel, J. D. Wegner, and K. Schindler. Contour detec-
tion in unstructured 3d point clouds. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1610–1618, 2016. 3

[21] T. Hackel, J. D. Wegner, and K. Schindler. Fast semantic
segmentation of 3D point clouds with strongly varying den-
sity. ISPRS Annals of Photogrammetry, Remote Sensing &
Spatial Information Sciences, 3(3), 2016. 3

[22] Y. Hechtlinger, P. Chakravarti, and J. Qin. A generalization
of convolutional neural networks to graph-structured data.
arXiv preprint arXiv:1704.08165, 2017. 3

[23] M. Henaff, J. Bruna, and Y. LeCun. Deep convolutional net-
works on graph-structured data. arXiv:1506.05163, 2015. 3

[24] J. Huang and S. You. Point cloud labeling using 3D convolu-
tional neural network. In 23rd International Conference on
Pattern Recognition (ICPR), pages 2670–2675. IEEE, 2016.
3

[25] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Rotation
invariant spherical harmonic representation of 3d shape de-
scriptors. In Symposium on geometry processing, volume 6,
pages 156–164, 2003. 6

[26] B.-S. Kim, P. Kohli, and S. Savarese. 3D scene understand-
ing by voxel-CRF. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1425–1432, 2013. 3

[27] T. N. Kipf and M. Welling. Semi-supervised classification
with graph convolutional networks. International Confer-
ence on Learning Representations (ICLR), 2017. 3

[28] R. Klokov and V. Lempitsky. Escape from cells: Deep Kd-
networks for the recognition of 3D point cloud models. In-

ternational Conference on Computer Vision (ICCV), 2017.
3

[29] K. Lai, L. Bo, and D. Fox. Unsupervised feature learning
for 3D scene labeling. In IEEE International Conference on
Robotics and Automation (ICRA), pages 3050–3057. IEEE,
2014. 3

[30] R. Levie, F. Monti, X. Bresson, and M. M. Bronstein. Cay-
leynets: Graph convolutional neural networks with complex
rational spectral filters. arXiv:1705.07664, 2017. 3

[31] Y. Li, S. Pirk, H. Su, C. R. Qi, and L. J. Guibas. Fpnn: Field
probing neural networks for 3D data. In Advances in Neural
Information Processing Systems, pages 307–315, 2016. 3

[32] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne.
Journal of Machine Learning Research, 9(Nov):2579–2605,
2008. 7

[33] J. Masci, D. Boscaini, M. Bronstein, and P. Vandergheynst.
Geodesic convolutional neural networks on riemannian man-
ifolds. In Proceedings of the IEEE International conference
on computer vision workshops, pages 37–45, 2015. 3

[34] D. Maturana and S. Scherer. 3D convolutional neural net-
works for landing zone detection from LIDAR. In IEEE In-
ternational Conference on Robotics and Automation (ICRA),
pages 3471–3478. IEEE, 2015. 3

[35] D. Maturana and S. Scherer. Voxnet: A 3D convolutional
neural network for real-time object recognition. In IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pages 922–928. IEEE, 2015. 3

[36] F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda, and
M. M. Bronstein. Geometric deep learning on graphs and
manifolds using mixture model CNNs. Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2017. 3

[37] M. Niepert, M. Ahmed, and K. Kutzkov. Learning convolu-
tional neural networks for graphs. In International Confer-
ence on Machine Learning, pages 2014–2023, 2016. 3

[38] G. Pang and U. Neumann. Fast and robust multi-view 3D ob-
ject recognition in point clouds. In International Conference
on 3D Vision (3DV), pages 171–179. IEEE, 2015. 3

[39] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep
learning on point sets for 3D classification and segmenta-
tion. Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2017. 2, 3, 6, 7, 12

[40] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space.
Advances in Neural Information Processing Systems, 2017.
3

[41] S. Ravanbakhsh, J. Schneider, and B. Poczos. Deep learn-
ing with sets and point clouds. International Conference on
Learning Representations (ICLR), workshop track, 2017. 3

[42] G. Riegler, A. O. Ulusoys, and A. Geiger. Octnet: Learn-
ing deep 3D representations at high resolutions. Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017. 3

[43] A. Sharma, O. Grau, and M. Fritz. Vconv-DAE: Deep vol-
umetric shape learning without object labels. In Computer
Vision-ECCV 2016 Workshops, pages 236–250. Springer,
2016. 6

[44] M. Simonovsky and N. Komodakis. Dynamic edge-
conditioned filters in convolutional neural networks on
graphs. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017. 3

[45] R. Socher, B. Huval, B. Bath, C. D. Manning, and A. Y. Ng.
Convolutional-recursive deep learning for 3D object classifi-
cation. In Advances in Neural Information Processing Sys-
tems, pages 656–664, 2012. 3

[46] S. Song and J. Xiao. Deep sliding shapes for amodal 3D
object detection in RGB-D images. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 808–816, 2016. 3

[47] J. Strom, A. Richardson, and E. Olson. Graph-based seg-
mentation for colored 3d laser point clouds. In IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pages 2131–2136. IEEE, 2010. 3

[48] D. Thanou, P. A. Chou, and P. Frossard. Graph-based com-
pression of dynamic 3d point cloud sequences. IEEE Trans-
actions on Image Processing, 25(4):1765–1778, 2016. 3

[49] J.-C. Vialatte, V. Gripon, and G. Mercier. Generalizing the
convolution operator to extend cnns to irregular domains.
arXiv preprint arXiv:1606.01166, 2016. 3

[50] E. Wahl, U. Hillenbrand, and G. Hirzinger. Surflet-pair-
relation histograms: a statistical 3D-shape representation for
rapid classification. In Fourth International Conference on
3-D Digital Imaging and Modeling, pages 474–481. IEEE,
2003. 3

[51] P. Wang, Y. Gan, P. Shui, F. Yu, Y. Zhang, S. Chen, and
Z. Sun. 3d shape segmentation via shape fully convolutional
networks. Computers & Graphics, 2017. 3

[52] Y. Wang, R. Ji, and S.-F. Chang. Label propagation from Im-
ageNet to 3D point clouds. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
3135–3142, 2013. 3

[53] J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum.
Learning a probabilistic latent space of object shapes via 3D
generative-adversarial modeling. In Advances in Neural In-
formation Processing Systems, pages 82–90, 2016. 2, 3, 6

[54] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and
J. Xiao. 3D Shapenets: A deep representation for volumetric
shapes. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1912–1920, 2015. 1,
2, 3, 6

[55] L. Yi, V. G. Kim, D. Ceylan, I. Shen, M. Yan, H. Su, A. Lu,
Q. Huang, A. Sheffer, L. Guibas, et al. A scalable active
framework for region annotation in 3d shape collections.
ACM Transactions on Graphics (TOG), 35(6):210, 2016. 3,
6

[56] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos,
R. Salakhutdinov, and A. Smola. Deep sets. Advances in
Neural Information Processing Systems, 2017. 3

[57] Q. Zhang, X. Song, X. Shao, H. Zhao, and R. Shibasaki. Un-
supervised 3D category discovery and point labeling from
a large urban environment. In IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 2685–2692.
IEEE, 2013. 3

5. Supplementary: Proof of Theorem 3.1
Denote the input n-by-12 matrix by L. Denote by θ the

codeword obtained by the encoder. Now we prove if the
input is PL where P is an n-by-n permutation matrix, the
codeword obtained from the encoder is still θ.

The first part of the encoder is a per-point function, i.e.,
the 3-layer perceptron is applied to each row of the input
matrix L. Denote the function by f1. Then, it is obvious
that f1(PL) = Pf1(L). The second part computes (2).
Now we prove that for (2),

PY = Amax(PX)K. (4)

Since Y = Amax(X)K, we only need to prove

Amax(PX) = PAmax(X). (5)

Suppose the permutation operation P makes the i-th row of
PX equal to xπ(i), where π(·) is a permutation function on
the set of row indexes {1, 2, . . . , n}. Then, from (3), the
(i,j)-th entry of the matrix Amax(PX) is

(Amax(PX))ij = ReLU(max
k∈N (π(i))

xkj). (6)

In the meantime, the (π(i),j)-th entry of Amax(PX) is

(Amax(X))π(i)j = ReLU(max
k∈N (π(i))

xkj). (7)

Since the right hand side of (6) and (7) are the same, we
know that the matrix Amax(PX) can be obtained by chang-
ing the i-th row of Amax(X) to the π(i)-th row, which
means Amax(PX) = PAmax(X). Thus, we have proved
that for the second part of the encoder, permuting the in-
put rows is equivalent to permuting the output rows, i.e., (4)
holds.

Therefore, if we permute the input to the encoder, the
output of the graph layers also permute. Then, we apply
global max-pooling to the output of the graph layers. It is
obvious that the result remains the same if the rows of the
input to the global max-pooling layer (or the output of the
graph layers) permutes. The conclusion of Theorem 3.1 is
hence proved.

6. Supplementary: Proof of Theorem 3.2
We prove the existence-based Theorem 3.2 by explicitly

constructing a 2-layer perceptron and a codeword vector θ
that satisfy the stated properties.

The codeword is simply chosen as the vectorized
form of the point cloud matrix S. In particular, For a
matrix S of size m-by-3, if S = [sjk], j = 1, 2, . . .m
and k = 1, 2, 3, the codeword vector θ is chosen to be
θ = [s11, s12, s13, s21, s22, s23, . . . , sm1, sm2, sm3].
Then, the i-th row after concatenation is vi =

[xi, yi, s11, s12, s13, s21, s22, s23, . . . , sm1, sm2, sm3],
where [xi, yi] is the position of the i-th 2D grid point.
Suppose the 2D grid points have an interval 2δ, i.e., the
distance between any two points in the 2D grid is at least
2δ. Further assume these m grid points can all be written as
[xi, yi] = [(2βi + 1)δ, (2γi + 1)δ], where βi and γi are two
integers whose absolute values are smaller than a positive
constant M . One example of a set of 4-by-4 grid points is

{[−3δ,−3δ], [−3δ,−1δ], [−3δ, 1δ], [−3δ, 3δ],
[−1δ,−3δ], [−1δ,−1δ], [−1δ, 1δ], [−1δ, 3δ],
[1δ,−3δ], [1δ,−1δ], [1δ, 1δ], [1δ, 3δ],
[3δ,−3δ], [3δ,−1δ], [3δ, 1δ], [3δ, 3δ]}.

(8)

In this case, the choice of M is 4. Also assume that the
output point cloud is bounded inside 3-dimensional box of
length 2 centered at the origin, i.e., |sij | ≤ 1.

Now, we construct a 2-layer perceptron f that takes
the rows vi as inputs and provides the outputs f(vi) =
[si1, si2, si3], for i = 1, 2, . . . ,m. The input layer takes the
vector intput vi which has 3m+2 scalars. The hidden layer
has 3m neurons. The output layer provides three scalar out-
puts [si1, si2, si3]. The 3m neurons in the hidden layer are
partitioned into m groups of 3 neurons. The k-th neuron
(k = 1, 2, 3) in the j-th group (j = 1, 2, 3, . . . ,m) is only
connected to three inputs xi, yi and [sj,k], and it computes
a linear combination of xi, yi and sj,k with weights

αj1 = u2xj ,

αj2 = uyj ,

αj3 = 1,

(9)

and bias
b = −u2x2j − uy2j (10)

where u is a positive constant to be specified later. Suppose
the linear combination output is yj,k. The linear combi-
nation is followed by a nonlinear activation function1 that
computes the following

zj,k =

{
yj,k, if |yj,k| < c,
0, if |yj,k| ≥ c,

(11)

where c is a constant to be specified later. The outputs of
the activation functions are linearly combined to produce
the final output. There are three neurons in the output layer.
The k-th neuron (k=1,2,3) computes

wk =

m∑
j=1

zj,k. (12)

1It is not hard to prove that this function can be obtained by concate-
nating ReLU functions with appropriate bias terms. We specifically avoid
using the ReLU function in order not to hinder the main intuition. In all of
our experiments, we use ReLU activation functions.

We assume the parameters (δ, u, c,M) satisfy

u > 0, c > 0, δ > 0,M > 0, (13)

uδ2 > c+ 1, (14)

u > 8M2 + 4M + 1, (15)
c > 1. (16)

Now we prove that for this perceptron, the final out-
put [w1, w2, w3] is indeed [si1, si2, si3] when the input
to the perceptron is vi. For the i-th input vi =
[xi, yi, s11, s12, s13, s21, s22, s23, . . . , sm1, sm2, sm3], the
k-th neuron in the j-th group in the hidden layer computes
the following linear combination

yj,k =αj1xi + αj2yi + αj3sj,k + b

=u2xjxi + uyjyi + sj,k − u2x2j − uy2j
=u2xj(xi − xj) + uyj(yi − yj) + sj,k.

(17)

Notice that we have assumed [xi, yi] = [(2βi + 1)δ, (2γi +
1)δ],∀i. So we have

yj,k = u2xj(xi − xj) + uyj(yi − yj) + sj,k

=2u2δ2(2βj + 1)(βi − βj) + 2uδ2(2γj + 1)(γi − γj) + sj,k

=u2δ2m1 + uδ2m2 + sj,k,

(18)

where the two integer constants m1 = 2(2βj +1)(βi − βj)
andm2 = 2(2γj+1)(γi−γj), andm1 = 0 only if xi = xj
and m2 = 0 only if yi = yj . Since the absolute values of
βi, βj , γi and γj are all smaller than M , we have

|m1| ≤ 2|2βj+1|·|βi−βj | < 2(2M+1)·2M = 8M2+4M.
(19)

Similarly, we have

|m2| ≤ 2|2γj+1|·|γi−γj | < 2(2M+1)·2M = 8M2+4M.
(20)

Now we consider 3 possible cases:

• |m1| ≥ 1: In this case,

|yj,k| =|u2δ2m1 + uδ2m2 + sj,k|
>u2δ2|m1| − uδ2|m2| − |sj,k|
>u2δ2 − uδ2(8M2 + 4M)− 1

=uδ2[u− (8M2 + 4M)]− 1

(a)
> (c+ 1) · 1− 1 = c,

(21)

where step (a) follows from the assumption (14).

• m1 = 0 but |m2| ≥ 1: In this case,

|yj,k| =|uδ2m2 + sj,k|
≥uδ2|m2| − |sj,k|

≥uδ2
(a)

≥ c+ 1 > c,

(22)

0 100 200 300 400
Training epochs

0.75

0.8

0.85

0.9

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

4

6

8

10

12

14

R
ec

on
st

ru
ct

io
n

lo
ss

 (
ch

am
fe

r
di

st
an

ce
)

×10-4Comparing Encoders with or without Graph Layers

Graph-based Encoder

Encoder without Graph Layers

Test Accuracy

Test Loss

Figure 6. Comparison between the graph-based encoder in Sec-
tion 2.1 and the encoder from which the graph-based max-pooling
layers are removed. The encoder with no graph-based layers is
similar to the one proposed in [39] which is for a different goal
(supervised learning).

where step (a) follows from assumption (15).

• m1 = m2 = 0. In this case,

|yj,k| = |sj,k| ≤ 1
(a)
< c, (23)

where step (a) follows from assumption (16).

Notice that the first two cases are equivalent to i 6= j and
the last case is equivalent to i = j. Thus, from (11), we
have

zj,k =

{
sj,k, if j = i,
0, if j 6= i.

(24)

Thus, from (12), the final output is

wk =

m∑
j=1

zj,k = si,k, k = 1, 2, 3, (25)

which means the output is indeed [si,1, si,2, si,3] when the
input is vi. This concludes the proof.

7. Supplementary: Robustness of the graph-
based encoder

Here, we use one experiment to show that the graph-
pooling layers are useful in maintaining the good perfor-
mance of the FoldingNet when the data is subject to ran-
dom noise. The following experiment compares FoldingNet
with a deep auto-encoder that has the same folding-based
decoder architecture but a different encoder architecture in
which the graph-based max-pooling layers are removed.
The setting of the experiment is the same as in Section 4.3
except that 5 percents of the points in each point cloud in

the ModelNet40 dataset are randomly shifted to other posi-
tions (but still within the bounding box of the original point
cloud). We use this noisy data to see how the performances
degrade for the graph-based encoder and the encoder with-
out graph-based max-pooling layers. The results are re-
ported in Figure 6. We can see that when the graph-based
max-pooling layers are removed, the performance degrades
by approximately 2 percents when noise is injected to the
dataset. However, the classification accuracy of FoldingNet
does not change much (when compared with Figure 3 in
Section 4.3). Thus, it can be seen that the graph-based en-
coder can make FoldingNet more robust.

8. Supplementary: More Details on the Linear
SVM Experiment on ModelNet10

The classification accuracy obtained in Section 4.2 on
MN10 dataset is 94.4%. We stated in Section 4.5 that many
pairs which are wrongly classified are actually hard to dis-
tinguish even by human. In the table on next pape, we list
all the incorrectly classified models and their point cloud
representations. A phrase like “table → desk” means the
point cloud has label “table” but it is wrongly classified as
“desk” by the linear SVM.

toilet→ bed toilet→ bathtub toilet→ chair

dresser→ night stand dresser→ night stand dresser→ night stand

dresser→ night stand dresser→ night stand dresser→ night stand

dresser→ night stand dresser→ night stand monitor→ dresser

desk→ table desk→ table desk→ sofa

desk→ night stand desk→ table desk→ sofa

desk→ table desk→ table bathtub→ bed

bathtub→ table bathtub→ bed bathtub→ table

bathtub→ bed table→ desk table→ desk

table→ desk table→ desk table→ desk

table→ desk table→ desk table→ desk

table→ desk table→ desk table→ night stand

sofa→ night stand night stand→ dresser night stand→ dresser

night stand→ dresser night stand→ dresser night stand→ dresser

night stand→ dresser night stand→ dresser night stand→ dresser

night stand→ dresser night stand→ dresser night stand→ table

night stand→ dresser night stand→ table chair→ bed

	Title Page
	page 2

	/projects/www/html/publications/docs/TR2017-193.pdf
	FoldingNet: Interpretable Unsupervised Learning on 3D Point Clouds
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14

