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Abstract
This paper proposes a unified architecture for end-to-end automatic speech recognition (ASR)
to encompass microphone-array signal processing such as a state-of-the-art neural beamformer
within the end-to-end framework. Recently, the end-to-end ASR paradigm has attracted great
research interest as an alternative to conventional hybrid paradigms with deep neural net-
works and hidden Markov models. Using this novel paradigm, we simplify ASR architecture
by integrating such ASR components as acoustic, phonetic, and language models with a sin-
gle neural network and optimize the overall components for the end-to-end ASR objective:
generating a correct label sequence. Although most existing end-to-end frameworks have
mainly focused on ASR in clean environments, our aim is to build more realistic end-to-end
systems in noisy environments. To handle such challenging noisy ASR tasks, we study multi-
channel end-to-end ASR architecture, which directly converts multichannel speech signal to
text through speech enhancement. This architecture allows speech enhancement and ASR
components to be jointly optimized to improve the end-to-end ASR objective and leads to
an end-to-end framework that works well in the presence of strong background noise. We
elaborate the effectiveness of our proposed method on the multichannel ASR benchmarks in
noisy environments (CHiME-4 and AMI). The experimental results show that our proposed
multichannel end-to-end system obtained performance gains over the conventional end-to-end
baseline with enhanced inputs from a delay-and-sum beamformer (i.e., BeamformIT) in terms
of character error rate. In addition, further analysis shows that our neural beamformer, which
is optimized only with the end-to-end ASR objective, successfully learned a noise suppression
function.
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Abstract—This paper proposes a unified architecture for
end-to-end automatic speech recognition (ASR) to encompass
microphone-array signal processing such as a state-of-the-art
neural beamformer within the end-to-end framework. Recently,
the end-to-end ASR paradigm has attracted great research
interest as an alternative to conventional hybrid paradigms with
deep neural networks and hidden Markov models. Using this
novel paradigm, we simplify ASR architecture by integrating
such ASR components as acoustic, phonetic, and language models
with a single neural network and optimize the overall components
for the end-to-end ASR objective: generating a correct label
sequence. Although most existing end-to-end frameworks have
mainly focused on ASR in clean environments, our aim is to
build more realistic end-to-end systems in noisy environments. To
handle such challenging noisy ASR tasks, we study multichannel
end-to-end ASR architecture, which directly converts multichan-
nel speech signal to text through speech enhancement. This
architecture allows speech enhancement and ASR components to
be jointly optimized to improve the end-to-end ASR objective and
leads to an end-to-end framework that works well in the presence
of strong background noise. We elaborate the effectiveness of
our proposed method on the multichannel ASR benchmarks
in noisy environments (CHiME-4 and AMI). The experimental
results show that our proposed multichannel end-to-end system
obtained performance gains over the conventional end-to-end
baseline with enhanced inputs from a delay-and-sum beamformer
(i.e., BeamformIT) in terms of character error rate. In addition,
further analysis shows that our neural beamformer, which is
optimized only with the end-to-end ASR objective, successfully
learned a noise suppression function.

Index Terms—multichannel end-to-end ASR, neural beam-
former, encoder-decoder network.

I. INTRODUCTION

Over the last decade, with the advent of deep neural
networks (DNN) in automatic speech recognition (ASR), ASR
performance has significantly improved compared to conven-
tional systems based on Gaussian mixture models (GMMs)
and hidden Markov models (HMMs) [1]. Although such deep
learning-based approaches have replaced several components
of the conventional ASR system, current systems continue to
adopt a complicated module-based architecture that consists of
several separate components, such as acoustic, phonetic, and
language models. To build such a complicated architecture,
we require wide and deep knowledge about each component,
which makes it difficult to develop and tune ASR systems for
every applications.
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Recently, as an alternative to such complicated architecture,
an end-to-end ASR paradigm has attracted great research
interest because it simplifies the above architecture with a
single neural network-based architecture [2]–[11]. One of
promising directions is an attention-based encoder-decoder
framework, which integrates all relevant components using
recurrent neural networks (RNNs) and an attention mechanism
[2]–[8]. Using the attention mechanism, the framework deals
with dynamic time alignment problems within the network
and solves the ASR problem as a sequence-to-sequence map-
ping problem from acoustic feature to word/character label
sequences. In addition to the simplified system architecture,
another important motivation of the end-to-end framework is
that the entire inference procedure can be consistently opti-
mized to improve such final ASR objectives as word/character
error rate (WER/CER).

However, previous research on end-to-end frameworks
mainly focused on the ASR problem in a single-channel setup
without speech enhancement. Considering real world applica-
tions, we must also study such frameworks in a multichannel
setup with speech enhancement. Actually, recent benchmark
studies show that multichannel processing with microphone-
array speech enhancement techniques (especially beamforming
methods) produces substantial improvements in the presence
of strong background noise for conventional HMM/DNN
hybrid systems [12], [13]. In light of the above trends, in this
paper, we extend the existing attention-based encoder-decoder
framework by integrating multichannel speech enhancement
components into the end-to-end framework and propose a
multichannel end-to-end ASR, which directly converts mul-
tichannel speech signal to text through speech enhancement.
As a speech enhancement component of our multichannel ASR
system, we adopt a recently proposed beamforming technique
using neural networks, which we call a neural beamformer.
Because a neural beamformer can be formalized as a fully
differentiable network, the beamforming component can be
jointly optimized with the end-to-end ASR component, based
on the backpropagated gradients from the final ASR objective.

Recent studies on neural beamformers can be categorized
into two types: 1) beamformers with a filter estimation network
[14]–[16] and 2) those with a mask estimation network [17]–
[24]. In both approaches, an enhanced signal is obtained by
applying linear filters in the time-frequency domain, which
is based on the conventional formalization of the filter-and-
sum beamformer. The main difference between them is how
to produce such linear filters using a neural network. In the
former approach, the network directly estimates the multichan-
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nel filter coefficients. In the latter approach, the network first
estimates the time-frequency masks and then predicts speech
and noise statistics based on the estimated masks. Finally, with
these statistics, the multichannel filter coefficients are com-
puted based on the well-studied beamforming designs, such
as the minimum variance distortionless response (MVDR)
beamformer [25], [26] and the generalized eigenvalue (GEV)
beamformer [27].

In this paper, we propose to use both types of neural
beamformers with mask and filter estimation networks as the
speech enhancement component for the end-to-end frame-
work. However, motivated by the successes of the mask-based
beamforming approaches [17]–[19], [28] in recent noisy ASR
benchmarks (e.g., CHiME 3 and 4 challenges), this paper
mainly focuses on the mask-based neural beamformer.

Our mask-based neural beamformer adopts a MVDR for-
malization given a reference microphone [26] since computing
the derivatives is relatively simple. Also, this beamformer has
an additional neural network-based attention mechanism for
the reference microphone selection, which obtains robustness
against microphone geometries and speaker positions. This
allows the entire procedures of the neural beamformer, in-
cluding the reference selection, to be invariant to microphone
geometries including the number of channels, the micro-
phone locations, and the microphone ordering. Therefore,
our proposed multichannel end-to-end ASR can deal with
input signals from various microphone geometries without re-
configuration and re-training. Of course, because the channel
attention mechanism is also formalized as a differentiable
network, the entire procedures of the neural beamformer can
be jointly optimized with the end-to-end ASR based on the
backpropagated gradients from the end-to-end ASR objective.

This paper intends to extend our previous study [29], which
outlines the formalization of our multichannel end-to-end ASR
and showed its basic experimental results. That is, the paper
details its formalization by providing pseudo codes of pro-
posed main algorithms and descriptions of how to implement
complex-valued procedures in neural beamformers based on
the real-valued functions using existing deep learning libraries.
The paper also shows additional experimental comparisons and
analyses to show the effectiveness of our multichannel end-to-
end ASR.

In general, the term “end-to-end” has a wide meaning. In
this paper, we define it based on the following two character-
istics: (1) all the procedures from input sequences to output
sequences are represented as a single neural network-based
architecture (fully differentiable network), and (2) the entire
network can be consistently optimized with a single ASR-
level objective. Our proposed multichannel end-to-end ASR
architecture satisfies these characteristics. More specifically,
all the procedures from the front-end multichannel speech
enhancement to back-end speech recognition are represented
as single neural network-based architecture, and the entire
network is optimized based on the backpropagated gradients
from the final ASR objective.

The remainder of this paper is summarized as follows. In
Section II, we briefly explain the conventional attention-based
encoder-decoder framework. Section III describes the formal-

Fig. 1. Structure of attention-based encoder-decoder framework. Encoder
transforms input feature sequence O into high-level feature sequence H , and
then decoder generates output label sequence Y through attention mechanism.

izations of the adopted neural beamformers and introduces
the attention-based reference selection mechanism. Section
IV connects the components described in Sections II and III
and describes the overall processing chain for our proposed
multichannel end-to-end ASR. In Sections VI and VII, we
explain the experiments of the multichannel ASR benchmarks
in noisy environments (CHiME-4 and AMI) and demonstrate
the effectiveness of our proposed method. We conclude this
paper in Section VIII. Additionally, in Appendix, we describe
implementation details for the neural beamformers, an ad-
ditional experiment with a conventional HMM/DNN hybrid
framework, and a notation list.

II. ATTENTION-BASED ENCODER-DECODER NETWORKS

This section explains a conventional attention-based
encoder-decoder framework, which directly deals with variable
length input and output sequences. The framework consists
of two RNNs, an encoder and a decoder, both of which are
connected by an attention mechanism. Fig. 1 illustrates its
overall architecture.

Given feature sequence O = {ot ∈ RDO |t = 1, · · · , T},
where ot is a DO-dimensional feature vector (e.g., a log Mel
filterbank) at input time step t and T is the input sequence
length, the network estimates the a posteriori probabilities for
output label sequence Y = {yn ∈ V|n = 1, · · · , N}, where
yn is a label symbol (e.g., a character) at output time step n,
N is the output sequence length, and V is a set of labels as
follows:

P (Y |O) =
∏
n

P (yn|O, y1:n−1), (1)

H = Encoder(O), (2)
cn = Attention(an−1, sn−1, H), (3)

P (yn|O, y1:n−1) = Decoder(cn, sn−1, y1:n−1), (4)

where y1:n−1 is a label sequence that consists of y1 through
yn−1.
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For input sequence O, the encoder RNN in Eq. (2) first
transforms it to L-length feature sequence H = {hl ∈
RDH |l = 1, · · · , L}, where hl is a DH-dimensional state
vector of the encoder’s top layer at subsampled time step l.
Next the attention mechanism in Eq. (3) integrates all encoder
outputs H into a DH-dimensional context vector cn ∈ RDH

using L-dimensional attention weight vector an ∈ [0, 1]L

that represents a soft alignment of the encoder outputs at
output time step n. Then the decoder RNN in Eq. (4) updates
hidden state sn, estimates the a posteriori probability for
output label yn at output time step n, and further estimates
the a posteriori probabilities for output sequence Y , based on
RNN recursiveness. For the attention mechanism, we adopted
a location-based attention mechanism [3] (See Appendix A).

Here, special tokens for start-of-sentence (sos) and end-of-
sentence (eos) are added to label set V . The decoder starts
the recurrent computation with the sos label and continues to
generate output labels until the eos label is emitted.

In this framework, the whole network , including the
encoder, the attention mechanism, and the decoder, can be
optimized to generate a correct label sequence. Such consistent
optimization of all the relevant procedures is the main moti-
vation of the end-to-end framework. For more details of each
component (i.e., the encoder, the attention mechanism, and
the decoder), refer to our previous paper [29] or the original
papers on attention-based encoder-decoder networks [4], [5].

III. NEURAL BEAMFORMERS

A. Overview

This section explains neural beamformer techniques, which
are integrated with the encoder-decoder network in the follow-
ing section. This paper uses frequency-domain beamformers
[14] rather than time-domain ones [15], because the frequency-
domain beamformers achieve significant computational com-
plexity reduction in multichannel neural processing [30].

Let xt,f,c ∈ C be an STFT coefficient of c-th channel noisy
signal at time-frequency bin (t, f), and let gt,f,c ∈ C be a
corresponding beamforming filter coefficient. In the frequency
domain representation, a filter-and-sum beamformer obtains
enhanced STFT coefficient x̂t,f ∈ C as follows:

x̂t,f =

{
g†t,fxt,f (time-variant filter)
g†fxt,f (time-invariant filter),

(5)

where xt,f = {xt,f,c}Cc=1 ∈ CC is the spatial vector of
the signals obtained from all the microphones for each time-
frequency bin (t, f). gt,f = {gt,f,c}Cc=1 ∈ CC and gf =
{gt,f,c}Cc=1 ∈ CC are corresponding time-variant and time-
invariant filter coefficients, respectively. C is the numbers of
channels. † represents the conjugate transpose.

In this paper, we adopt two types of neural beamformers,
which basically follow Eq. (5): 1) with a filter estimation
network and 2) with a mask estimation network. The main
difference between them is how to produce the filter coeffi-
cients: gt,f or gf . The following subsections describe each
approach.

B. Filter estimation network approach
A neural beamformer with a filter estimation network di-

rectly estimates time-variant filter coefficients {gt,f}T,F
t=1,f=1

as network outputs, where F is the number of dimensions of
the STFT signals.

The following Algorithm 1 summarizes the overall proce-
dures to obtain the enhanced features, and Fig. 2(a) illustrates
an overview of the procedures. The main part of this algorithm
is to predict complex-valued filter coefficients gt,f with a real-
valued neural network, Filternet(·), which is described below.

Algorithm 1 Overall procedures of neural beamformer with
filter estimation network
Require: multichannel STFT input sequences {Xc}Cc=1

1: {gt,f}T,F
t=1,f=1 = Filternet({Xc}Cc=1) . Eqs. (6)-(8)

2: for t = 1 to T do
3: for f = 1 to F do
4: x̂t,f = g†t,fxt,f . Eq. (5)
5: end for
6: end for
7: return X̂ = {x̂t,f}T,F

t=1,f=1

1) Filter estimation network: This approach uses a single
real-valued BLSTM network to predict the real and imagi-
nary parts of the complex-valued filter coefficients at every
time step. We introduce 2FC-dimensional output layers to
separately compute the real and imaginary parts of the filter
coefficients.

Let x̄t = {<(xt,f ),=(xt,f )}Ff=1 ∈ R2FC be an input fea-
ture of a 2FC-dimensional real-valued vector for the BLSTM
network, which is obtained by concatenating the real and
imaginary parts of all STFT coefficients in all channels at time
step t. Then the network outputs time-variant filter coefficients
gt,f as follows:

Z = BLSTM({x̄t}Tt=1), (6)

<(gt,f ) = tanh(W<
f zt + b<f ), (7)

=(gt,f ) = tanh(W=
f zt + b=f ), (8)

where Z = {zt ∈ RDZ |t = 1, · · · , T} is a sequence of
the DZ-dimensional output vectors of the BLSTM network.
<(gt,f ) and =(gt,f ) are the real and imaginary parts of the
filter coefficients. W<

f ∈ RC×DZ and W=
f ∈ RC×DZ are

the weight matrices that output real and imaginary part of
the filter coefficients for frequency f , and b<f ∈ RC and
b=f ∈ RC are their corresponding bias vectors. Eqs. (6)-
(8) correspond to Filternet(·) in Algorithm 1. Using esti-
mated filters {gt,f}T,F

t=1,f=1, the enhanced STFT coefficients
{x̂t,f}T,F

t=1,f=1 are obtained based on Eq. (5).
2) Remarks: This approach has several possible issues due

to its formalization. The first issue is the high flexibility
of estimated filters {gt,f}T,F

t=1,f=1, which are composed of a
large number of unconstrained variables (2TFC) estimated
from few observations. This causes problems, such as training
difficulties and over-fitting. The second is that the network
structure depends on the number and order of the channels.
Therefore, a new filter estimation network has to be trained
when we change microphone configurations.
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(a) Filter estimation approach (b) Mask estimation approach

Fig. 2. Structures of neural beamformers: (a) filter estimation network, which directly estimates the filter coefficients; (b) mask estimation network, which
estimates time-frequency masks and gets filter coefficients based on MVDR formalization.

C. Mask estimation network approach

The neural beamformer with a mask estimation network
first estimates the time-frequency masks. Then cross-channel
power spectral density (PSD) matrices (also known as spatial
covariance matrices) are predicted based on the estimated
masks. Finally, they are used to compute the time-invariant
filter coefficients {gf}Ff=1 based on the well-studied MVDR
formalization.

The key point of the mask-based neural beamformer is
that it constrains the estimated filters based on well-founded
array signal processing principles, which can solve/suppress
the issues described in Section III-B2. This is the main
difference between this approach and the filter estimation net-
work approach described in Section III-B. Also, mask-based
beamforming approaches have achieved great performance in
recent noisy ASR benchmarks [17]–[19], [28]. Motivated by
this background, we focus on a neural beamformer with a
mask estimation network more than a filter estimation network.

Algorithm 2 summarizes the overall procedures to obtain
the enhanced features, and Fig. 2(b) illustrates an overview of
the procedures1. Each procedure is described below.

1) MVDR formalization given reference microphones: This
paper adopts one MVDR formalization given the reference
microphones [26], which computes the time-invariant filter
coefficients gf in Eq. (5) as follows:

gf =
(ΦN

f )
−1

ΦS
f

Tr((ΦN
f )−1ΦS

f )
u, (9)

where ΦS
f ∈ CC×C and ΦN

f ∈ CC×C are the PSD matrices
for speech and noise signals, respectively. u ∈ RC is a one-
hot vector representing a reference microphone, and Tr(·)
represents the matrix trace operation. Eq. (9) corresponds to
MVDR(·) in Algorithm 2.

1Due to space limitations, the procedures corresponding to State Feat(·)
and Spatial Feat(·) in Algorithm 2 are not shown in Fig. 2(b).

Algorithm 2 Overall procedures of neural beamformer with
mask estimation network
Require: multichannel STFT input sequences {Xc}Cc=1

1: for c = 1 to C do
2: {mS

t,c}Tt=1, {zS
t,c}Tt=1 = MasknetS(Xc) . Eqs. (12)-(13)

3: {mN
t,c}Tt=1, {zN

t,c}Tt=1 = MasknetN(Xc) . Eqs. (14)-(15)
4: end for
5: for t = 1 to T do
6: mS

t = Mean({mS
t,c}Cc=1) . Eq. (16)

7: mN
t = Mean({mN

t,c}Cc=1) . Eq. (17)
8: end for
9: for f = 1 to F do

10: ΦS
f = PSD({mS

t}Tt=1, {xt,f}Tt=1) . Eq. (10)
11: ΦN

f = PSD({mN
t }Tt=1, {xt,f}Tt=1) . Eq. (11)

12: end for
13: for c = 1 to C do
14: qc = State Feat({zS

t,c)}Tt=1, {zN
t,c)}Tt=1) . Eq. (20)

15: rc = Spatial Feat({φSf,c,c′}
F,C
f=1,c′=1) . Eq. (21)

16: end for
17: u = Attend Channel({qc}Cc=1, {rc}Cc=1) . Eqs. (18)-(19)
18: for f = 1 to F do
19: gf = MVDR(ΦS

f ,Φ
N
f ,u) . Eq. (9)

20: end for
21: for t = 1 to T do
22: for f = 1 to F do
23: x̂t,f = g†fxt,f . Eq. (5)
24: end for
25: end for
26: return X̂ = {x̂t,f}T,F

t=1,f=1

2) Mask-based estimation for PSD matrices: Let mS
t,f ∈

[0, 1] and mN
t,f ∈ [0, 1] respectively be the time-frequency

masks for speech and noise signals. Based on a previous work
[17], [28], the PSD matrices are robustly estimated using the
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expectation with respect to time-frequency masks as follows:

ΦS
f =

1∑T
t=1m

S
t,f

T∑
t=1

mS
t,fxt,fx†t,f , (10)

ΦN
f =

1∑T
t=1m

N
t,f

T∑
t=1

mN
t,fxt,fx†t,f . (11)

Eqs. (10) and (11) correspond to PSD(·) in Algorithm 2.
3) Mask estimation network: To estimate the time-

frequency masks for every c-th channel (mS
t,c = {mS

t,f,c}Ff=1

and mN
t,c = {mN

t,f,c}Ff=1), we use two real-valued BLSTM
networks: one for a speech mask and another for a noise mask.
Unlike the filter estimation network, because the masks are
estimated separately for each channel, 2F -dimensional output
layers are used to separately compute the real and imaginary
parts of the time-frequency masks.

Let x̄t,c = {<(xt,f,c),=(xt,f,c)}Ff=1 ∈ R2F be the 2F -
dimensional real-valued input features for the BLSTM net-
works, which is obtained by concatenating the real and imagi-
nary parts of all the STFT features at c-th channel. Given input
sequence X̄c = {x̄t,c ∈ R2F |t = 1, · · · , T}, each network
outputs the time-frequency masks separately for each channel
as follows:

ZS
c = BLSTMS(X̄c), (12)

mS
t,c = sigmoid(WSzS

t,c + bS), (13)

ZN
c = BLSTMN(X̄c), (14)

mN
t,c = sigmoid(WNzN

t,c + bN), (15)

where ZS
c = {zS

t,c ∈ RDZ |t = 1, · · · , T} is a sequence of
DZ-dimensional output vectors of the BLSTM network for a
speech mask over c-th channel’s input sequence X̄c. ZN

c is the
BLSTM output sequence for a noise mask. WS ∈ RF×DZ and
WN ∈ RF×DZ are the weight matrices that output speech and
noise masks. bS ∈ RF and bN ∈ RF are their corresponding
bias vectors. Eqs. (12) and (13) correspond to MasknetS(·),
while Eqs. (14) and (15) correspond to MasknetN(·) in
Algorithm 2.

After computing the speech and noise masks for each
channel, mean masks mt = {mt,f}Ff=1 are obtained as
follows:

mS
t =

1

C

C∑
c=1

mS
t,c, (16)

mN
t =

1

C

C∑
c=1

mN
t,c. (17)

Eqs. (16) and (17) correspond to Mean(·) in Algorithm 2.
These mean masks are used to predict PSD matrices (ΦS

f and
ΦN

f ) in Eqs. (10) and (11).
The mask-based MVDR neural beamformer, given reference

microphones, was previously proposed in [18], [19], but our
neural beamformer further extends it with attention-based
reference selection, which is described in the next subsection.

4) Attention-based selection for reference microphones: To
incorporate the reference microphone selection in the neural
beamformer framework, we apply the idea of an attention
mechanism to estimate reference microphone vector u in
Eq. (9). Based on an attention mechanism’s characteristics, this
allows the reference selection to work for arbitrary numbers
and orders of channels.

To formalize the attention mechanism, we adopt two types
of time-invariant and channel-dependent features: 1) time-
averaged state feature qc ∈ R2DZ and 2) PSD-based spatial
feature rc ∈ R2F . With these feature vectors, reference
microphone vector u is estimated as follows:

k̃c = w̃Ttanh(VQqc + VRrc + b̃), (18)

uc =
exp(βk̃c)∑C
c=1 exp(βk̃c)

, (19)

where w̃ ∈ R1×DV , VQ ∈ RDV×2DZ , and VR ∈ RDV×2F

are trainable weight parameters, and b̃ ∈ RDV is a trainable
bias vector. β is the sharpening factor. Eqs. (18) and (19)
correspond to Attend Channel(·) in Algorithm 2.

Time-averaged state feature qc is extracted from the
BLSTM networks for the speech and noise masks in Eqs. (12)
and (14) as follows:

qc =
1

T

T∑
t=1

{zS
t,c, z

N
t,c}, (20)

Eq. (20) corresponds to State Feat(·) in Algorithm 2.
PSD-based spatial feature rc, which incorporates the spatial

information into the attention mechanism, is extracted from
speech PSD matrix ΦS

f in Eq. (10) as follows:

rc =
1

C − 1

C∑
c′=1,c′ 6=c

{<(φS
f,c,c′),=(φS

f,c,c′)}Ff=1, (21)

where φSf,c,c′ ∈ C is the entry in the c-th row and the c′-
th column of speech PSD matrix ΦS

f . To select a reference
microphone, since the spatial correlation related to speech
signals is more informative, we only use speech PSD matrix
ΦS

f as a feature. Eq. (21) corresponds to Spatial Feat(·) in
Algorithm 2.

Note that, in this mask-based MVDR neural beamformer,
the masks for each channel are computed separately using the
same BLSTM network, and the mask estimation network is
independent of the channels. Similarly, the reference selection
network is also independent of the channels. Therefore, the
neural beamformer deals with input signals with arbitrary
numbers and orders of channels without network re-training
or re-configuration.

IV. MULTICHANNEL END-TO-END ASR
A. Unified architecture

In this work, we propose a unified architecture of a multi-
channel end-to-end ASR, which integrates all components with
a single network architecture. We adopt neural beamformers
(Section III) as a speech enhancement part and an attention-
based encoder-decoder (Section II) as a ASR part. Fig. 3
overviews our proposed system.
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The entire procedures to generate sequence of output labels
Y from sequence of multichannel input signals {Xc}Cc=1 are
formalized as Algorithm 3:

Algorithm 3 Overall procedures of multichannel end-to-end
ASR system
Require: multichannel STFT input sequences {Xc}Cc=1

1: X̂ = Enhance({Xc}Cc=1) . Algorithm 1 or 2
2: Ô = Feature(X̂) . Eqs. (22)-(23)
3: H = Encoder(Ô) . Eq. (2)
4: s0 = 0, c0 = 0, a0 = 0, y0 = 0 (sos)
5: n = 1
6: repeat
7: cn = Attention(an−1, sn−1, H) . Eq. (3)
8: yn = Decoder(cn, sn−1, y1:n−1) . Eq. (4)
9: n = n+ 1

10: until eos is emitted
11: return Y

Enhance(·) is a speech enhancement function realized by
the neural beamformer with the filter estimation network
(Algorithm 1) or the mask estimation network (Algorithm 2).

Feature(·) is a feature extraction function that connects
the neural beamformer and the encoder-decoder network .
In this work, followed by the use of (log) Mel filterbank-
based features in previous studies (e.g., a single-channel end-
to-end ASR setup [3], [5], a single-channel joint training setup
of speech enhancement and HMM/DNN hybrid [31], and a
multichannel HMM/DNN hybrid setup [14], [21]), we adopt
a normalized log Mel filterbank as an input acoustic feature
of the encoder-decoder network. In other words, the feature
extraction function transforms the enhanced STFT coefficients
that are output from the front-end neural beamformer to the
enhanced acoustic feature (i.e., normalized log Mel filterbank)
for inputting to the back-end attention-based encoder-decoder
network. Enhanced acoustic feature ôt ∈ RDO was obtained
from enhanced STFT coefficients x̂t ∈ CF as follows:

pt = {<(x̂t,f )2 + =(x̂t,f )2}Ff=1, (22)

ôt = Norm(log(Mel(pt))), (23)

where pt ∈ RF is a real-valued vector of the power spectrum
of the enhanced signal at time step t. Mel(·) represents the
operation of DO×F Mel matrix multiplication, and Norm(·)
represents the operation of the global mean and variance
normalization so that the mean and variance of each dimension
become 0 and 1.

Note that since computation of the normalized log Mel
filterbank is fully differentiable, the gradients from the speech
recognition part (i.e., the attention-based encoder-decoder net-
work) can be backpropagated to the speech enhancement part
(i.e., the neural beamformer)2.

2Because the computation of the log Mel transformation is differentiable,
it can also be optimized similarly to the other network functions (i.e.,
Enhance(·), Encoder(·), Attention(·), and Decoder(·)). However, in our
preliminary experiments, the optimization of the log Mel transformation did
not improve the performance (it caused underfitting). Therefore, in this paper,
we fixedly adopted the standard log Mel transformation.

Fig. 3. Overview of our proposed multichannel end-to-end ASR system,
which converts multichannel speech signal to text through speech enhance-
ment. The mask-based neural beamformer works as a speech enhancement part
and the attention-based encoder-decoder works as a ASR part, where feature
extraction function (i.e., extracting filterbank coefficients from enhanced STFT
coefficients) connects those components.

Encoder(·), Attention(·), and Decoder(·) are respectively
defined in Eqs. (2), (3), and (4). They receive the sequence of
the enhanced log Mel filterbank-like features Ô as input and
generate a sequence of predicted label symbols Y .

Thus, we can build a multichannel end-to-end ASR system
that converts multichannel speech signal to text through speech
enhancement with a single network architecture. Note that
because all of the procedures, such as enhancement, feature
extraction, encoder, attention, and decoder, are connected with
differentiable graphs, we can optimize the overall inference
for the entire end-to-end ASR objective, which is generating
a correct label sequence.

B. Training objective

Learning the attention mechanism of encoder-decoder net-
works in a noisy environment is difficult because the time-
alignments are easily corrupted by noise [7]. To suppress
such training difficulty in noisy environments, we adopt a
joint CTC-attention loss [7] for our end-to-end ASR objec-
tive, where connectionist temporal classification (CTC) [9] is
another type of end-to-end framework.

Joint CTC-attention loss resembles a multi-task learning
approach. In addition to the loss used for encoder-decoder
networks, it also utilizes the loss used for CTC. Because CTC
loss imposes a left-to-right constraint on the time-alignment,
it helps the encoder network and the attention mechanism
learn appropriate time-alignments in the presence of strong
background noise.

To define the joint CTC-attention loss, a CTC decoder is
added to the encoder’s top layer, where the encoder is shared
by the attention-based and CTC decoders. Then joint CTC-
attention loss L is formalized as follows:

L = γ ∗ (− logP ∗ATT(Y |X)) + (1− γ) ∗ (− logPCTC(Y |X)),
(24)

where P ∗ATT(Y |X) is the posteriors estimated by the attention-
based encoder-decoder, PCTC(Y |X) is the posteriors estimated
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TABLE I
CORPUS INFORMATION.

CHiME-4 Hours Speakers

Training 3 (real) + 15 (simu) 4 (real) + 83 (simu)
Development 2.9 (real) + 2.9 (simu) 4 (real) + 4 (simu)

Evaluation 2.2 (real) + 2.2 (simu) 4 (real) + 4 (simu)

AMI Hours Speakers

Training 78 (real) 135 (real)
Development 9 (real) 18 (real)

Evaluation 9 (real) 16 (real)

by the CTC, and γ ∈ [0, 1] is an interpolation weight.
For the encoder-decoder network, approximated posteriors
P ∗ATT(Y |X) are used for the training objective instead of true
posteriors P (Y |X) in Eq. (1) as follows:

P ∗ATT(Y |X) =
∏
n

P (yn|O, y∗1:n−1), (25)

where y∗1:n−1 is the ground truth of the label subsequence until
output time step n− 1.

V. RELATION TO PREVIOUS WORKS

Several related studies exist on neural beamformers based
on filter estimation [14]–[16] and mask estimation [17]–[24].
The main difference is that these previous studies used a
component-level training objective within conventional hybrid
frameworks, while our work focuses on the entire end-to-end
ASR objective. For example, some previous work [17], [19],
[20], [23] used a signal-level objective (binary mask classifica-
tion or regression) to train a network given parallel clean and
noisy speech data. On the other hand, other works [14]–[16],
[18], [21], [22] used ASR objectives (HMM state classification
or sequence-discriminative training), but they remain based
on the hybrid approach. Speech recognition with raw mul-
tichannel waveforms [32], [33] is also classified into neural
beamformers, where the filter coefficients are represented
as the network parameters of convolutional neural networks
(CNNs), but again these methods are still based on the hybrid
approach. Note that the above learning based beamforming
approaches can be viewed as an extension of likelihood-
maximizing (LIMA) beamformer [34], where beamforming
filter coefficients are optimized with HMM/GMM acoustic
models based on a maximum likelihood criterion.

If we focus on the network architecture design of the
beamforming part aside from the end-to-end framework, our
beamformer is based on an MVDR formalization given a
reference microphone, which was also previously used in
[18], [19]. The difference of our beamformer from those
approaches is that it can automatically select a reference
microphone within a neural network framework. In [18], [19],
one channel is fixedly used as a reference microphone for all
utterances by considering microphone geometries. However,
our method introduces attention-based reference microphone
selection, which allows the beamformer to choose appropriate
reference microphones automatically in terms of the entire

TABLE II
CONDITIONS RELATED TO FEATURE EXTRACTION.

Input for encoder-decoder Log Mel filterbank ( 40-dim )
Input for neural beamformer STFT + DC offset ( 257-dim )

Sampling frequency 16 kHz
Frame length 25 ms
Frame shift 10 ms

Window function Hamming

end-to-end ASR objective without any prior information of
microphone geometries.

Similarly, if we only focus on the above automatic reference
selection function aside from our entire framework, there exist
prior studies [35], [36], which have a function to select dom-
inant channels for a multichannel ASR. [35] uses an attention
mechanism to perform channel selection from the pool of
multichannel feature candidates in the filterbank domain, while
[36] hardly selects dominant features with a max-pooling layer
in the hidden state domain. These approaches mainly differ
from ours in a sense that they do not hold the beamforming
function. This is because they perform their enhancement
process in the filterbank or hidden state domain rather than
in the STFT domain, and cannot perform beamforming in
principle due to the lack of spatial information.

Regarding end-to-end speech recognition, all existing stud-
ies are based on a single channel setup. For example, most
focus on a standard clean ASR setup without speech enhance-
ment [2]–[4], [6]–[10]. Several research discussed end-to-end
ASR in a noisy environment [5], [11], but these method deals
with noise robustness by preparing various types of simulated
noisy speech for training data without incorporating multi-
channel speech enhancement in their end-to-end frameworks.

VI. EXPERIMENTAL CONDITIONS

A. Data corpora and feature representation

We compared the effectiveness of our multichannel end-
to-end system to a baseline end-to-end system with noisy
or beamformed speech signals. Even though we had two
multichannel ASR benchmarks, CHiME-4 [37] and AMI [38],
we mainly used the CHiME-4 corpus to demonstrate our
experiments.

CHiME-4, an ASR task for public noisy environments,
consists of speech recorded using a tablet device with 6-
channel microphones in four environments: cafe (CAF), street
junction (STR), public transportation (BUS), and pedestrian
area (PED). It contains real and simulated data. From the 6-
channel microphones, we excluded the second channel signals,
which were captured by a microphone under the tablet, and
used the rest five channels for the following multichannel
experiments (C = 5).

AMI, an ASR task for meetings, consists of speech recorded
using 8-channel circular microphones (C = 8). It contains only
real data. The amount of training data for AMI is larger than
one for CHiME-4.

ChiME-4 consisted of read speech spoken by native English
speakers. while AMI consisted of highly spontaneous speech
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spoken by mostly non-native English speakers. Such basic
information of the above corpora as the number of hours and
speakers is summarized in Table I.

We used 40-dimensional log Mel filterbank coefficients
as an input feature vector for the encoder-decoder network
(DO = 40) and 257-dimensional STFT-based features (256
STFT coefficients and 1 DC offset) as an input feature vector
for the neural beamformer (F = 257). Conditions related to
feature extraction are briefly summarized in Table II.

B. Evaluated systems

We compared the following seven ASR systems: 1) NOISY,
2) BEAMFORMIT, 3) FILTER NET, 4) MASK NET (FIX),
5) MASK NET (ATT), 6) ERDOGAN’s MVDR, and 7)
HEYMANN’s GEV.

NOISY and BEAMFORMIT are the baseline single-channel
end-to-end systems that did not include the speech enhance-
ment part in the training phase of their frameworks. Their end-
to-end networks were trained only with noisy speech data by
following a conventional multi-condition training strategy [37].
During decoding, NOISY used single-channel noisy speech
data from ’isolated 1ch track’ in CHiME-4 as input, while
BEAMFORMIT used the enhanced speech data obtained from
the 5-th channel signals with BeamformIt [39], which is a
well-known weighted delay-and-sum beamformer, as input.

FILTER NET, MASK NET (FIX), and MASK NET
(ATT) are the multichannel end-to-end systems described in
Section IV. To evaluate the validity of the reference channel
selection, we prepared MASK NET (ATT) based on a mask-
based beamformer with an attention-based reference selection
described in Section III-C4, and MASK NET (FIX) with the
5-th channel as a fixed reference microphone, located on the
front in the middle of the tablet device. During training, we
adopted a multi-condition training strategy; in addition to
optimization with the enhanced features through the neural
beamformers, we also used the noisy multichannel speech
data as input of the encoder-decoder networks without passing
through the neural beamformers to improve the robustness of
the encoder-decoder networks.

In addition to the comparison with a conventional delay-
and-sum beamformer (BEAMFORMIT), we compared our
approach with other state-of-the-art neural beamformer imple-
mentations [19], [40], which achieved great ASR performances
for conventional hybrid frameworks in the recent CHiME-
4 challenge. ERDOGAN’s MVDR and HEYMANN’s GEV
also used the same baseline system as well as NOISY and
BEAMFORMIT. During decoding, the enhanced speech data
produced by the state-of-the-art neural beamformers are used
as input to the baseline system.

ERDOGAN’s MVDR adopted the MVDR formalization,
similar to our approach, but it always used the 5-th channel
as the reference microphone. Therefore, it closely resembles
our MASK NET (FIX). The main difference between them

3FILTER NET and MASK NET basically follow the formalization in [16]
and [19]. However, based on our multichannel end-to-end ASR concept, they
are jointly optimized with the end-to-end ASR back-end based on the ASR-
level objective.

TABLE III
SUMMARY OF EVALUATED SYSTEMS: FILTER NET AND MASK NET

CORRESPOND TO PROPOSED METHOD.

System Training
objective

Joint
optimization

Use
neural

network

Use
parallel
speech

BEAMFORMIT [39] signal-level No No No
FILTER NET 3 ASR-level Yes Yes No
MASK NET 3 ASR-level Yes Yes No

ERDOGAN’s MVDR [19] signal-level No Yes Yes
HEYMANN’s GEV [40] signal-level No Yes Yes

is the training objective. ERDOGAN’s MVDR are separately
optimized based on the signal-level objective independent of
the ASR component using parallel clean and noisy speech
data. On the other hand, MASK NET (FIX) is jointly opti-
mized based on the end-to-end ASR objective with the ASR
component only using noisy speech data. In addition, the
structure of mask estimation network is also different from
our setting [19].

Different from our approach, HEYMANN’s GEV adopted
GEV formalization, which requires the estimation of a steering
vector based on eigenvalue decomposition instead of esti-
mating the reference microphone vector. In recent studies on
neural beamformers, such a GEV-based neural beamformer is
a popular alternative to the MVDR-based neural beamformer.
To obtain the enhanced signals, we utilized the software tools
provided in the GitHub repository (https://github.com/fgnt/
nn-gev) [17].

Table III briefly summarizes the main differences among
each evaluated system. “Training objective” indicates that the
beamformer was trained based on the ASR-level or the signal-
level objective, and “Joint optimization” indicates whether
the beamformer was jointly optimized with the end-to-end
ASR back-end. “Use neural network” indicates whether the
beamformer used the neural network-based architecture, and
“Use parallel speech” indicates whether clean speech was used
to train the beamformer.

Note that all the evaluated systems used the same network
structure, which is described in Section VI-C. In addition,
the hyperparameters for the training and decoding conditions,
which are described in Section VI-D, were set based on the
development accuracy of the NOISY system and shared among
all the evaluated systems.

C. Network configurations

1) Encoder-decoder networks: In this experiment, we used
a 4-layer BLSTM with 320 cells in the encoder (DH = 320)
and a 1-layer LSTM with 320 cells in the decoder. In the
encoder, we subsampled the hidden states of the first and
second layers and used every second hidden state for the
subsequent layer’s inputs. Therefore, the number of hidden
states at the encoder’s output layer was reduced to L = T/4.
After every BLSTM layer, we used a linear projection layer
with 320 units to combine the forward and backward LSTM
outputs. For the attention mechanism of the time-alignment,
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TABLE IV
NETWORK CONFIGURATIONS.

Model Layer Units Type Activation

Encoder L1 - L4 320 BLSTM + Projection tanh

Decoder L1 320 LSTM tanh
L2 48 Linear softmax

Filter net L1 - L3 320 BLSTM + Projection tanh
L4 2570 Linear tanh

Mask net L1 - L3 320 BLSTM + Projection tanh
L4 514 Linear sigmoid

TABLE V
CONDITIONS RELATED TO TRAINING AND DECODING.

Parameter initialization Uniform distribution ( [-0.1, 0.1] )
Optimization technique AdaDelta + gradient clipping

Training objective Joint CTC-attention loss ( γ = 0.9 )
Training epoch 15

Beam size 20
Length penalty 0.3

Allowed hypothesis length 0.3× L ∼ 0.75× L (CHiME-4 )

we adopted a location-based attention mechanism, where 10
centered convolution filters of width 100 were used to extract
the location-based features. We set the attention inner product
dimension to 320 and the sharpening factor to 2.

2) Neural beamformers: We used a similar 3-layer BLSTM
with 320 cells (DZ = 320) without the subsampling technique.
After every BLSTM layer, we also used a linear projection
layer with 320 units. For the attention mechanism of the
reference selection, we used the same attention inner product
dimension (DV = 320) and sharpening factor (β = 2) as those
of the encoder-decoder network.

Network configurations, except the attention mechanisms,
are briefly summarized in Table IV. All of the above networks
were implemented using Chainer [41].

D. Training and decoding

In the training stage, all the parameters were initialized
with range [-0.1, 0.1] of a uniform distribution. We used
the AdaDelta algorithm [42] with gradient clipping [43] for
optimization and initialized AdaDelta hyperparameters ρ =
0.95 and ε = 1−8. Once the loss over the validation set
was degraded, we decreased AdaDelta hyperparameter ε by
multiplying it by 0.01 at each subsequent epoch. To boost
the optimization in a noisy environment, we adopted a joint
CTC-attention multi-task loss function [7], as described in
Section IV-B. We set the interpolation weight to 0.9 (γ = 0.9).
The training procedure was stopped after 15 epochs.

For decoding, we used a beam search algorithm [44] with a
beam size of 20 at each output step to reduce the computation
cost. CTC scores were also used to re-score the hypotheses.
We adopted a length penalty term [3] to the decoding ob-
jective and set the penalty weight to 0.3. In the CHiME-4
experiments, we only allowed hypotheses whose lengths were
within 0.3 × L and 0.75 × L during the decoding, while the

TABLE VI
CHARACTER ERROR RATE [%] FOR CHIME-4 CORPUS.

Model dev simu dev real eval simu eval real

NOISY 25.0 24.5 34.7 35.8
BEAMFORMIT 21.5 19.3 31.2 28.2

FILTER NET 19.1 20.3 28.2 32.7
MASK NET (FIX) 15.5 18.6 23.7 28.8
MASK NET (ATT) 15.3 18.2 23.7 26.8

ERDOGAN’s MVDR [19] 16.2 18.2 24.3 26.7

hypothesis lengths in the AMI experiments were automatically
determined based on the above scores. Note that we pursued
a pure end-to-end setup without external lexicon or language
models and used CER as an evaluation metric.

The conditions related to training and decoding are briefly
summarized in Table V.

VII. EXPERIMENTAL RESULTS

A. Comparison of character error rate

1) CHiME-4: Table VI shows the recognition perfor-
mance of CHiME-4 with six systems. The result shows
that BEAMFORMIT, FILTER NET, MASK NET (FIX), and
MASK NET (ATT) outperformed NOISY, confirming the
effectiveness of combining speech enhancement with the
attention-based encoder-decoder framework. The comparison
of MASK NET (FIX) and MASK NET (ATT) validates the
using of the attention mechanism for reference channel se-
lection. FILTER NET also improved the performance more
than NOISY, but not as much as MASK NET (ATT). This is
because optimizing the filter estimation network is difficult
due to a lack of restrictions to estimate filter coefficients,
and it needs optimization, as suggested by a previous work
[14]. Finally, MASK NET (ATT) achieved better recognition
performance than BEAMFORMIT, proving the effectiveness
of our unified architecture rather than a pipe-line combination
of speech enhancement and (end-to-end) speech recognition.

Table VI also shows that the performance of MASK NET
(ATT) is comparable to ERDOGAN’s MVDR, which is a
state-of-the-art neural beamformer implementation. Note that
MASK NET (ATT) successfully achieved a good performance
without requiring parallel clean and noisy speech data. This
result suggests that we can eliminate the requirement of
parallel speech data for training by the end-to-end optimization
of the ASR system.

We also evaluated HEYMANN’s GEV, but the performance
is quite poor4. We assume that this result was caused by
the speech distortions produced by the GEV-based beam-
former. Although the MVDR-based beamformer suppressed
the speech distortions, the GEV-based beamformer ignored
the speech distortions and only focused on the noise reduction.
Such speech distortions sometimes degrade ASR performance,
when we input the beamformed signals to existing ASR
systems.

4For example, CER for eval real is 71.6.
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TABLE VII
CHARACTER ERROR RATE [%] FOR AMI CORPUS.

Model dev eval

NOISY 41.8 45.3
BEAMFORMIT 44.9 51.3

MASK NET (ATT) 35.7 39.0

TABLE VIII
CHIME-4 VALIDATION ACCURACIES [%] FOR MASK NET (ATT) WITH

DIFFERENT NUMBERS AND ORDERS OF CHANNELS.

Model channel dev

NOISY isolated 1ch track 87.9

MASK NET (ATT) 5 6 4 3 1 91.2
MASK NET (ATT) 3 4 1 5 6 91.2

MASK NET (ATT) 5 6 4 1 91.1
MASK NET (ATT) 6 4 3 1 90.4

MASK NET (ATT) 5 6 4 90.9
MASK NET (ATT) 6 4 1 90.1

2) AMI: To further investigate the effectiveness of our
proposed multichannel end-to-end framework, we also experi-
mented with the AMI corpus. Table VII compares the recogni-
tion performance of three systems: NOISY, BEAMFORMIT,
and MASK NET (ATT). In NOISY, we used noisy speech data
from the 1st channel in AMI as input to the system. Table VII
shows that, even in the AMI, our proposed MASK NET
(ATT) achieved better recognition performance than the base-
line systems (NOISY and BEAMFORMIT), confirming the
effectiveness of our proposed multichannel end-to-end frame-
work. BEAMFORMIT was worse than NOISY even with the
enhanced signals. This phenomenon is sometimes observed in
noisy speech recognition where the distortion caused by the
sole speech enhancement degrades the performance without
re-training. Since our end-to-end system jointly optimized the
speech enhancement part with the ASR objective, it can avoid
such degradations.

B. Influence on number and order of channels

As we discussed in Section III-C, one unique charac-
teristic of our proposed MASK NET (ATT) is its robust-
ness/invariance against the number and order of channels
without re-training. Table VIII shows the influence of the
CHiME-4 validation accuracies on the number and order of the
channels. The validation accuracy was computed conditioned
on ground truth labels y∗1:n−1 in Eq. (4) during the decoder’s
recursive label prediction, which has a strong correlation with
CER. The second column of the table represents the channel
indices, which were used as input of the same MASK NET
(ATT) network.

Comparison of 5 6 4 3 1 and 3 4 1 5 6 shows that the
order of the channels did not affect the recognition perfor-
mance of MASK NET (ATT) at all, as we expected. In addi-
tion, even when we used fewer than three or four channels as
input, MASK NET (ATT) still outperformed NOISY (single

Fig. 4. Comparison of log-magnitude spectrograms of a CHiME-4 utterance
with the 5-th channel noisy signal, enhanced signal with BeamformIt, and
enhanced signal with our proposed FILTER NET and MASK NET (ATT)

channel). These results confirm that our proposed multichannel
end-to-end system can deal with input signals with an arbitrary
number and order of channels without any re-configuration and
re-training.

In addition to the above analyses, comparing the setups
using the same number of channels, 5 6 4 1 and 5 6 4 out-
performed 6 4 3 1 and 6 4 1, respectively. The observation
is due to the fact that the 5-th channel is the single best channel
in the real dev and eval sets of CHiME-4 task.

C. Visualization of beamformed features

To analyze the behavior of our developed speech enhance-
ment component with a neural beamformer, Fig. 4 visualizes
the spectrograms of the same CHiME-4 utterance for four
signals: 1) the 5-th channel noisy signal, 2) an enhanced
signal with BEAMFORMIT, 3) an enhanced signal with
FILTER NET, and 4) an enhanced signal with MASK NET
(ATT). We confirmed that BEAMFORMIT, FILTER NET, and
MASK NET (ATT) successfully suppressed noise compared
to the 5-th channel signal by eliminating the blurred red areas
overall. In addition, by focusing on the second black boxes, the
harmonic structure, which was corrupted in the 5-th channel
signal, was recovered in BEAMFORMIT, FILTER NET, and
MASK NET (ATT).

This result suggests that our proposed MASK NET (ATT)
successfully learned a noise suppression function that resem-
bles the conventional beamformer, although it is optimized
based on the end-to-end ASR objective, without explicitly
using clean data as a target.

Similar to BEAMFORMIT and MASK NET (ATT), FIL-
TER NET seems to learn some kind of noise suppression
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Fig. 5. Histogram of reference microphone selected by BEAMFORMIT and
MASK NET (ATT)

function. However, it seems to over-suppress the overall sig-
nals compared to BEAMFORMIT and MASK NET (ATT)
(e.g., inside of the left black boxes), which may cause speech
distortion.

D. Histogram of selected reference microphone

To analyze the behavior of our proposed attention mech-
anism for reference microphone selection, Fig. 5 illustrates
a histogram of the selected reference microphone for the
development set with two systems: BEAMFORMIT and
MASK NET (ATT). As described in Eqs. (18) and (19), our
proposed reference selection mechanism is formalized in a
probabilistic way, but in this figure, the frequency is counted
assuming that the channel index with the highest probability
is selected. BEAMFORMIT selected a reference microphone
using a metric based on the signal-level criterion, i.e., pairwise
cross-correlation in time domain [39].

Fig. 5 shows that both BEAMFORMIT and MASK NET
(ATT) selected the 5-th channel most frequently. That result
seems plausible from the viewpoint of microphone geometries,
because the 5-th channel is located on the front and the center
of the tablet device, and therefore, it is expected to capture
relatively clean speech signals. Our preliminary result also
shows that the 5-th channel is the single best performing
channel in the array. One interesting finding is that the trends
in the selected reference seem similar, although MASK NET
(ATT) only learned the reference selection mechanism to
improve the end-to-end ASR objective.

VIII. CONCLUSION

To handle the challenging noisy ASR tasks, we extended
an existing attention-based encoder-decoder framework by
integrating a neural beamformer and proposed a unified archi-
tecture of a multichannel end-to-end ASR. This architecture
allows the overall inference in multichannel speech recognition
(i.e., from speech enhancement to speech recognition) to be
optimized based on the end-to-end ASR objective, and leads
to an end-to-end framework that works well in the presence of
strong background noise. In addition, because it is formalized
independent of microphone geometries, it can deal with input
signals with an arbitrary number and order of channels without
any re-configuration and re-training. Our experimental results

on challenging noisy ASR benchmarks (CHiME-4 and AMI)
show that the proposed framework outperformed the end-
to-end baseline with noisy and delay-and-sum beamformed
inputs. In addition, visualization of beamformed features
shows that our neural beamformer successfully learned a noise
suppression function, although it is optimized based on the
end-to-end ASR objective, without using parallel clean and
noisy speech data.

The current system suffers from data sparseness issues due
to the lack of lexicon and language models in the back-end
decoder-network processing, unlike the conventional hybrid
approach. The results reported in this paper convincingly show
the effectiveness of the proposed framework for the front-end
processing, they still have a room for the improvement to
reach the state-of-the-art performance by solving the above
back-end processing issues. Our most important future work
is to overcome these data sparseness issues in the back-end
processing by developing adaptation techniques of an end-to-
end framework by incorporating linguistic resources.

APPENDIX A
LOCATION-BASED ATTENTION MECHANISM FOR TIME

ALIGNMENT

This section describes the formalization of our adopted
location-based attention mechanism [3] represented below:

cn = Attention(an−1, sn−1, H).

This corresponds to Attention(·) in Eq. (3). Based on the
attention mechanism, the attention weight vector an and the
context vector cn are estimated as follows:

{fn,l}Ll=1 = F ∗ an−1, (26)

kn,l = wTtanh(VSsn + VHhl + VFfn,l + b), (27)

an,l =
exp(αkn,l)∑L
l=1 exp(αkn,l)

, (28)

cn =

L∑
l=1

an,lhl, (29)

where w ∈ R1×DW , VH ∈ RDW×DH , VS ∈ RDW×DS , and
VF ∈ RDW×DF are trainable weight matrices. b ∈ RDW is a
trainable bias vector. F ∈ RDF×Df is a trainable convolution
filter. α is a sharpening factor, and ∗ represents the convolu-
tion operation. Eqs. (26)-(29) correspond to Attention(·) in
Eq. (3).

The convolution operation is performed with a stride of 1
along the time axis, and the filter F produce DF-dimensional
feature vector fn,l at each time step l, where we adopt the
zero-padding technique for the edge region.

APPENDIX B
REAL-VALUED COMPUTATION FOR COMPLEX-VALUED

INVERSE OPERATION

To implement the mask-based MVDR neural beamformer,
we have to deal with complex-valued operations. However, to
the best of our knowledge, most deep learning libraries do not
support such complex-valued operations. To bypass this issue,
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we implement such complex-valued operations using real-
valued operations by separately computing real and imaginary
parts.

In this section, we describe the mathematical formula for
a complex-valued inverse, which is the most complicated
operation in our implementation. Let C = A + iB be a
complex-valued matrix, where A and B are real-valued ma-
trices corresponding to real and imaginary parts. The inverse
of C can be computed separately for the real and imaginary
parts as follows [45]:

<(C−1) = (A + BA−1B)−1 (30)

=(C−1) = (A + BA−1B)−1BA−1. (31)

This formula allows us to implement the complex-valued
inverse only with a combination of the real-valued operations.

Because other fundamental operations such as addition,
multiplication, and division can also be computed separately,
we can easily implement the neural beamformer (including
complex-valued operations) with the existing sophisticated
deep learning libraries.

APPENDIX C
ADDITIONAL EXPERIMENT: COMPARISON OF

PERFORMANCES BETWEEN THE END-TO-END ASR AND
HMM/DNN HYBRID SYSTEMS

In this section, we report an additional experimental result,
which compares the performance between the end-to-end
ASR and HMM/DNN hybrid systems in a noisy ASR task.
Through the experiment, we investigate the promising future
research direction to further improve the performance of the
multichannel end-to-end ASR framework.

A. Condition

Our experimental conditions basically follow Section VI.
Here we focus on the conditions related to the HMM/DNN
hybrid system.

For the evaluations, we utilized the official baseline
HMM/DNN hybrid system that was included in the ChiME-
4 corpus. The system was optimized using sequence-
discriminative training with 5-th channel noisy speech data
and applied the language model re-scoring technique. Detailed
descriptions of it are shown in a Kaldi recipe 5.

B. Result

Table IX shows CERs for the four systems, where the
first and second rows correspond to NOISY and MASK NET
(ATT) in Table VI, and the third row (hybrid + BEAMFOR-
MIT) corresponds to CHiME-4’s official baseline setup. “Rec-
ognizer” denotes the type of back-end ASR recognizer: one
for the end-to-end ASR framework (i.e., the attention-based
encoder-decoder network) and another for the HMM/DNN
hybrid framework. “Input signal” denotes the type of signal
input to the framework: one for the enhanced signal with
BEAMFORMIT and another for the enhanced signal with

5https://github.com/kaldi-asr/kaldi/tree/master/egs/chime4/s5 6ch Kaldi is a
popular open-source toolkit for conducting ASR experiments [46].

TABLE IX
COMPARISON OF CHARACTER ERROR RATES [%] FOR CHIME-4 CORPUS

BETWEEN END-TO-END ASR AND HMM/DNN HYBRID SYSTEMS.

Recognizer Input signal
Dev-
simu

Dev-
real

Eval-
simu

Eval-
real

End-to-end BEAMFORMIT 21.5 19.3 31.2 28.2
End-to-end MASK NET (ATT) 15.3 18.2 23.7 26.8

Hybrid BEAMFORMIT 3.8 3.1 6.7 7.1
Hybrid MASK NET (ATT) 2.7 2.9 3.9 6.0

MASK NET (ATT). Note that although the fourth row used
the HMM/DNN hybrid system as the back-end ASR recog-
nizer, the input signal (i.e., MASK NET (ATT)) was produced
by the mask-based neural beamformer developed within our
multichannel end-to-end ASR framework.

The results show that a performance gap exists between end-
to-end ASR and HMM/DNN hybrid systems in noisy ASR
task. On the other hand, a comparison with the third (hybrid
+ BEAMFORMIT) and fourth (hybrid + MASK NET (ATT))
rows shows that the input signal enhanced by the multichannel
end-to-end ASR framework (MASK NET (ATT)) achieved
lower CER values than the signal enhanced by BeamformIt
(BEAMFORMIT). These results suggest that the neural beam-
former, jointly optimized within our multichannel end-to-end
framework, produced more suitable enhanced speech inputs
at least for the HMM/DNN hybrid system than CHiME-4’s
official baseline beamformer, BeamformIt. In other words, our
developed multichannel end-to-end ASR framework has prob-
ably already achieved reasonable beamformers, even though it
was optimized under the end-to-end ASR-oriented criterion.

Based on the above finding, we obtained insight into future
research directions to further improve the performance of an
end-to-end ASR system in noisy ASR task. To boost the
discriminative power of a total multichannel end-to-end ASR
system, we need to investigate how to improve such end-to-end
ASR back-end as attention-based encoder-decoder networks,
especially in noisy ASR tasks.

Several possible reasons might explain the performance gap
between end-to-end ASR and HMM/DNN hybrid systems. The
main reason is probably the existence of external lexicon or
language models. In this paper, to pursue a pure end-to-end
setup6, we did not utilize such external lexicon or language
models. On the other hand, the HMM/DNN hybrid system
utilized such lexicon and language models, which provide
effective language regularity. Amount of the training data in
CHiME-4 (i.e., 18 hours) is probably not sufficient for the
end-to-end framework to obtain such language regularity.

In the previous studies (e.g., [4], [47]), the external language
model is applied to the decoding procedure of the end-to-
end ASR systems and shown to be effective to improve the
ASR performance in the case when the amount of training
data is not sufficient to learn the language regularity. Because
the amount of training data in CHiME-4 corpus is relatively
small, even in our experimental setup, it would be helpful to

6Strictly speaking, the use of such external lexicon or language models
do not follow our end-to-end definition because it was separately optimized
with the end-to-end ASR framework using another training corpus including
a large amount of text data. That is why we focused on a pure end-to-end
setup without external lexicon or language models in our experimental setup.
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compensate the insufficiency of the language regularity of the
end-to-end systems.

Another possible reason is the immaturity of the adopted
end-to-end ASR architecture. In this paper, we adopted the
standard architecture of the attention-based encoder-decoder
networks [4]. Adopting more sophisticated architectures,
which are being studied (e.g., [6]), will probably improve the
performance of the end-to-end ASR back-end.

APPENDIX D
NOTATION LIST

This section provides a brief reference, which describes
the notations used in this paper. Basically, each notation is
described once in the tables.

Basic indices
t input time step
n output time step
l subsampled time step
f frequency index
c channel index
T length of input sequence
N length of output sequence
L length of subsampled input sequence
F dimension of STFT signals
C number of channels

Encoder-Decoder (Section II and Appendix A)
ot acoustic feature vector at t
O sequence of input acoustic feature
yn label symbol at n
Y sequence of output label symbol
V set of label symbols

P (Y |X) posteriors predicted by encoder-decoder
hl state vector of encoder’s top layer at l
H sequence of encoder’s output
cn context vector at n
an attention weight at n
sn state vector of decoder’s top layer at n
DO dimension of acoustic feature vector
DH dimension of encoder’s state vector
fn,l location-based feature at (n, l)
F convolution filter for attention mechanism
w weight vector for attention inner product
b bias vector for attention mechanism

VS weight matrix for decoder’s state sn
VH weight matrices for encoder’s state hl

VF weight matrix for location-based feature fn,l

α sharping factor
DW dimension of attention inner product
DS dimension of decoder’s state vector
DF number of filters for attention mechanism
Df filter width for attention mechanism

Neural beamformer (Section III)
x̂t,f enhanced STFT coefficient at (t, f)
xt,f,c STFT coefficient at (t, f, c)
xt,f vector of STFT coefficient at (t, f)
gt,f,c beamforming filter coefficient at (t, f, c)
gt,f vector of time-variant filter coefficient at (t, f)
gf vector of time-invariant filter coefficient at f
Xc sequence of input STFT feature for c

Filter estimation network (Section III-B)
zt output vector of BLSTM network at t
Z sequence of output vector of BLSTM network
x̄t input vector of BLSTM network at t

W<
f weight matrix to output real part of filters at f

b<f bias vector to output real part of filters at f
W=

f weight matrix to output imaginary part of filters at f
b=f bias vector to output imaginary part of filters at f
DZ dimension of BLTSM network’s output

Mask estimation network (Section III-C)
ΦS

f PSD matrix for speech at f
ΦN

f PSD matrix for noise at f
u reference microphone vector

mS
t,f mean masks for speech at (t, f)

mN
t,f mean masks for noise at (t, f)

mS
t vector of mean mask for speech at t

mS
t vector of mean mask for noise at t

mS
t,f,c time-frequency masks for speech at (t, f, c)

mN
t,f,c time-frequency masks for noise at (t, f, c)

mS
t,c vector of time-frequency mask for speech at (t, c)

mN
t,c vector of time-frequency mask for noise at (t, c)

x̄t,c input vector of BLSTM network at (t, c)
X̄c sequence of input STFT feature x̄t,c for c
zS
t,c output vector of BLSTM network for

speech mask at (t, c)
ZS

c sequence of BLSTM network’s output
for speech mask

zN
t,c output vector of BLSTM network for

noise mask at (t, c)
ZN

c sequence of BLSTM network’s output
for noise mask

WS weight matrix to output speech mask
bS bias vector to output speech mask

WN weight matrix to output noise mask
bN bias vector to output noise mask
qc time-averaged state feature
rc PSD-based spatial feature

φS
f,c,c′ entry in c-th row and c′-th column of

PSD matrix for speech ΦS
f

w̃ weight vector for attention inner product
b̃ bias vector for attention mechanism

VQ weight matrix for time-averaged state feature qc

VR weight matrix for PSD-based spatial feature rc
β sharping factor
DV dimension of attention inner product

Multichannel end-to-end ASR (Section IV)
X̂ sequence of enhanced STFT feature
Ô sequence of enhanced acoustic feature
pt enhanced power spectrum vector at t
ôt enhanced acoustic feature vector at t
L joint CTC-attention loss

P ∗ATT(Y |X) approximated posteriors predicted by
encoder-decoder

PCTC(Y |X) posteriors predicted by CTC
γ interpolation weight
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