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Abstract
In this paper, we address the following problem: For a given set spin configurations whose
probability distribution is of the Boltzmann type, how do we determine the model coupling
parameters? We demonstrate that directly minimizing the Kullback-Leibler divergence is a
very efficient method. We test this method against the Ising and XY models on the one-
dimensional (1D) and two-dimensional (2D) lattices, and provide two estimators to quantify
the model quality. We apply this method to two types of problems. First we apply it to the
real-space renormalization group (RG), and find that the obtained RG flow is sufficiently good
for determining the phase boundary (within 1% of the exact result) and the critical point, but
not accurate enough for critical exponents. The proposed method provides a simple way to
numerically estimate amplitudes of the interactions typically truncated in the real-space RG
procedure. Second, we apply this method to the dynamical system composed of self-propelled
particles, where we extract the parameter of a statistical model (a generalized XY model)
from a dynamical system described by the Viscek model. We are able to obtain reasonable
coupling values corresponding to different noise strengths of the Viscek model. Our method
is thus able to provide quantitative analysis of dynamical systems composed of self-propelled
particles.
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I. INTRODUCTION

In a general sense, the heart of any machine learning (ML) method involves learning a representation for patterns
in a set of data. The representation can have many forms, such as a function, a probability distribution with many
parameters, or the weights of a neural network [1, 2]. Combined with density functional theory (DFT) [3, 4], ML
techniques have been used to design/select materials with certain properties of interest. Generally, DFT calculations
of many materials (or the same material with different configurations) are needed. At this stage, some generic ML
algorithms can be used to generate/select the configurations [5]. The next step is to fit the results to some kind
of model with undetermined parameters [6]; the fitted model is assumed to be general and can be used to predict
material properties. For example, in [5], more than 20,000 Au12, Au13, and Au14 nanoclusters are evaluated to fix
the parameters of an empirical potential, which can then be used for larger clusters of arbitrary shapes. Similar
strategies can be used to predict/screen functional molecules [7, 8] and thermoelectric materials [9, 10]. At a more
fundamental level, ML has been used to find the density functional [11] or to find the pseudopotential [12] in DFT. ML
has also been applied to solve many-body problems, such as the Anderson impurity model [13] and lattice problem
in the framework of dynamical mean field theory [14–16]. Recently, Broecker et al. show that ML techniques (neural
networks) can overcome the Fermion sign problem under some circumstances [17].

In this paper, we focus on the following problem: Suppose one has a set of Ising or Heisenberg spin configurations,
whose distribution obeys the Boltzmann distribution for a given model energy functional, how do we extract the model
parameters from this set of configurations [18–21]? In this case, “learning” means extracting the coupling values from
a predefined model. We demonstrate that this model parameter learning can be done efficiently by directly minimizing
Kullback-Leibler (KL) divergence [22], which is a major objective criterion used to obtain model parameters in ML.
KL-based learning is commonly used in ML, which motivates us to apply it to some physical systems. We apply this
method to two types of problems. First, we apply the method to the real-space renormalization group (RG), where
the RG flow is explicitly calculated and the phase boundaries are determined. Second, we use it to study the system of
interacting active or self-propelled particles. Specifically, we extract the parameter of a statistical model (generalized
XY model) from the dynamics described by the Viscek model [23]. Overall, we find that if the functional form of
the model is known, this method is very efficient. The efficiency originates from that only model-specific observables
are required. For the same reason, this method easily give an answer even if the model is not correct, and some
quantitative estimators of the model quality are needed.

The rest of the paper is organized as follows. In Section II, we formulate the problem, and describe how to use KL
divergence to fit the model parameters. We use the two-dimensional (2D) Ising model as an illustrative example and
discuss limitations and possible pitfalls of this method. Two estimators of the model quality are proposed. In Section
III, we apply this method to the real-space renormalization group (RG) to determine the RG flow and thus the critical
point. In Section IV, we apply this method to determine the statistical model parameter from a dynamical system of
self-propelled particles. A brief introduction of the problem will be given. A short conclusion is provided in Section
V.

II. MAIN ALGORITHM

A. Problem formulation and Kullback-Leibler divergence

We first formulate the problem in terms of probability distributions. Suppose we have a “target” distribution
P̄ ({S}), with {S} labeling the spin configuration. The goal is to find the best functional E({S}; J1, J2, ..., Jn) such that
the model probability P ({S}; J1, J2, ..., Jn) ∝ e−E({S};J1,J2,...,Jn), parametrized by J1, J2, ..., Jn, is as close to P̄ ({S})
as possible. The probability follows a Boltzmann distribution, a form which can be derived from the maximum entropy
principle [24]. In the following derivation, we assume there are only two parameters J1 and J2, but the generalization
to more parameters is straightforward. The Kullback-Leibler (KL) divergence (from P̄ to P ) [22] is defined as

DKL(P̄ ||P (J1, J2)) = DKL(J1, J2) ≡
∑

{S}

P̄ ({S}) log

[

P̄ ({S})

P ({S}; J1, J2)

]

, (1)

where the summation is over all configurations {S}. This is a scalar function of J1 and J2 that measures the difference
between two probability distributions. When the target distribution P̄ ({S}) and the model distribution P ({S}; J1, J2)
are identical, DKL = 0; when the difference is small, DKL is also small. We consider the general energy functional
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E({S}; J1, J2) = −J1F1({S})− J2F2({S}), leading to a model probability distribution

P ({S}; J1, J2) =
eJ1F1({S})+J2F2({S})

∑

{S′} e
J1F1({S′})+J2F2({S′})

. (2)

Here Fi({S}) represents some form of inter-spin interactions, which are not restricted to the pairwise form and will
be specified later. In this case, the KL divergence becomes

DKL(J1, J2) =
∑

{S}

P̄ ({S}) log P̄ ({S})−
∑

{S}

P̄ ({S}) logP ({S}; J1, J2) (3)

= const.−
∑

{S}

P̄ ({S}) [J1F1({S}) + J2F2({S})] +
∑

{S}

P̄ ({S}) log





∑

{S′}

eJ1F1({S
′})+J2F2({S

′})



 (4)

= const.−
∑

{S}

P̄ ({S}) [J1F1({S}) + J2F2({S})] + log





∑

{S}

eJ1F1({S})+J2F2({S})



 , (5)

where const. represents terms that have no dependence on J1 or J2. To get from (4) to (5), we used
∑

{S} P̄ ({S}) = 1.

To shorten the expression, we define 〈O〉target ≡
∑

{S} P̄ (S)O{S}, and 〈O〉model ≡
∑

{S} P ({S}; J1, J2)O({S}). The

derivatives of DKL(J1, J2) are given:

∂DKL

∂J1
= 〈F1〉model − 〈F1〉target ≡ α1(J1, J2),

∂DKL

∂J2
= 〈F2〉model − 〈F2〉target ≡ α2(J1, J2),

∂2DKL

∂Ji∂Jj
= 〈FiFj〉model − 〈Fi〉model〈Fj〉model ≡ Mij(J1, J2).

(6)

Note that Mij = Mji, and that all second derivatives depend only on the model distribution (not on the target
distribution).
With these derivatives determined, we use Newton’s method to estimate the values of J1, J2 that minimize

DKL(J1, J2). To do so, we write the second-order Taylor expansion

DKL(J1 +∆J1, J2 +∆J2) ≈ α1 ∆J1 + α2 ∆J2 +
1

2

2
∑

ij=1

Mij ∆Ji∆Jj , (7)

up to a Ji-independent constant which we ignore. For later use, we also write down the third derivative:

∂3DKL

∂J3
i

(J1, J2) = 〈F 3
i 〉model − 3〈F 2

i 〉model〈Fi〉model + 2〈Fi〉
3
model. (8)

To derive the optimization step, we set the first derivatives of Eq. (7) to zero, i.e. ∂DKL

∂J1

= ∂DKL

∂J2

= 0, and solve for
the increment in the Ji values:

(

M11 M12

M21 M22

)(

∆J1
∆J2

)

+

(

α1

α2

)

= 0

⇒

(

∆J1
∆J2

)

= −

(

M11 M12

M21 M22

)−1 (
α1

α2

)

,

(9)

where the αi and Mij all depend on J1 and J2. Newton’s method iteratively updates the model parameters J1 and
J2 using Eq. (9). In practice, we use a relaxed Newton’s method in which the step size is a fraction of the one given
by Eq. (9): Jnew

i = Jold
i + η̃∆Ji, where η̃ ≤ 1 is known as the learning rate. The iterations stop when ∆J1 and ∆J2

are smaller than some predefined value. The same procedure can be generalized to models with more parameters.
The most crucial and time-consuming part is to compute 〈· · · 〉model at different model parameters. Fortunately, these
model expectation values can be computed efficiently using a Markov chain Monte Carlo (MCMC) method, such as
Metropolis or “heat bath” algorithms.
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In addition to Newton’s method, one can also use Levenberg-Marquardt (LM) algorithm to solve the “root finding”
problem, i.e. to find J1, J2 such that α1 = α2 = 0 in Eq. (6). The LM method is particularly useful if the second-
derivative matrix Mij is ill-conditioned. In all the examples we have tested, Mij is well-conditioned and computing its
inverse does not result in any numerical problems. Overall, we find LM and Newton’s method are quite comparable in
performance. However, when the number of parameters becomes large, LM method appears to be more appropriate
(ill-conditioning can happen [25]). An example will be given in the next subsection [Table I].

B. Illustrative examples

FIG. 1. (a) The black and red curves show convergence trajectories of 2D Ising model with J1 = 0.2, J2 = 0.1, using two
different initial conditions. The blue curves show convergence trajectories for J1 = −0.2, J2 = −0.1 for an initial condition with
the wrong signs. The learning rate η̃ = 0.8. (b) The convergence trajectories of 2D XY model with nearest neighbor coupling
J = 0.4, 0.6, 0.8, and 1. The learning rate η̃ = 0.4.

To test our method, we first generate a set of configurations for a given fixed value of the model parameters,
using the typical “heat bath” algorithm. That set of samples defines the target probability P̄ ({S}). We then use
the procedure described in Section IIA to estimate the model parameters. As an illustrative example, we consider
the Ising model on a periodic 8 × 8 square lattice, with both nearest-neighbor (NN) and second-nearest-neighbor
(next-nearest-neighbor, or NNN) couplings. In this case, we define

F1({S}) =
∑

NN

SiSj , F2({S}) =
∑

NNN

SiSj . (10)

For the energy defined by J1F1({S}) + J2F2({S}), J1 and J2 respectively represent the nearest neighbor (NN) and
next-nearest-neighbor (NNN) couplings. We choose (J1, J2) = (0.2, 0.1) and (J1, J2) = (−0.2,−0.1). The convergence
trajectories, computed from Eq. (9), for different initial conditions are shown in Fig. 1(a). We find that the convergence
is generally reached using the small initial values of couplings and the learning rate η̃ < 1; it typically takes about
10 to 20 iterations to converge. Fig. 1(b) shows the convergence trajectories of XY model on a periodic 8× 8 square
lattice with only the nearest neighbor coupling J from 0.4 to 1. We do not see any numerical issue when J crosses
the Kosterlitz-Thouless (KT) critical J ∼ 2/π ≈ 0.64 of the 2D XY model [26–28].
Using the described procedure, we have tested our method on the 1D and 2D (square and triangular lattices, up

to size 40 × 40) Ising model with NN, second NN, and third NN couplings (the sign of the coupling can be positive
or negative). We have also tested it on the 1D and 2D (square lattice, up to size 30 × 30) XY model with NN
coupling (up to the coupling strength of 10). The boundary condition can be periodic or confined (i.e. the spins at
the boundary only couple to those inside the boundary). As long as the system is in the disordered state (discussed
in next subsection), the method succeeds on all of these models with high accuracy (error < 1%). The method also
works in the ferromagnetic phase for the model of continuous spins (XY model), but requires more sampling points.
We have applied this method to quantitatively determine the coupling between collective swimming particles [29].
To further test the proposed method, we consider a 1D chain of 40 Ising spins, with 10 inter-spin couplings as

J1 = 0.2, Jn = (−1)n+1J1[1 − 0.1(n − 1)] for n = 2 to 10. Fig. 2 shows the convergence trajectories of each Ji,
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FIG. 2. The convergence trajectories of 1D chain of 40 Ising spins. Ji is the inter-spin coupling between nth and n+ ith sites.
The exact values are given in the box, and the converged values are given in Table I. The learning rate η̃ = 0.4.

with zero initial couplings. The converged values are compared to the exact in Table I. We see that both Newton’s
method and LM method give good parameter estimations in this 10-parameter case. We find that Newton’s method
usually takes less iterations to converge, but the total computational times are quite comparable. We have increased
the parameter number up to 14 and does not find any problems.

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

exact 0.200 -0.180 0.160 -0.140 0.120 -0.100 0.080 -0.060 0.040 -0.020
Newton 0.199 -0.178 0.158 -0.137 0.118 -0.097 0.077 -0.056 0.036 -0.020
LM 0.202 -0.181 0.163 -0.140 0.121 -0.100 0.081 -0.059 0.037 -0.018

TABLE I. The inter-spin couplings for the 1D chain of 40 Ising spins. Ji represents the coupling between spins at nth and
n + ith site. Both Newton’s and LM methods give good parameter estimations. Both Newton and LM iterations start from
zero couplings. In this particular case, LM takes 20 iterations to converge, whereas Newton’s method takes 13. The computed
values are rounded to three decimal digits.

C. Limitations of the method and model quality

We now discuss the limitation of the proposed method. First, our method becomes less efficient when the state is
more ordered, as the method relies on spin fluctuations to determine the coupling constants. Considering the extreme
case in which all spins are aligned ferromagnetically, it is then not possible to determine whether this ordering comes
from J1, J2, or any combination of them. Second, there is a theoretical limit of the model parameter estimation, given
by the Fisher information

I(J) =
∑

{S}

[

∂

∂J
logP ({S}; J)

]2

P ({S}; J). (11)

We note that Eq. (11) is simply 〈F 2
i 〉model. The eigenvalues of Fisher information have recently been used to connect

the microscopic model and the emergent macroscopic model [25]. The Cramér-Rao bound [30], which gives the
minimum of parameter variance, is given by

V ar{J} >
1

I(J)
. (12)

It turns out that in all models considered here, the variance of J is smaller than 0.01. Therefore, for the rest of the
paper we do not explicitly mention this limit.

To quantitatively characterize the model quality, there are two general strategies: (i) comparing to the values
obtained using a model with more parameters; and (ii) comparing more expectation values [for example the second
moment 〈F 2

i 〉 with Fi defined in Eq. (10)] between target and model distributions. For (i), we increase the number of
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couplings and observe how the added couplings impact the results. The ratio

∣

∣

∣
J
[N+m]
i − J

[N ]
i

∣

∣

∣

∣

∣

∣
J
[N ]
i

∣

∣

∣
+ 1

≡ Ri,[N,m], (13)

where N is the number of original couplings and m is the number of added couplings, can be used as an estimator

of model quality of the N -parameter model. The +1 term in the denominator is to account for the case when
∣

∣J
[N ]
i

∣

∣

approaches zero. Certainly, this ratio depends on the form of the added interactions. Some physics principles, e.g. the
coupling strength decays with increasing distance, provide a guide on how the additional couplings should be chosen.
For (ii), we expand the KL divergence to the third order, from which we can estimate the error of the coupling that
was fitted using the second-order expansion. For simplicity (but relevant to the application in Section IV), we consider
the case where there is only one coupling. This estimation is based an assumption that the target distribution can
be fully described by a model with only the coupling J0, and an assumption that the fitted J is close to J0. Using
∆ = J − J0 as the expanding variable, we get a Taylor series around ∆ = 0 (or J = J0) as

DKL(∆) =
1

2
αtarget∆

2 +
1

6
βtarget∆

3 + · · ·

Here αtarget and βtarget are respectively the second and third derivative given in Eq. (6) and Eq. (8), with the “model
average” replaced by the “target average” (since the model of coupling J0 corresponds to the target distribution).
The first derivative vanishes as J0 corresponds to the target distribution. When we compute the second derivative
using a model distribution, we get αmodel, which is different from αtarget. This discrepancy comes from the difference

between J and J0. Explicitly evaluating the second derivative, we get d2

d∆2DKL(∆) = αtarget + βtarget∆, from which

∆ can be estimated via αmodel = αtarget + βtarget∆. Define dα = αtarget − αmodel, we get ∆ = |dα|
βtarget

. Note that if

dα = 0 (αtarget = αmodel, implying the model and target average of the second moment are identical), then ∆ = 0
(the fitted J coincides with the exact J0). For computational convenience, we replace βtarget by βmodel, and define

R =
∆

|J |+ 1
=

|dα|/βmodel

|J |+ 1
(14)

as another estimator. If the model form is not known in advance, at least one of the two estimators should be used
to check the model quality. In some situations, it is not obvious how to add couplings (especially when there is no
lattice, as discussed in Section IV), and using Eq. (14) is an apparent choice. On the other hand, if the model already
has many parameters, an estimator based on (ii) easily becomes complicated (as all third derivatives are needed), so
using (i) is perhaps more practical.

D. Important features

We conclude this section by discussing some features of our proposed method. First, our method is straightforward
and simple. Although the use of KL divergence or log-likelihood function is common [18–21], most of algorithms avoid
direct minimizing it. We demonstrate that the direct minimization can be done (using just the standard Newton’s
method) when properly choosing the model-specific observables. Second, this method is non-perturbative in nature,
in a sense that all possible interaction terms are treated equally. In particular, without introducing complexities
to the code, the proposed method applies to non-pairwise interactions whose strengths may not be easy to obtain
by analyzing the spin-spin correlation function. An example will be provided in the next section. Third, we note
that the proposed method computes only the model specific expectation values (〈Fi〉), not some model-independent
correlation function. Therefore, the proposed method is very likely to give an answer even if the model is not correct.
For this reason one should be careful about the obtained answer, especially if the model form is not known. Two
estimators provided in the previous subsections provide a measure of model quality. However, if we are certain about
the model, the proposed method is very efficient. We explicitly show that there is no numerical issues for a model of
10 parameters. Finally, we mention that our method works less efficiently when the state is ordered.
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FIG. 3. (a) The triangular lattice. Three Ising spins in the red box in the right panel represent a block spin. (b) The square
lattice. Four Ising spins in the red box in the right panel represent a block spin. In both cases, the dashed box in the left panel
denotes the original unit cell; the dashed box in the right panel denotes the unit cell of block spins.

III. REAL-SPACE RENORMALIZATION GROUP ON TWO-DIMENSIONAL ISING MODEL

A. Problem formulation

As a first application, we apply the KL divergence to determine the real-space RG flow for 2D Ising model. The
triangular and square lattices are considered. We note that the connection between the RG and the deep learning has
been recently pointed out and exploited [31, 32]. For the real-space RG calculation, we follow the standard “block
spin” procedure [33–35], where a original lattice, with lattice constant a, is coarse grained to the one with larger lattice
constant la (so the number of unit cells is reduced by l2). The spin in the original lattice is Si, whereas the spin in
the coarse grained one is SI . This ”block spin” procedure is illustrated in Fig. 3. For a given spin configuration in
the triangular lattice [Fig. 3(a)], the value of block spin follows the simple “majority rule”. Namely, for three original
spins belonging to the block I, SI = 1(−1) if two or three original spins (in the same block I) have the value 1 (-1).
For a given spin configuration in the square lattice [Fig. 3(b)], there are four original spins belonging to the block I.
SI = 1(−1) if three or four original spins (in the same block I) have the value 1 (-1). If the sum of four original spins
happens to be zero, then SI has 50 % chance to be 1 or -1. The procedure to determine the RG flow is summarized
as follows:

• Generate a set of configurations according to the original model E({si})(= −
∑

ij J
(0)
ij sisj)

• For each original configuration, determine the corresponding configuration of block spins, from which we get
P ({sI}).

• From P ({sI}), minimize KL divergence to find the best E({SI})(= −
∑

IJ J
(1)
IJ sIsJ).

• Repeat the procedure, using J
(1)
IJ in the original lattice.

Following these steps, we obtain how couplings change upon scaling:

J (0) → J (1) → J (2) → ...

By initializing J (0) at different values, we can get the whole RG flow in the coupling space.
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FIG. 4. (a) The RG flow for the Ising model on a triangular lattice, with nearest neighbor coupling only. The original square
lattice is 18× 18, and we use 2× 105 runs in the Monte Carlo steps. The critical J1c ∼ 0.277, as compared to the exact result
Jc = 0.2746. (b) The RG flow for the Ising model on a square lattice, with first and second neighbor couplings (black solid
curves) and with an additional 4-spin interaction (blue dashed curves). The original square lattice is 30×30, and we use 6×105

runs in the Monte Carlo steps. The critical fixed point is seen to be around (J1, J2) = (0.33, 0.08). The critical point of Ising
model of nearest neighbor is J1c ∼ 0.43; that of second neighbor is J2c ∼ 0.41. The analytical result is J1c = J2c ∼ 0.44.

B. Simulation results

Fig. 4 shows our main results. For the triangular lattice, the initial model only has NN coupling, and we only keep
on the NN coupling in the subsequent RG procedure. By using an original lattice of size 18× 18, we get the critical J
of 0.277, which is remarkably close to the exact result Jc = [log 3]/4 = 0.2746 [35]. For the square lattice, the initial
model includes both NN (J1) and 2nd NN (J2) couplings, and we keep on the NN and 2nd NN coupling in the RG
procedure. The RG flow is shown in Fig. 4(b). We have included a four-spin coupling interaction,

H4-spin = −J3F3({S}) = −J3
∑

i

SiSi+x̂Si+ŷSi+x̂+ŷ. (15)

which is usually neglected in the perturbation based calculation. We found that this additional term is indeed much
weaker (at most 10 % of J1 and J2) than NN and 2NN couplings. As a concrete example, we give one RG trajectory
of (J1, J2, J3) round to three decimal places (0.400, 0.010, 0.000) → (0.317, 0.058, -0.005) → (0.283, 0.063, -0.007) →
(0.244, 0.056, -0.006) → (0.189, 0.043, -0.002) → (0.124, 0.024, -0.001), whose projection on (J1, J2) plane is shown in
Fig. 4(b). Our calculations explicitly show the inclusion of the four-spin term does not change the structure of the RG
flow, and a quantitative estimate of its strength is given. We obtain a RG fixed point around (J1, J2) = (0.33, 0.08),
and the phase boundary for NN only model is around 0.43, and that for 2nd NN only model is around 0.41. These
values are again very close to the exact results [34]. Although this method can obtain the phase boundary quite
accurately, it fails to obtain a meaningful values for the critical exponents due to the numerical uncertainty around
the fixed point. As shown in Fig. 4(a), the flow away from the critical point does not really follow the exponential
pattern. Finally, we notice that our method does not give sensible results when |Ji| is large enough to form an ordered
state. This is how we cut the RG flow in Fig. 4(b). As the real-space RG is somehow ”uncontrollable” (in a sense
that some non-zero couplings are usually forced to be zero to make the calculation doable), our method provides a
simple way to numerically estimate the amplitudes of these ignored interactions.
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IV. DYNAMICAL SYSTEM OF SELF-PROPELLED PARTICLES

A. Problem formulation

FIG. 5. Representative behaviors, corresponding to different noise strength η, of Viscek model. The arrow represents the
moving direction of each particle. (a) A random initial configuration, where the position and velocity direction of each particle
are randomly chosen. (b) η = 0.8× (2π). (c) η = 0.6× (2π). In both (b) and (c), the particles still move randomly with some
spatial correlation. (d) η = 0.3× (2π). A clear clustering behavior is seen.

Active matter is an emerging field that studies the ensemble behaviors of constituents that constantly consume
energy and propel themselves [36]. It is particularly relevant in biological physics, since most cells or animals popula-
tions can be considered as an active matter [37, 38]. One of the best studied active matter system is the self-propelled
particles which was first proposed by Vicsek et al. [23] (referred to as Vicsek model), which has been experimen-
tally reconstructed [39], and theoretically studied extensively [40–42]. The dynamics of the system is described by a
“molecular-dynamics” type of equation of motion with the updating rules:

xi(t+ 1) = xi(t) + vi(t)∆t

vi(t+ 1) = v0(cos θi(t+ 1), sin θi(t+ 1))

θi(t+ 1) = 〈θ(t)〉r +∆θ

(16)

Here 〈θ(t)〉r is the average direction of velocities of particles (including particle i) within a circle of “interaction”
radius r surrounding the centered particle i. ∆θ, a noise term, is a random number uniformly distributed between
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[−η/2, η/2] (the maximum η is 2π, representing a totally random system), mimicking the fluctuations. One crucial
aspect of SPP is that its distribution of velocity amplitude is different from that in thermal equilibrium, implying the
system of active particles has a lower entropy than the system of normal “Brownian” particles [43]. Maintaining this
state consumes energy. This aspect is captured in the Viscek model by assuming a constant velocity amplitude. In our
simulation, we consider N = 100 particles confined in a 1× 1 periodic square cell. We define an average inter-particle
separation r0 to be Nπr20 = 1, and will consider the interaction radius r to be 0.5r0, r0, and 1.5r0. Following Ref. [23],
we choose v0 = 0.001. We note the cell size and the interaction radius by themselves are not important, it is their
ratio that determines the dynamics. A few representative behaviors, corresponding to different noise strength η and
r = r0, are given in Fig. 5. We see that as the noise strength is decreased, the system tends to form clusters.
Bialek et al. [44] proposed that the systems of self-propelled particles can be described as a statistical model. In this

description, one searches for the “best” energy functional such that the statistical distribution is as close as possible
to the time variation obtained by the dynamical equations. To describe the Vicsek model, we use a generalized XY
model

E({θi}) ≡ −JFr({θi}) =

{

−J
2

∑

i,j cos(θi − θj), if |xi − xj | < r

0, otherwise.
. (17)

In Eq. (17), xi and θi are respectively the position and the direction of velocity of ith particle. Eq. (17) means
that particles i and j have an XY-type of coupling −J cos(θi − θj) only when their separation is smaller than r.
The distribution of a given velocity (or angle since the amplitude is fixed) configuration P ({θi}) is proportional to
exp [−E({θi})]. The coupling J is positive so that the nearby particles tend to align their moving directions with one
another.
Generally, the dynamical approach (Vicsek model) is of Langevin type, where the fluctuation is approximated by

a random noise in the time domain, whereas the statistical approach is of Fokker-Planck type, where the fluctuation
is translated to a probability distribution. Our goal now is to find the best model parameter J in Eq. (17) for the
Viscek model of different noise strength η. Using the proposed method, all we need is to compute

〈Fr〉T ≡
1

T

∫ T

0

dt Fr({θi(t)}) (18)

Ideally 〈Fr〉T and 〈F 2
r 〉T approach constants at large T , and is independent of initial configurations (ergodic). However

this has to be numerically tested, and we will find that it is only approximately true. The uncertainty in 〈Fr〉T (as
T → ∞) leads to the uncertainty of fitted J .

B. Simulation results

To obtain the coupling J defined by Eq. (17) from the dynamical equations Eq. (16), we first compute 〈Fr〉T
[Eq. (18)] for a given η in the long time limit. A representative behavior of 〈Fr〉T for η = 0.7 × (2π) is plotted in
Fig. 6(a). The time evolution of four random initial conditions are plotted. We see that while it approaches to a
constant in a long-time limit, this limiting value weakly depend on the initial conditions (about 13 %). The variation
for 〈F 2

r 〉T in long time limit is larger at about 23 %. We also try a few “unusual” initial configurations, such as
all initial positions are within a small region, or all original velocities are identical, and they all yield to a similar
long-time behavior (but takes longer, not shown). We also find that the variation on initial conditions decreases when
we increase the number of particles. For example, by keeping η = 0.7× (2π), for N = 300, the variation of 〈Fr〉T due
to initial conditions is about 5 % (between 18 and 20) and that of 〈F 2

r 〉T is about 10 % (between 90 and 100) (not
shown).
The determined J as a function of η is given in Fig. 6 (b). The error bar originates from the variation of 〈Fr〉T

due to initial conditions. In practice we compute 〈Fr〉T starting from ten random initial conditions to determine this
uncertainty. As expected for all interaction radii, a larger η, corresponding to larger fluctuation in the Viscek model,
leads to a smaller J , corresponding to a weaker inter-particle coupling in the statistical model. Our results also show
that the coupling J is stronger for the smaller interaction radius. This behavior may seem counter-intuitive, as a
larger interaction radius favors clustering. However, it can be understood from the velocity averaging procedure of
the Viscek model – as the interaction radius increases, more particles contribute to the velocity average, effectively
reducing the strength of the pairwise interactions. This perhaps subtle aspect is captured using our method. Our
method does not converge when the noise strength η < 0.6× (2π). As discussed in Section II, this originates from that
the system being more ordered in the statistical model. From Fig. 6(b), the maximum J we get is around 0.5. It is
interesting to contrast this value to the KT critical J ∼ 2/π ≈ 0.64 in the 2D XY model [26–28]. As our method does
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FIG. 6. (a) Time average of 〈Fr〉T and 〈F 2

r 〉T for η = 0.7 and r = r0, using four different random initial conditions. It is seen
that 〈Fr〉T at larger time has about 10% variation, whereas 〈F 2

r 〉T about 20% variation. (b) The fitted J for r = 0.5r0, r = r0,
r = 1.5r0 as a function of η . When η < 0.6, our method does not converge. For all η, the coupling J is stronger for the smaller
interaction radius

not pose any numerical issues across the KT transition on a lattice [Fig. 1 (b)], the inability to converge at small η is
more related to the tendency of clustering. To estimate of the model quality, we use |∆| defined Eq. (14), and find
the values are all smaller than 0.15 (mostly smaller than 0.05, especially for larger fitted J). This indicates that the
generalized XY model provides a reasonable statistical description for the dynamics described by the Viscek model.

V. CONCLUSION

This work is devoted to solve one type of “inverse” problems: for a given set of configurations whose probability
distribution is of Boltzmann type, i.e. P ({S}) ∝ exp [−E({S}; J1, J2, ...)], how do we determine the model parameters
(Ji)? We propose to extract the model parameters by directly minimizing the Kullback-Leibler divergence. The most
time consuming part of this procedure is to compute some expectation value with different model parameters, which
can be done efficiently using Markov chain Monte Carlo algorithm. This method is non-perturbative in nature (treating
all interactions equally) and is relatively easy to implement. We test this method for Ising and XY models on the 1D
and 2D lattices. When the form of model is known, this method is very effective. One essential limitation is that this
method does not work well when the system is in the ordered state. Two estimators to quantify the model quality
are provided.

We then apply our method to two types of problems. First we apply it to the real-space renormalization group,
and find the obtained RG flow sufficiently good for determining phase boundary (1% within the exact result), but
not accurate enough for critical exponents. In addition, our method provides a simple way to quantitatively estimate
amplitudes of the interactions truncated in the usual real-space RG procedure. Second we apply it to the dynamical
system of self-propelled particles, where we extract the parameter of a statistical model (a generalized XY model)
from a dynamical system described by the Viscek model. We are able to obtain the sensible coupling values as a
function the noise strength of the Viscek model. In this respect, we provide an example on how to analyze the data,
especially when we have some simple model(s) in mind. We regard this as a first step to quantify the behavior of
self-propelled particles.
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