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of an object hypothesis, which allow us to leverage active learning to reduce the amount of
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measures ”localization tightness” of an object hypothesis, which is based on the overlapping
ratio between the region proposal and the final prediction. Our second metric measures
”localization stability” of an object hypothesis, which is based on the variation of predicted
object locations when input images are corrupted by noise. Our experimental results show
that by augmenting a conventional active-learning algorithm designed for classification with
the proposed metrics, the amount of labeled training data required can be reduced up to
25%. Moreover, on PASCAL 2007 and 2012 datasets our localization-stability method has an
average relative improvement of 96.5% and 81.9% over the baseline method using classification
only.
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Abstract

Active learning—a class of algorithms that iteratively

searches for the most informative samples to include in a

training dataset—has been shown to be effective at annotat-

ing data for image classification. However, the use of active

learning for object detection is still largely unexplored as

determining informativeness of an object-location hypoth-

esis is more difficult. In this paper, we address this issue

and present two metrics for measuring the informativeness

of an object hypothesis, which allow us to leverage active

learning to reduce the amount of annotated data needed

to achieve a target object detection performance. Our first

metric measures “localization tightness” of an object hy-

pothesis, which is based on the overlapping ratio between

the region proposal and the final prediction. Our second

metric measures “localization stability” of an object hy-

pothesis, which is based on the variation of predicted ob-

ject locations when input images are corrupted by noise.

Our experimental results show that by augmenting a con-

ventional active-learning algorithm designed for classifica-

tion with the proposed metrics, the amount of labeled train-

ing data required can be reduced up to 25%. Moreover, on

PASCAL 2007 and 2012 datasets our localization-stability

method has an average relative improvement of 96.5% and

81.9% over the baseline method using classification only.

1. Introduction

Prior works have shown that with a large amount of an-

notated data, convolutional neural networks (CNNs) can

be trained to achieve a super-human performance for var-

ious visual recognition tasks. As tremendous efforts are

dedicated into the discovery of effective network architec-

tures and training methods for further advancing the per-

formance, we argue it is also important to investigate into

effective approaches for data annotation as data annotation

is essential but expensive.

Data annotation is especially expensive for the object-

detection task. Compared to annotating image class, which

can be done via a multiple-choice question, annotating ob-

ject location requires a human annotator to specify a bound-

ing box for an object. Simply dragging a tight bounding box

to enclose an object can cost 10-times more time than an-

swering a multiple-choice question [27, 18]. Consequently,

a higher pay rate has to be paid to a human labeler for an-

notating images for an object detection task. In addition to

the cost, it is more difficult to monitor and control the anno-

tation quality.

Active learning [23] is a machine learning procedure that

is useful in reducing the amount of annotated data required

to achieve a target performance. It has been applied to var-

ious computer-vision problems including object classifica-

tion [11, 5], image segmentation [14, 3], and activity recog-

nition [7, 8]. Active learning starts by training a baseline

model with a small, labeled dataset, and then applying the

baseline model to the unlabeled data. For each unlabeled

sample, it estimates whether this sample contains critical in-

formation that has not been learned by the baseline model.

Once the samples that bring the most critical information

are identified and labeled by human annotators, they can be

added to the initial training dataset to train a new model,

which is expected to perform better. Compared to passive

learning, which randomly selects samples from the unla-

beled dataset to be labeled, active learning can achieve the

same accuracies with fewer but more informative labeled

samples.

Multiple metrics for measuring how informative a sam-

ple is have been proposed for the classification task, includ-

ing maximum uncertainty, expected model change, density

weighted, and so on [23]. The concept behind several of

them is to evaluate how uncertain the current model is for

an unlabeled sample. If the model could not assign a high

probability to a class for a sample, then it implies the model
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is uncertain about the class of the sample. In other words,

the class of the sample would be very informative to the

model. This sample would require human to clarify.

Since an object-detection problem can be considered

as an object-classification problem once the object is lo-

cated, existing active learning approaches for object detec-

tion [1, 25] mainly measure the information in the clas-

sification part. Nevertheless, in addition to classification,

the accuracy of an object detector also relies on its local-

ization ability. Because of the importance of localization,

in this paper we present an active learning algorithm tai-

lored for object detection, which considers the localization

of detected objects. Given a baseline object detector which

detects bounding boxes of objects, our algorithm evaluates

the uncertainty of both the classification and localization.

Our algorithm is based on two quantitative metrics of the

localization uncertainty.

1. Localization Tightness (LT): The first metric is based

on how tight the detected bounding boxes can en-

close true objects. The tighter the bounding box, the

more certain the localization. While it sounds im-

possible to compute the localization tightness for non-

annotated images because the true object locations are

unknown, for object detectors that follow the propose-

then-classify pipeline [6, 21], we estimate the localiza-

tion tightness of a bounding box based on its changes

from the intermediate proposal (a box contains any

kind of foreground objects) to the final class-specific

bounding box.

2. Localization Stability (LS): The second metric is based

on whether the detected bounding boxes are sensitive

to changes in the input image. To evaluate the localiza-

tion stability, our algorithm adds different amounts of

Gaussian noise to pixel values of the image, and mea-

sures how the detected regions vary with respect to the

noise. This one can be applied to all kinds of object

detectors, especially those that do not have an explicit

proposal stage [20, 17].

The contributions of this paper are two-fold:

1. We present different metrics to quantitatively evaluate

the localization uncertainty of an object detector. Our

metrics consider different aspects of object detection

in spite that the ground truth of object locations is un-

known, making our metrics suited for active learning.

2. We demonstrate that to apply active learning for ob-

ject detection, both the localization and the classifica-

tion of a detector should be considered when sampling

informative images. Our experiments on benchmark

datasets show that considering both the localization

and classification uncertainty outperforms the existing

active-learning algorithm works on the classification

only and passive learning.

2. Related Works

We now review active learning approaches used for im-

age classification. For more detail of active learning, Set-

tles’s survey [23] provides a comprehensive review. In

this paper, we use the maximum uncertainty method in the

classification as the baseline method for comparison. The

uncertainty based method is used for CAPTCHA recog-

nition [26], image classification [10], and automated and

manual video annotation [13]. It also has been applied

to different learning models including decision trees [15],

SVMs [28], and Gaussian processes [12]. We choose

uncertainty-based method since it is efficient to compute.

Active learning is also applied for object detection tasks

in various specific applications, such as satellite images [1]

and vehicle images [25]. Vijayanarasimhan et al. [30] pro-

pose an approach to actively crawl images from the web to

train part-based linear SVM detector. Note that these meth-

ods only consider information from the classifier, while our

methods aim to consider the localization part as well.

Current state-of-the-art object detectors are based on

deep-learning. They can be classified into two categories.

Given an input image, the first category explicitly gener-

ates region proposals, following by feature extraction, cate-

gory classification, and fine-tuning of the proposal geome-

try [6, 21]. The other category directly outputs the object

location and class without the intermediate proposal stage,

such as YOLO [20] and SSD [17]. This inspires us to con-

sider localization stability, which can be applied to both cat-

egories.

Besides active learning, there are other research direc-

tions to reduce the cost for annotation. Temporal coherence

of the video frames are used to reduce the annotation effort

for training detectors [19]. Domain adaptation [9] is used

to transfer the knowledge from an image classifier to an

object detector without the annotation of bounding boxes.

Papadopoulos et al. [18] suggest to simplify the annotation

process from drawing a bounding box to simply answering

a Yes/No question whether a bounding box tightly encloses

an object. Russakovsky et al. [22] integrate multiple inputs

from both computer vision and humans to label objects.

3. Active Learning for Object Detection

The goal of our algorithm is to train an object detector

that takes an image as input and outputs a set of rectangu-

lar bounding boxes. Each bounding box has the location

and the scale of its shape, and a probability mass function

of all classes. To train such an object detector, the training

and validation images of the detector are annotated with an

bounding box per object and its category. Such an anno-
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Figure 1: A round of active learning for object detection.

tation is commonly seen in public datasets including PAS-

CAL VOC [4] and MS COCO [16].

We first review the basic active learning framework for

object detection in Sec. 3.1. It also reviews the measure-

ment of classification uncertainty, which is the major mea-

surement for object detection in previous active learning

algorithms for object detection [23, 1, 25]. Based on this

framework, we extend the uncertainty measurement to also

consider the localization result of a detector, as described in

Sec. 3.2 and 3.3.

3.1. Active Learning with Classification Uncer­
tainty

Fig. 1 overviews our active learning algorithm. Our al-

gorithm starts with a small training set of annotated images

to train a baseline object detector. In order to improve the

detector by training with more images, we continue to col-

lect images to annotate. Other than annotating all newly

collected images, based on different characteristics of the

current detector, we select a subset of them for human an-

notators to label. Once being annotated, these selected im-

ages are added to the training set to train a new detector.

The entire process continues to collect more images, select

a subset with respect to the new detector, annotate the se-

lected ones with humans, re-train the detector and so on.

Hereafter we call such a cycle of data collection, selection,

annotation, and training as a round.

A key component of active learning is the selection of

images. Our selection is based on the uncertainty of both

the classification and localization. The classification un-

certainty of a bounding box is the same as the existing

active learning approaches [23, 1, 25]. Given a bounding

box B, its classification uncertainty UB(B) is defined as

UB(B) = 1 − Pmax(B) where Pmax(B) is highest prob-

ability out of all classes for this box. If the probability on

a single class is close to 1.0, meaning that the probabilities

for other classes are low, the detector is highly certain about

its class. To the contrast, when multiple classes have similar

probabilities, each probability will be low because the sum
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Figure 2: The process of calculating the tightness of each

predicted box. Given an intermediate region proposal, the

detector refines it to a final predicted box. The IoU calcu-

lated by the final predicted box and its corresponding region

proposal is defined as the localization tightness of that box.

of probabilities of all classes must be one.

Based on the classification uncertainty per box, given the

i-th image to evaluate, say Ii, its classification uncertainty

is denoted as UC(Ii), which is calculated by the maximum

uncertainty out of all detected boxes within.

3.2. Localization Tightness

Our first metric of the localization uncertainty is based

on the Localization Tightness (LT) of a bounding box.

The localization tightness measures how tight a predicted

bounding box can enclose true foreground objects. Ideally,

if the ground-truth locations of the foreground objects are

known, the tightness can be simply computed as the IoU

(Intersection over Union) between the predicted bounding

box and the ground truth. Given two boxes B1 and B2,

their IoU is defined as: IoU(B1, B2) = B1
∩B2

B1∪B2 .

Because the ground truth is unknown for an image with-

out annotation, an estimate for the localization tightness is

needed. Here we design an estimate for object detectors

that involves the adjustment from intermediate region pro-

posals to the final bounding boxes. Region proposals are

the bounding boxes that might contain any foreground ob-

jects, which can be obtained via the selective search [29] or

a region proposal network [21]. Besides classifying the re-

gion proposals into specific classes, the final stage of these

object detectors can even adjust the location and scale of re-

gion proposals based on the classified object classes. Fig. 2

illustrates the typical pipeline of these detectors where the

region proposal (green) in the middle is adjusted to the red

box in the right.

As the region proposal is trained to predict the loca-

tion of foreground objects, the refinement process in the

final stage is actually related to how well the region pro-

posal predicts. If the region proposal locates the foreground

object perfectly, there is no need to refine it. Based on
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Figure 3: Images preferred by LT/C. Top rows show two

figures are two cases that will be selected by LT/C, which

are images with certain category but loose bounding box (a)

or images with tight bounding box but uncertain about the

category (b).

this observation, we use the IoU value between the re-

gion proposal and the refined bounding box to estimate the

localization tightness between an adjusted bounding box

and the unknown ground truth. The estimated tightness T
of j-th predicted box Bj

0
can be formulated as following:

T (Bj
0
) = IoU(Bj

0
, Rj

0
), where Rj

0
is the corresponding re-

gion proposal fed into the final classifier that generates Bj
0
.

Once the tightness of all predicted boxes are estimated,

we can extend the selection process to consider not only the

classification uncertainty but also the tightness. Namely,

we want to select images with inconsistency between the

classification and the localization, as following:

• Given a predicted box that is absolutely certain about

its classification result (Pmax = 1), but it cannot

tightly enclose a true object (T = 0). An example

is shown in Figure 3 (a).

• Reversely, if the predicted box can tightly enclose a

true object (T = 1) but the classification result is un-

certain (low Pmax). An example is shown in Figure 3

(b).

The score of a box is denoted as J , which is computed

per Equ. 1. Both conditions above can get value close to

zero.

J(Bj
0
) = |T (Bj

0
) + Pmax(B

j
0
)− 1| (1)

As each image can have multiple predicted boxes, we

calculate the score per image as: TI(Ii) = minjJ(B
j
0
).

Unlabeled images with low score will be selected to anno-

tate in active learning. Since both the localization tightness

and classification outputs are used in this metric, later we

use LT/C to denotes methods with this score.

3.3. Localization Stability

The concept behind the localization stability is that, if

the current model is stable to noise, meaning that the de-

tection result does not dramatically change even if the input

…...

Increasing	noiseOriginal	image	

without	noise

…...

Detector

Reference

box

Figure 4: The process of calculating the localization stabil-

ity of each predicted box. Given one input image, a ref-

erence box (red) is predicted by the detector. The change

in predicted boxes (green) from noisy images is measured

by the IoU of predicted boxes (green) and the corrsponding

reference box (dashed red).

unlabeled image is corrupted by noise, the current model al-

ready understands this unlabeled image well so there is no

need to annotate this unlabeled image. In other words, we

would like to select images that have large variation in the

localization prediction of bounding boxes when the noise is

added into the image.

Fig. 4 overviews the idea to calculate the localization sta-

bility of an unlabeled image. We first detect bounding boxes

in the original image with the current model. These bound-

ing boxes when noise is absent are called reference boxes.

The j-th reference box is denoted as Bj
0
. For each noise

level n, a noise is added to each pixel of the image. We use

Gaussian noise where the standard deviation is proportional

to the level n; namely, the pixel value can be changed more

for higher level. After detecting boxes in the image with

noise level n, for each reference box (the red box in Fig. 4),

we find a corresponding box (green) in the noisy image to

calculate how the reference box varies. The corresponding

box is denoted as Cn(B
j
0
), which has the highest IoU value

among all bounding boxes that overlap Bj
0
.

Once all the corresponding boxes from different noise

levels are detected, we can tell that the model is stable to

noise on this reference box if the box does not significantly

change across the noise levels. Therefore, the localization

stability of each reference box Bj
0

can be defined as the av-

erage of IoU between the reference box and corresponding

boxes across all noise levels. Given N noise levels, it is

calculated per Equ. 2:



SB(B
j
0
) =

∑N

n=1
IoU(Bj

0
, Cn(B

j
0
))

N
, (2)

With the localization stability of all reference boxes, the

localization stability of this unlabeled image, says Ii, is de-

fined based on their weighted sum per Equ. 3 where M is

the number of reference boxes. The weight of each refer-

ence box is its highest class probability in order to prefer

boxes with high probability as foreground objects but high

uncertainty to their locations.

SI(Ii) =

∑M

j=1
Pmax(B

j
0
)SB(B

j
0
)

∑M

j=1
Pmax(B

j
0
)

. (3)

4. Experimental Results

Reference Methods: Since no prior work does active

learning for deep learning based object detectors, we des-

ignate two informative baselines that show the impact of

proposed methods.

• Random (R): Randomly choose samples from the un-

labeled set, label them, and put them into labeled train-

ing set.

• Classification only (C): Select images only based on

the classification uncertainty Uc in Sec. 3.1.

Our algorithm with two different metrics for the localiza-

tion uncertainty are tested. First, the localization stability

(Section 3.3) is combined with the classification informa-

tion (LS+C). As images with high classification uncertainty

and low localization stability should be selected for annota-

tion, the score of the i-th image (Ii) image is defined as

follows: UC(Ii) − λSI(Ii) ,where λ is the weight to com-

bine both, which is set to 1 across all the experiments in this

paper. Second, the localization tightness of predicted boxes

is combined with the classification information (LT/C) as

defined in Section 3.2.

We also test three variants of our algorithm. One uses the

localization stability only (LS). Another is the localization

tightness of predicted boxes combined with the classifica-

tion information but using the localization tightness calcu-

lated from ground-truth boxes (LT/C(GT)) instead of the

estimate used in LT/C. The other is combining all 3 cues

together (3in1).

For the easiness of reading, data for LS and 3in1 are

shown in the supplementary result. Our supplementary re-

sult also includes the mAP curves with error bars that in-

dicate the minimum and maximum average precision (AP)

out of multiple trials of all methods. Furthermore, exper-

iments with different designs of LT/C are included in the

supplementary result.

Datasets: We validated our algorithm on three datasets

(PASCAL 2012, PASCAL 2007, MS COCO [4, 16]). For

each dataset, we started from a small subset of the train-

ing set to train the baseline model, and selected from the

remained training images for active learning. Since objects

in training images from these datasets have been annotated

with bounding boxes, our experiments used these bounding

boxes as annotation without asking human annotators.

Detectors: The object detector for all datasets is the

Faster-RCNN (FRCNN) [21], which contains the interme-

diate stage to generate region proposals. We also tested

our algorithm with the Single Shot multibox Detector

(SSD) [17] on the PASCAL 2007 dataset. Because the SSD

does not contain a region proposal stage, the tests for local-

ization tightness were skipped. Both FRCNN and SSD used

VGG16 [24] as the pre-trained network in the experiments

shown in this paper.

4.1. FRCNN on PASCAL 2012

Experimental Setup: We evaluate all the methods with

the FRCNN model [21] using the RoI warping layer [2] on

the PASCAL 2012 object-detection dataset [4] that consists

of of 20 classes. Its training set (5,717 images) is used to

mimic a pool of unlabeled images, and the validation set

(5,823 images) is used for testing. Input images are resized

to have 600 pixels on the shortest side for all FRCNN mod-

els in this paper.

The numbers shown in following sections on PASCAL

datasets are averages over 5 trails for each method. All tri-

als start from the same baseline object detectors, which are

trained with 500 images selected from the unlabeled image

pool. After then, each active learning algorithm is executed

in 15 rounds. In each round, we select 200 images, add

these images to the existing training set, and train a new

model. Each model is trained with 20 epoches.

Our experiments used Gaussian noise as the noise source

for the localization stability. We set the number of noise

level N to 6. The standard deviations of these levels are {8,

16, 24, 32, 40, 48} where the pixels range from [0, 255].

Results: Fig. 5a and Fig. 5b show the mAP curve and

the relative saving of labeled images, respectively, for dif-

ferent active learning methods. We have three major ob-

servations from the results on the PASCAL 2012 dataset.

First, LT/C(GT) outperforms all other methods in most of

the cases as shown in Fig. 5b. This is not surprising since

LT/C(GT) is based on the ground-truth annotations. In the

region that achieves the same performance as passive learn-

ing with a dataset of 500 to 1,100 labeled images, the per-

formance of the proposed LT/C is similar to LT/C(GT),

which represents the full potential of LT/C. This implies

that LT/C using the estimate of tightness of predicted boxes

(Section 3.2) can achieve results close to its upper bound.

Second, in most of the cases, active learning approaches
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Figure 5: (a) Mean average precision curve of different ac-

tive learning methods on PASCAL 2012 detection dataset.

Each point in the plot is an average of 5 trials. (b) Relative

saving of labeled images for different methods.

0%

1%

2%

3%

4%

5%

6%

D
if
f.
 b

e
tw

e
e
n
 L

S
+

C
 a

n
d
 C

bo
at

*

bo
ttl
e*

ch
ai
r*

ta
bl
e*

pl
an

t* al
l

ot
he

r

(a) PASCAL 2012

0%

1%

2%

3%

4%

5%

6%

D
if
f.
 b

e
tw

e
e
n
 L

S
+

C
 a

n
d
 C

bo
at

*

bo
ttl
e*

ch
ai
r*

pl
an

t* al
l

ot
he

r
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Figure 6: The difference in difficult classes (blue bars)

between the proposed method (LS+C) and the baseline

method (C) in average precision on (a) PASCAL 2012

dataset (b) PASCAL 2007 dataset. Black and green bars are

the average improvements of LS+C over C for all classes

and non-difficult classes.

work better than random sampling. The localization stabil-

ity with the classfication uncertainty (LS+C) has the best

performance among all methods other than LT/C(GT). In

terms of average saving, LS+C and LT/C have 96.5% and

36.3% relative improvement over the baseline method C.

Last, we also note that the proposed LS+C method has

more improvements in the difficult categories. We fur-

ther analyze the performance of each method by inspecting

the AP per category. Table 1 shows the average precision

for each method on the PASCAL 2012 validation set after

3 rounds of active learning, meaning that every model is

trained on a dataset with 1,100 labeled images. For cate-

gories with AP lower than 40% in passive learning (R), we

treat them as difficult categories, which have a asterisk next

to their name. For these difficult categories (blue bars) in

Fig. 6a, we notice that the improvement of LS+C over C is

large. For those 5 difficult categories the average improve-

ment of LS+C over C is 3.95%, while the average improve-

ment is only 0.38% (the green bar in Fig. 6a) for the rest
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Figure 7: (a) Mean average precision curve of different ac-

tive learning methods on PASCAL 2007 detection dataset.

Each point in the plot is an average of 5 trials. (b) Relative

saving of labeled images for different methods.

15 non-difficult categories. This 10× difference shows that

adding the localization information into active learning for

object detection can greatly help the learning for difficult

categories. It is also noteworthy that for those 5 difficult

categories, the baseline method C performs slightly worse

than random sampling by 0.50% in average. It indicates

that C focuses on non-difficult categories to get an overall

improvement in mAP.

4.2. FRCNN on PASCAL 2007

Experimental Setup: We evaluate all the methods with

the FRCNN model [21] using the RoI warping layer [2] on

the PASCAL VOC 2007 object-detection dataset [4] that

consists of 20 classes. Both training and validation sets (to-

tal 5,011 images) are used as the unlabeled image pool, and

the test set (4,952 images) is used for testing. All the ex-

perimental settings are the same as the experiments on the

PASCAL 2012 dataset as mentioned Section 4.1.

Results: Fig. 7a and Fig. 7b show the mAP curve and

relative saving of labeled images for different active learn-

ing methods. In terms of average saving, LS+C and LT/C

have 81.9% and 45.2% relative improvement over the base-

line method C. Table 2 shows the AP for each method on

the PASCAL 2007 test set after 3 rounds of active learning.

The proposed LS+C and LT/C are better than the baseline

classification-only method (C) in terms of mAP.

It is interesting to see that LS+C method has the same

behavior as shown in the experiments on the PASCAL

2012 dataset. Namely, LS+C also outperforms the baseline

model C on difficult categories. As the setting in exper-

iments on the PASCAL 2012 dataset, categories with AP

lower than 40% in passive learning (R) are considered as

difficult categories. For those 4 difficult categories, the av-

erage improvement in AP of LS+C over C is 3.94%, while

the average improvement is only 0.95% (the green bar in

Fig. 6b) for the other 16 categories.



method aero bike bird boat* bottle* bus car cat chair* cow table* dog horse mbike persn plant* sheep sofa train tv mAP

R 71.1 61.5 54.7 28.4 32.0 68.1 57.9 75.4 25.8 44.2 36.4 73.0 61.9 67.3 68.1 21.6 51.9 41.0 65.5 51.7 52.9

C 70.7 62.9 54.7 25.5 30.8 66.1 56.2 78.1 26.4 54.5 36.7 76.9 68.3 67.7 67.4 22.5 57.7 40.8 63.6 52.5 54.0

LS+C 73.9 63.7 56.9 29.6 35.2 66.5 58.5 77.9 31.3 50.8 40.7 73.8 65.4 66.9 68.4 24.8 58.0 44.9 64.2 53.9 55.3

LT/C 69.8 64.6 54.6 29.5 33.8 70.3 59.7 75.5 29.5 46.3 41.8 73.0 62.5 69.0 70.8 23.2 56.5 42.8 64.3 55.9 54.7

Table 1: Average precision for each method on PASCAL 2012 validation set after 3 rounds of active learning (number of

labeled images in the training set is 1,100). Each number shown in the table is an average of 5 trials and displayed in

percentage. Numbers in bold are the best results per column, and underlined numbers are the second best results. Catergories

with AP lower than 40% in passive learning (R) are defined as difficult categories and marked by asterisk.

method aero bike bird boat* bottle* bus car cat chair* cow table dog horse mbike persn plant* sheep sofa train tv mAP

R 61.6 67.2 54.1 40.0 33.6 64.5 73.0 73.9 34.5 60.8 52.2 69.3 74.7 66.6 67.1 25.9 52.1 54.2 66.1 54.9 57.3

C 56.9 68.0 54.9 36.8 34.4 68.1 71.7 75.5 34.0 68.6 51.0 71.4 74.7 65.2 65.9 24.9 60.0 53.9 63.0 57.4 57.8

LS+C 61.5 64.4 55.8 40.2 38.7 66.3 73.8 74.7 39.6 68.0 56.3 71.5 73.8 67.2 66.7 27.7 61.3 57.0 65.6 57.4 59.4

LT/C 57.6 69.7 52.9 41.1 38.4 69.7 74.4 71.8 36.4 61.2 58.1 69.5 74.3 66.2 67.8 28.0 55.5 56.3 65.5 58.2 58.6

Table 2: Average precision for each method on PASCAL 2007 test set after 3 rounds of active learning (number of labeled

images in the training set is 1,100). The other experimental settings are the same as shown in Table 1.
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Figure 8: (a) Mean average precision curve (@IoU=0.5) of

different active learning methods on MS COCO detection

dataset. (b) Relative saving of labeled images for different

methods. Each point in the plots is an average of 3 trials.

4.3. FRCNN on MS COCO

Experimental Setup: For the MS COCO object-

detection dataset [16], we evaluate three methods: passive

learning (R), the baseline method using classification only

(C), and the proposed LS+C. Our experiments still use the

FRCNN model [21] with the RoI warping layer [2]. Com-

pared to the PASCAL datasets, the MS COCO has more

categories (80) and more images (80k for training and 40k

for validation). Our experiments use the training set as the

unlabeled image pool, and the validation set for testing.

The numbers shown in this section are averages over 3

trails for each method. All trials start from the same base-

line object detectors, which are trained with 5,000 images

selected from the unlabeled image pool. After then, each

active learning algorithm is executed in 4 rounds. In each

round, we select 1,000 images, add these images to the ex-

isting training set, and train a new model. Each model is

trained with 12 epoches.

Results: Fig. 8a and Fig. 8b show the mAP curve and

the relative saving of labeled images for the testing meth-
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Figure 9: (a) Mean average precision curve of SSD with dif-

ferent active learning methods on PASCAL 2007 detection

dataset. (b) Relative saving of labeled images for different

methods. Each point in the plots is an average of 5 trials.

ods. Fig. 8a shows that classification-only method (C) does

not have improvement over passive learning (R), which is

not similar to the observations for the PASCAL 2012 in

Section 4.1 and the PASCAL 2007 in Section 4.2. By

incorporating the localization information, LS+C method

can achieve 5% relative saving in the amount of annotation

compared with passive learning, as shown in Fig. 8b.

4.4. SSD on PASCAL 2007

Experimental Setup: Here we test our algorithm on a

different object detector: the single shot multibox detec-

tor (SSD) [17]. The SSD is a model without an interme-

diate region-proposal stage, which is not suitable for the

localization-tightness based methods. We test the SSD on

the PASCAL 2007 dataset where the training and validation

sets (total 5,011 images) are used as the unlabeled image

pool, and the test set (4,952 images) is used for testing. In-

put images are reiszed to 300×300.

Similar to the experimental settings in Section 4.1 and

4.2, the numbers shown in this section are averages over 5

trails.All trials start from the same baseline object detectors



which are trained with 500 images selected from the unla-

beled image pool. After then, each active learning algorithm

is executed in 15 rounds. A difference from previous exper-

iments is that each model is trained with 40,000 iterations,

not a fixed number of epochs. In our experiments, the SSD

takes more iterations to converge. Consequently, when the

number of labeled images in the training set is small, a fixed

number of epochs means training with fewer number of it-

erations and the SSD cannot converge.

Results: Fig. 9a and Fig. 9b show the mAP curve and

the relative saving of labeled images for the testing meth-

ods. Fig. 9a shows that both active learning method (C

and LS+C) have improvements over passive learning (R).

Fig. 9b shows that in order to achieve the same performance

of passive learning with a training set consists of 2,300 to

3,500 labeled images, the proposed method (LS+C) can re-

duce the amount of image for annoation (12 - 22%) more

than the baseline active learning method (C) (6 - 15%). In

terms of average saving, LS+C is 29.0% better than the

baseline method C.

5. Discussion

Extreme Cases: There could be extreme cases that the

proposed methods may not be helpful. For instance, if per-

fect candidate windows are available (LT/C), or feature ex-

tractors are resilient to Gaussian noise (LS+C).

If we have very precise candidate windows, which means

that we need only the classification part and it is not a detec-

tion problem anymore. While this might be possible for few

special object classes (e.g. human faces), to our knowledge,

there is no perfect region proposal algorithms that can work

for all type of objects. As shown in our experiments, even

state-of-the-art object detectors can still incorrectly localize

objects. Furthermore, when perfect candidates are avail-

able, the localization tightness will always be 1, and our

LT/C degenerates to classification uncertainty method (C),

which can still work for active learning.

Also, we have tested the resiliency to Gaussian noise

of state-of-the-art feature extractors (AlexNet, VGG16,

ResNet101). Classification task on the validation set of Im-

ageNet (ILSVRC2012) is used as the testbed. The results

demonstrate that none of these state-of-the-art feature ex-

tractors is resilient to noise. Moreover, if the feature extrac-

tor is robust to noise, the localization stability will always

be 1, and our LS+C degenerates to classification uncertainty

method (C), which can still work for active learning. Please

refer to the supplemental material for more details.

Estimate of Localization Tightness: Our experiment

shows that if the ground truth of bounding box is known,

localization tightness can achieve best accuracies,

but the benefit degrades when using the estimated tight-

ness instead. To analyze the impact of the estimate, after

we trained the FRCNN-based object detector with 500 im-

ages of PASCAL2012 training set, we collected the ground-

truth-based tightness and the estimated values of all de-

tected boxes in the 5,215 test images.

Here shows a scatter

plot where the coordinates

of each point represents the

two scores of a detected

box. As this scatter plot

shows an upper-triangular

distribution, it implies that

our estimate is most ac-

curate when the proposals

can tightly match the final

detection boxes. Otherwise, it could be very different from

the ground-truth value. This could partially explain why us-

ing the estimated cannot achieve the same performance as

the ground-truth-based tightness.

Computation Speed: Regarding the speed of our ap-

proach, as all testing object detector are CNN-based, the

main speed bottleneck lies in the forwarding propagation.

In our experiment with FRCNN-based detectors, for in-

stance, forwarding propagation used 137 milliseconds per

image, which is 82.5% of the total time when considering

only classification uncertainty. The calculation of TI has

similar speed as UC . The calculation of localization stabil-

ity SI needs to run the detector multiple times, and thus is

slower than calculating other metrics.

Nevertheless, as these metrics are fully automatic to cal-

culate, using our approach to reduce the number of images

to annotate is still cost efficient. Considering that drawing a

box from scratch can take 20 seconds in average [27], and

checking whether a box tightly encloses an object can take

2 seconds [18], the extra overhead to check images with our

metrics is small, especially that we can reduce 20 - 25% of

images to annotate.
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Localization-Aware Active Learning for Object Detection

Supplementary Materials

This document includes the data and analysis of the pro-

posed methods that are not covered in the main paper due

to the spcae limitation. We first define the abbreviation for

all methods as following:

Abbreviation Method

R Random

C Classification

LS Localization Stability

LS+C Localization Stability and Classification

LT/C Localization Tightness and Classification

LT/C(GT) Localization Tightness and Classification

with Ground Truth

3in1 Localization Stability, Localization

Tightness, and Classification

This abbreviation is used in all the text, figures, and tables

in this document.

1. Design of Localization-Tightness Metric

Given the measurement of localization tightness, we

need to design a metric to utilize it for active learning. The

most intuitive way is to use the localization tightness alone

to decide the score for each box. However, in our experi-

ments it does not help for selecting samples to annotate. We

further analyze it by showing the images selected by differ-

ent methods as shown in Fig. 1. When using only localiza-

tion tightness as the cue to calculate the score of each de-

tected box for active learning, it tends to find images (Fig. 1,

first row) that have tiny objects (e.g., airplane, bird), which

are not chosen that often by other methods (Fig. 1, second

row). However, these classes are easier ones that the de-

tector already does well so that the overall performance of

using localization tightness alone is worse than other met-

rics.

Based on the observations in Sec. 3.2 in the main paper,

we would like to find images contain boxes that have dis-

agreement in classification and localization results. When

designing a metric using localization tightness, there are

two important qeustions: ”How to define the score for an

image with detected boxes?” and ”How to define the score

for a detected box?” For the first question, two methods

have been tested: using the lowest/highest score of all boxes

Figure 1: First row: Example images selected for anno-

tation by the method using information from localization

only to evaluate the score of each box. Second row: Ex-

ample images selected for annotation by the method using

classification uncertainty only (C).

(min(.)/max(.)), and using a weighted sum of all boxes

(wsum(.)), where the weight is Pmax of each box. For the

second question, different metrics have been tested as fol-

lowing, where P is the highest probability out of K cate-

gories of box B, and T is the localization tightness of box

B:

min(|T+P-1|) This metric is the one (LT/C) we used in the

main paper. It selects images with boxes that have dis-

agreement between classification and localization re-

sults. It also picks images contain boxes that are not

very certain in both classification and localization re-

sults.

max(|P-T|) Different from LT/C, this metric only selects

images with boxes that have disagreement between

classification and localization results. It does not se-

lect boxes that are not very certain in both two outputs.

wsum(|T+P-1|) This method uses the same metric as LT/C

to evaluate the score of each box. However, instead of

using the highest score out of all boxes as the score of

an imgae, it uses a weighted sum across all boxes.

wsum(T) This method uses only the information from lo-

calization outputs when deciding the score of each box.

Images with boxes that have low localization tightness

will be chosen by this method.

1
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Figure 2: Mean average precision curve of different met-

rics of localization tightness on PASCAL 2007 detection

dataset. Each point in the plot is an average of 5 trials.

For a set of unlabeled images, min(|T+P-1|),
wsum(|T+P-1|), and wsum(T) methods choose images

with lower scores to annotate in active learning; max(|P-

T|) selects images with higher scores for annotation.

Fig. 2 shows the mean average precision (mAP) curves

of different metrics using localization tightness, and the

experimental setup is the same as mentioned in Sec. 4.2 in

the main paper. The proposed LT/C outperforms the rest

metrics clearly at the first half of the experiment. Among

the second half, LT/C is still the best among all metrics, but

the gap between LT/C and the others becomes smaller.

The difference between LT+C and max(|P-T|) is select-

ing images with boxes that are both uncertain in classifi-

cation and localization outputs. We hypothesize that im-

ages with uncertainty in both outputs are more informa-

tive, which make LT/C better than max(|P-T|). Also, given

the same metric for calculating the score of a detected box,

LT/C and wsum(|T+P-1|) use different strategy to define the

score of an image. The overlapping ratio of images sampled

by these two methods is only 17.9% (an average over 5 tri-

als), which implies that how to define the score of an image

greatly affects the sampling process.

2. Discussion of Extreme Cases

As mentioned in Sec. 5 in the main paper, there could be

extreme cases that the proposed methods may not be help-

ful. For instance, if perfect candidate windows are available

(LT/C), or feature extractors are resilient to Gaussian noise

(LS+C).

We had discussed the case of perfect candidate win-

dows in the main paper. In the following, we discuss

more about the case of feature extractors are resilient to

Figure 3: Top-1 classification accuracy of different neural

network models when input images are corrupted by Gaus-

sian noise on PASCAL 2012 validation dataset.

noise. We have tested the resiliency to Gaussian noise

of state-of-the-art feature extractors (AlexNet, VGG16,

ResNet101). Classification task on the validation set of Im-

ageNet (ILSVRC2012) is used as the testbed. Pre-trained

models are used as the classifier and input images are cor-

rupted by Gaussian noise of different levels. Fig. 3 shows

the top-1 classification accuracy under different standard

deviation of Gaussian noise. With the largest standard devi-

ation, the accuracy can drop 23-37%. It demonstrates that

none of these state-of-the-art feature extractors is resilient

to noise. Goodfellow et. al [2] also hypothesized that NNs

with non-linear modules (e.g., sigmoid) mainly work in lin-

ear region, could be vulnerable to local perturbation such as

Gaussian noise.

3. Full Experimental Results

In this section, the full results from the experiments of

active learning methods on the PASCAL and MS COCO

datasets are presented. These results are not covered in the

main paper due to the easiness of reading and space con-

straint.

Results of Using Localization Stability Only: As an ab-

lation experiment, results for the method using localization

stability only (LS) are added into the plot of mAP curves

and the table of classwise APs. Table 1 and Table 2 show

the average precision for each method after 3 rounds of ac-

tive learning on the PSACAL 2012 validation and PASCAL

2007 testing set. Fig. 4 and Fig. 5 show the mAP curves of

each active learning method on the PASCAL 2012 and 2007

datasets. Each point in the plot is an average of 5 trials.

Also, error bars that represent the minimum and maximum

values out of 5 trials are added at each point to show the

distribution of 5 trials. Fig. 6a and Fig. 6b show the relative

saving in labeled images of each active learning method on

the PASCAL 2012 and 2007 datasets. As shown in Fig. 6a

and Fig. 6b, LS outperforms the random sampling for the
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Figure 4: Mean average precision curve of different active learning methods on the PASCAL 2012 detection dataset. Each

point in the plot is an average of 5 trials. The error bars represent the minimum and maximum values out of 5 trials at each

point. This is a full version (LS and 3in1 added) of Fig. 5a in the main paper.

most cases. Also, combining the localization stability with

the classification uncertainty (LS+C) works better than us-

ing either only the localization stability (LS) or classifica-

tion uncertainty (C).

Results of Using 3 Cues: In order to see that if the

localization-uncertainty measurements have complemen-

tary information, we further combine all cues for select-

ing informative images. As images with high classifi-

cation uncertainty, low localization stability, and low lo-

calization tightness should be selected for annotation, the

score of the i-th image (Ii) image is defined as follows:

UC(Ii) − λlsSI(Ii) − λltTI(Ii) where λls and λlt are set

to 1 across all the experiments in this paper.

On PASCAL 2012, combining all cues together does not

work better than either LS+C or LT/C (Fig. 6a). On PAS-

CAL 2007, 3in1 is compatible with LS+C, and better than

LT/C (Fig. 6b). It seems that localization-uncertainty mea-

surements do not have complementary information. We

further analyze the overlapping ratio between images cho-

sen by different active learning methods in Table 3 and Ta-

ble 4. When we compare the overlapping ratio between 3in1

and three other metrics (C, LS, LT/C), both C and LS have

an overlapping ratio around 30%, but LT/C has only about

10%. This implies that among the three cues, LT/C pro-

vides the least information in 3in1 method. We notice that

the images chosen by 3in1 method are highly overlapped

with LS+C (over 60%), but 3in1 does not outperform LS+C.

Our hypothesis is that the images (about one third of total

images) chosen differently by 3in1 and LS+C make this dif-

ference in performance.
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Figure 5: Mean average precision curve of different active learning methods on the PASCAL 2007 detection dataset. Each

point in the plot is an average of 5 trials. The error bars represent the minimum and maximum values out of 5 trials at each

point. This is a full version (LS and 3in1 added) of Fig. 7a in the main paper.

method aero bike bird boat* bottle* bus car cat chair* cow table* dog horse mbike persn plant* sheep sofa train tv mAP

R 71.1 61.5 54.7 28.4 32.0 68.1 57.9 75.4 25.8 44.2 36.4 73.0 61.9 67.3 68.1 21.6 51.9 41.0 65.5 51.7 52.9

C 70.7 62.9 54.7 25.5 30.8 66.1 56.2 78.1 26.4 54.5 36.7 76.9 68.3 67.7 67.4 22.5 57.7 40.8 63.6 52.5 54.0

LS 75.1 61.3 57.6 34.7 35.1 65.1 58.2 75.4 29.3 43.9 38.5 70.7 57.5 66.1 68.5 23.0 56.1 40.3 64.2 53.6 53.7

LS+C 73.9 63.7 56.9 29.6 35.2 66.5 58.5 77.9 31.3 50.8 40.7 73.8 65.4 66.9 68.4 24.8 58.0 44.9 64.2 53.9 55.3

LT/C 69.8 64.6 54.6 29.5 33.8 70.3 59.7 75.5 29.5 46.3 41.8 73.0 62.5 69.0 70.8 23.2 56.5 42.8 64.3 55.9 54.7

3in1 72.9 63.8 52.7 29.5 33.6 66.4 57.2 76.0 31.5 48.5 41.6 72.2 62.6 67.6 68.8 24.5 57.6 43.6 63.0 57.1 54.5

Table 1: Average precision for each method on the PASCAL 2012 validation set after 3 rounds of active learning (the number

of labeled images in the training set is 1,100). This is a full version (LS and 3in1 added) of Table 1 in the main paper. All the

experimental settings are the same with Table 1 in the main paper.

mAP Plots with Error Bars: In the original mAP plots of

the FRCNN on the MS COCO dataset (Fig. 8a in the main

paper) and the SSD on the PASCAL 2007 dataset (Fig. 9a

in the main paper), only the average of multiple trials is

plotted. Here we add the error bars that represent the min-

imum and maximum values of multiple trials to the plot.

This shows the distribution of the result from different trials.

Fig. 7 and Fig. 8 show the mAP curves of the FRCNN on

the MS COCO dataset and the SSD on the PASCAL 2007

dataset. Three methods (R, C, and LS+C) are tested in these

two experiments.



method aero bike bird boat* bottle* bus car cat chair* cow table* dog horse mbike persn plant* sheep sofa train tv mAP

R 61.6 67.2 54.1 40.0 33.6 64.5 73.0 73.9 34.5 60.8 52.2 69.3 74.7 66.6 67.1 25.9 52.1 54.2 66.1 54.9 57.3

C 56.9 68.0 54.9 36.8 34.4 68.1 71.7 75.5 34.0 68.6 51.0 71.4 74.7 65.2 65.9 24.9 60.0 53.9 63.0 57.4 57.8

LS 64.4 63.9 56.3 45.1 38.0 65.5 73.7 71.2 38.6 62.7 57.0 67.6 69.0 64.6 67.1 29.6 56.2 57.3 68.6 53.6 58.5

LS+C 61.5 64.4 55.8 40.2 38.7 66.3 73.8 74.7 39.6 68.0 56.3 71.5 73.8 67.2 66.7 27.7 61.3 57.0 65.6 57.4 59.4

LT/C 57.6 69.7 52.9 41.1 38.4 69.7 74.4 71.8 36.4 61.2 58.1 69.5 74.3 66.2 67.8 28.0 55.5 56.3 65.5 58.2 58.6

3in1 57.6 65.1 53.3 37.1 39.0 68.0 74.6 73.9 39.8 64.9 58.5 70.4 73.7 67.3 67.3 27.4 59.9 58.0 65.1 59.2 59.0

Table 2: Average precision for each method on the PASCAL 2007 testing set after 3 rounds of active learning (the number of

labeled images in the training set is 1,100). This is a full version (LS and 3in1 added) of Table 2 in the main paper. All the

experimental settings are the same with Table 2 in the main paper.
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(b) PASCAL 2007

Figure 6: Relative saving of labeled images for different active learning methods on the (a) PASCAL 2012 validation dataset

and (b) PASCAL 2007 testing set. (a) and (b) are full versions (LS and 3in1 added) of Fig. 5b and Fig. 7b in the main paper.

Method R

C 3.5% C

LS 4.0% 2.7% LS

LS+C 4.4% 34.7% 34.6% LS+C

LT/C 5.0% 5.9% 2.4% 5.2% LT/C

3in1 4.6% 30.4% 25.7% 62.4% 8.8%

Table 3: Overlapping ratio between 200 images chosen

by different active learning methods on the PASCAL 2012

dataset after the first round of active learning. Each number

shown in the table is an average over 5 trials.

Method R

C 4.1% C

LS 4.2% 3.5% LS

LS+C 4.3% 34.0% 39.7% LS+C

LT/C 5.6% 5.9% 4.5% 5.7% LT/C

3in1 3.9% 30.5% 32.0% 65.3% 12.0%

Table 4: Overlapping ratio between 200 images chosen

by different active learning methods on the PASCAL 2007

dataset after the first round of active learning. Each number

shown in the table is an average over 5 trials.

4. Visualization of The Selection Process

The most popular metric used for measuring the perfor-

mance of an object detector is mAP. We also use this met-

ric to evaluate the performance of different active learning

methods. If one active learning method selects more infor-

mative images to label and add them into the training set, the

detector trained on this set will have a higher mAP. Besides

this final numerical result, we are curious about what im-

ages are chosen in the selection process by different active

learning methods, and how these chosen images are related

to the average precision.

In order to visualize the selection process, we first visual-

ize the PASCAL 2012 training set [1] by using t-Distributed

Stochastic Neighbor Embedding (t-SNE) [3]. After know-

ing the distibution of the PASCAL 2012 training set, we

further visualize the chosen images in the selection process

by different active learning methods.

Visualization of the PASCAL 2012 Dataset: We first vi-

sualize the PASCAL 2012 training set (5,717 images) by

using t-SNE with VGG16 model [5]. t-SNE is a technique
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Figure 7: Mean average precision curve of different active

learning methods on the MS COCO validation set. Each

point in the plot is an average of 3 trials. The error bars

represent the minimum and maximum values out of 3 trials

at each point. This is a full version of Fig. 9a in the main

paper.
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Figure 8: Mean average precision curve of different active

learning methods with SSD on the PASCAL 2007 testing

set. Each point in the plot is an average of 5 trials. The

error bars represent the minimum and maximum values out

of 5 trials at each point. This is a full version of Fig. 10a in

the main paper.

for dimensionality reduction that is tailored for visualiz-

ing high-dimensional datasets. Features extracted from the

conv5 3 layer are used as the high-dimensional vector for

each image in the PASCAL 2012 training set. The visu-

alization of the PASCAL 2012 training set by embedding

each image to a point on the 2D plane is shown in Fig. 9.

Each data point in Fig. 9 represents one image in the dataset.

Images with objects from only one class are represented by

markers other than dots. Note that there might be objects

belong to different classes shown in one image. Red dots

(>1cls) are used for representing those images. For each

class, there is a certain region that images locate at. For ex-

ample, images of aeroplanes (orange plus signs) are located

at the top-right part, and images of cats (green squares) are

located at the bottom-center part.

For those images have objects from muliple classes, we

cannot tell what classes are included in each of them from

Fig. 9. Therefore, another visualization is shown in Fig. 13

by considering whether one image has objects from a cer-

tain class or not. For example, each orange plus sign in

Fig. 13a represents an image which has at least one aero-

plane in it, and each black dot represents an image that has

no aeroplane in it. Given Fig. 9 and Fig. 13, we now have

a better understanding about the distribution of the dataset,

and the relationship between different classes. For example,

in the left part of the scatter plot in Fig. 9, we notice that

there are many images that have objects belong to multiple

classes (red dots). From Fig. 13, we know that these images

may contain people, chairs, tables, sofas, bottles, plants, and

TVs. Actually, these images are regular scenes in a living

room, just like the 4 images shown in Fig. 9. With these

information, we can further analyze the selection process of

different active learning methods.

Visualization of Different Active Learning Methods:

We would like to visualize the selection process of different

active learning methods. The experimental settings are the

same with Sec. 4.1 in the main paper. For the analysis and

visualization in this section, we only use one trial instead of

using the average of 5 trials for the easiness of reading. The

baseline FRCNN detector [4] is trained on a training set of

500 labeled images, and then each active learning algorithm

is executed for 3 rounds. In each round, we select 200 im-

ages, add these images to the existing training set. After 3

rounds, each method has selected 600 images for annota-

tion, and a set with 1,100 labeled images is used to train the

detector.

Table 5 shows the average precision for each method on

the PSACAL 2012 validation set after 3 rounds of active

learning. As defined in the main paper, catergories with AP

lower than 40% in passive learning (R) are defined as dif-

ficult categories. These difficult classes are marked by an

asterisk in Table 5. We further analyze the selection result

of different methods by a visualization as shown in Fig. 12.

There are total 5,217 images (500 images in the initial train-

ing set of this trial are not included) in each graph. 600 im-

ages selected for annotation by each active learning method

are represented by green asterisks, and the rest 4,617 images

that have not been chosen are represented by black dots.
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Figure 9: t-SNE embeddings of images on the PASCAL 2012 training set. VGG16 is used for generating high-dimensional

vectors of images that used for the embedding. Each data point in the scatter plot is an image. “>1cls” represents an image

that has objects belong to different classes. Images marked by only one class means that all the objects in the image belong to

the same class. Images on the left are examples contain objects belong to difficult classes. As defined in Table 5 ,the difficult

classes are boat, bottle, chair, table, and plant.

We have two major observations from the visualzation

results on the PASCAL 2012 dataset. First, the random

sampling (R) method selects images for annotation across

all categories, no matter it is a difficult class or an easy

class. Compared to the other methods, lots of images of

cats and cars are selected by R (blue rectangles in Fig. 12a

and Fig. 14a). However, these classes are relatively easy so

the room for improvements is not that large. Also, the se-

lected images are not informative so that even many images

are selected in these classes, there is no large improvement

over the other methods.

Second, as mentioned in Sec. 4.1 in the main paper, the

proposed method LS+C outperforms the baseline method C

especially in the difficult categories. There is a 10× dif-

ference between difficult and non-difficult categories in the

improvement of LS+C over C as shown in Fig. 6a in the

main paper. These 5 difficult categories are: boat, bottle,

chair, table, and plant. Fig. 13 shows that all difficult cate-

gories but boat locate at the left part of the 2D plane. These
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Figure 10: The number of selected images that contain ob-

jects belong to difficult classes by different active learning

methods.

categories also are the ones show in scenes of a living room

(Fig. 9), as mentioned in the previous section. By visual in-

spection, the red rectangles in Fig. 12c and Fig. 12b show

that the proposed LS+C tends to select more images for an-



method aero bike bird boat* bottle* bus car cat chair* cow table* dog horse mbike persn plant* sheep sofa train tv mAP

R 68.3 61.5 54.2 27.8 30.4 68.2 58.2 76.3 28.4 44.8 31.1 73.7 64.1 67.9 66.7 21.9 52.4 41.7 64.8 55.5 52.9

C 72.8 66.6 50.8 28.5 34.8 64.3 54.3 77.5 27.2 53.2 36.3 79.0 70.4 66.5 69.0 21.9 59.6 38.8 60.6 54.5 54.3

LS+C 68.1 68.0 52.0 34.2 34.9 70.0 59.9 74.4 30.3 44.2 42.1 73.6 63.3 69.7 71.7 28.5 60.2 40.6 64.4 59.0 55.5

LT/C 74.8 64.8 60.1 28.7 36.4 63.9 58.1 79.7 31.0 51.1 38.1 72.9 66.0 66.9 67.2 23.7 56.4 50.4 64.3 54.6 55.5

Table 5: Average precision for each method on the PASCAL 2012 validation set after 3 rounds of active learning (the number

of labeled images in the training set is 1,100). Each number shown in the table is the result of one trial (different from Table

1 in the main paper which shows the average over 5 trials) and displayed in percentage. Numbers in bold are the best results

per column, and underlined numbers are the second best results. Catergories with AP lower than 40% in passive learning (R)

are defined as difficult categories and marked by an asterisk.
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Figure 11: The number of selected images that contain objects belong to non-difficult classes by different active learning

methods.

notation in these difficult classes than the baseline method

C. Quantitative results are shown in Fig. 10. The proposed

LS+C selects images that contain objects belong to diffi-

cult classes much more than the baseline method C. By se-

lecting more images for annoation, the proposed LS+C gets

more improvement in these difficult classes. In contrast,

for easy classes (catergories with AP higher than 70% in

passive learning) like cat and dog, the baseline method C

selects more images than the proposed LS+C as shown in

Fig. 11. These observations indicate that C focuses on non-

difficult categories to get an overall improvement in mAP,

but does not perform well in difficult categories.
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Figure 12: The visualization of selection results by different active learning methods. Green asterisks (sel) are the images

selected for annotation by each active learning method, and black dots (unsel) are the images that have not been selected. A

detailed version of this graph with class-wise information is shown in Fig. 14.
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Figure 13: t-SNE embeddings of images for each category on the PASCAL 2012 training set. Different from Fig. 9, each

colored point in the graphs represents an image that includes at least one object belongs to the target class. For example, each

orange plus sign in (a) represents an image which has at least one aeroplane in it.
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Figure 14: The visualization of selection results by different active learning methods. Different from Fig. 12, each colored

marker not only represents a selected image, but also indicates the class that objects contained in the image belong to.
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