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Abstract
End-to-end automatic speech recognition (ASR) can significantly reduce the burden of devel-
oping ASR systems for new languages, by eliminating the need for linguistic information such
as pronunciation dictionaries. This also creates an opportunity, which we fully exploit in this
paper, to build a monolithic multilingual ASR system with a language-independent neural net-
work architecture. We present a model that can recognize speech in 10 different languages, by
directly performing grapheme (character/chunked-character) based speech recognition. The
model is based on our hybrid attention/connectionist temporal classification (CTC) architec-
ture which has previously been shown to achieve the state-of-the-art performance in several
ASR benchmarks. Here we augment its set of output symbols to include the union of character
sets appearing in all the target languages. These include Roman and Cyrillic Alphabets, Ara-
bic numbers, simplified Chinese, and Japanese Kanji/Hiragana/Katakana characters (5,500
characters in all). This allows training of a single multilingual model, whose parameters are
shared across all the languages. The model can jointly identify the language and recognize
the speech, automatically formatting the recognized text in the appropriate character set.
The experiments, which used speech databases composed of Wall Street Journal (English),
Corpus of Spontaneous Japanese, HKUST Mandarin CTS, and Voxforge (German, Spanish,
French, Italian, Dutch, Portuguese, Russian), demonstrate comparable/superior performance
relative to language-dependent end-to-end ASR systems.
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ABSTRACT

End-to-end automatic speech recognition (ASR) can significantly
reduce the burden of developing ASR systems for new languages,
by eliminating the need for linguistic information such as pronunci-
ation dictionaries. This also creates an opportunity, which we fully
exploit in this paper, to build a monolithic multilingual ASR sys-
tem with a language-independent neural network architecture. We
present a model that can recognize speech in 10 different languages,
by directly performing grapheme (character/chunked-character)
based speech recognition. The model is based on our hybrid at-
tention/connectionist temporal classification (CTC) architecture
which has previously been shown to achieve the state-of-the-art
performance in several ASR benchmarks. Here we augment its set
of output symbols to include the union of character sets appear-
ing in all the target languages. These include Roman and Cyril-
lic Alphabets, Arabic numbers, simplified Chinese, and Japanese
Kanji/Hiragana/Katakana characters (5,500 characters in all). This
allows training of a single multilingual model, whose parameters
are shared across all the languages. The model can jointly identify
the language and recognize the speech, automatically formatting the
recognized text in the appropriate character set. The experiments,
which used speech databases composed of Wall Street Journal (En-
glish), Corpus of Spontaneous Japanese, HKUST Mandarin CTS,
and Voxforge (German, Spanish, French, Italian, Dutch, Portuguese,
Russian), demonstrate comparable/superior performance relative to
language-dependent end-to-end ASR systems.

Index Terms— End-to-end ASR, multilingual ASR, language-
independent architecture, language identification, hybrid atten-
tion/CTC

1. INTRODUCTION

End-to-end automatic speech recognition (ASR) has shown the ef-
fectiveness recently by greatly reducing ASR building procedure,
and by reaching the state-of-the-art performance obtained by con-
ventional hybrid systems [1, 2, 3, 4]. There are two main streams for
end-to-end ASR systems by using connectionist temporal classifica-
tion (CTC) [5, 6, 7] and attention-based encoder-decoder approaches
[8, 9, 10, 11]. The unique property of the end-to-end ASR systems
is that the network directly converts input speech feature sequences
to output label sequences (mainly character or chunked-character in
this paper) without through any phonetic/linguistic representation in-
cluding phonemes or words. Thus, one of the biggest advantages
of the end-to-end ASR systems is that it can reduce the efforts of
language-dependent processing including the use of pronunciation
dictionary and word segmentation, which is a big barrier when we
build a conventional ASR system for new languages.

This paper fully exploits the above advantage, and proposes
to build a monolithic multilingual ASR system with a language-

independent neural network architecture. The model is based on
our hybrid attention/CTC architecture [12]. This model compen-
sates too flexible alignment properties in the attention-based method
with CTC as a regularization during training and as a score correc-
tion during decoding [13]. The model is extended to use a deep
convolutional neural network (CNN) followed by bidirectional long
short-term memory (BLSTM) in the encoder networks, and recurrent
neural network language model (RNN-LM) pretrained with text data
in the decoder network. This extended hybrid attention/CTC obtains
comparable/superior performance to the state-of-the-art deep neural
network (DNN)/hidden Markov model (HMM) baselines including
lattice-free maximum mutual information (MMI) training [14] in
large vocabulary Japanese/Mandarin speech recognition tasks [3].

Based on this hybrid attention/CTC, we present a model that
can recognize speech in 10 different languages composed of Wall
Street Journal (English) [15, 16], Corpus of Spontaneous Japanese
[17], HKUST Mandarin CTS [18], and Voxforge (German, Span-
ish, French, Italian, Dutch, Portuguese, Russian) [19]. The model
directly performs grapheme (character/chunked characters) based
speech recognition conforming to the end-to-end fashion. To
make the model language-independent, we augment its set of
output symbols to include the union of character sets appearing
in all the target languages. These include Roman and Cyril-
lic Alphabets, Arabic numbers, simplified Chinese, and Japanese
Kanji/Hiragana/Katakana characters (5,500 characters in all). This
allows training of a single multilingual model, whose parameters
are shared across all the languages. In addition to this language-
independent architecture, the model also predicts a language ID
as well as a text output. Thus, the model can jointly identify the
language and recognize the speech, automatically formatting the
recognized text in the appropriate character set. The experiments
demonstrate comparable/superior performance relative to language-
dependent end-to-end ASR systems.

2. RELATED WORK

There have been a lot of prior studies on multilingual/language-
independent ASR (see [20] for more details). Initial attempts are
based on Gaussian mixture model (GMM)/HMM based acoustic
model [21, 22], which are extended with DNNs [23] [24] [25].
DNN-based approaches are also used to produce multilingual bot-
tleneck features [26] [27]. All of these approaches are based on
a phoneme representation based on discrete phonetic symbols. To
obtain the phoneme transcripts required in the above approaches,
we have to prepare hand-crafted pronunciation dictionary for every
language. However, our proposed method uses end-to-end systems,
and does not require such explicit phoneme representation.

In addition, to build multilingual/language-independent ASR,
many systems listed above have language-dependent modules in ei-
ther or both of acoustic and language models. Therefore, the system



has to know which language is uttered in advance by combining a
language identification module [28] [29]. On the other hand, the
proposed system is fully a language-independent architecture, and it
does not require the language identification module. However, it is
beneficial to provide language ID information for the latter applica-
tion or interfaces, and our proposed system supplementarily predicts
a language ID in addition to a target language text.

3. HYBRID ATTENTION/CTC ARCHITECTURE

This section briefly explains our hybrid attention/CTC architecture,
which utilizes both benefits of CTC and attention during training and
decoding [3].

3.1. Connectionist Temporal Classification (CTC)

CTC [5] is a latent variable model that monotonically maps an in-
put sequence to an output sequence of shorter length. We assume
here that the model outputs L-length character sequence C = {cl ∈
U|l = 1, · · · , L} with a set of distinct characters U . CTC intro-
duces framewise character sequence with an additional ”blank” sym-
bol Z = {zt ∈ U ∪ blank|t = 1, · · · , T}. By using conditional
independence assumptions, the posterior distribution p(C|X) is fac-
torized as follows:

p(C|X) ≈
∑
Z

∏
t

p(zt|zt−1, C)p(zt|X)︸ ︷︷ ︸
,pctc(C|X)

p(C) (1)

As shown in Eq. (1), CTC has three distribution components;
framewise posterior distribution p(zt|X), transition probability
p(zt|zt−1, C), and character-based language model p(C). The CTC
objective function pctc(C|X), which does not include the language
model, is also defined for the use of the later formulation.

This paper uses a deep CNN/BLSTM network to obtain the
framewise posterior distribution p(zt|X) conditioned on all inputs
X:

p(zt|X) = Softmax(Lin(ht)) (2)
ht = BLSTM(CNN(X)). (3)

Softmax(·) is a softmax activation function, and Lin(·) is a linear
layer to convert hidden vector ht to a (|U| + 1) dimensional vector
(+1 means a blank symbol introduced in CTC). CNN(·) is a CNN
layer followed by a BLSTM layer BLSTM(·).

The use of a deep CNN architecture is motivated by the prior
studies [30, 31]. We use the initial 6 layers of the VGG net architec-
ture [32]:

Convolution2D(# in = 3, # out = 64, filter = 3× 3)

Convolution2D(# in = 64, # out = 64, filter = 3× 3)

Maxpool2D(patch = 3× 3, stride = 2× 2)

Convolution2D(# in = 64, # out = 128, filter = 3× 3)

Convolution2D(# in = 128, # out = 128, filter = 3× 3)

Maxpool2D(patch = 3× 3, stride = 2× 2)

The initial three input channels are composed of the spectral fea-
tures, delta, and delta delta features. Input speech feature images are
downsampled to (1/4× 1/4) images along with the time-frequency
axes through the two max-pooling (Maxpool2D) layers.

Although Eq. (1) has to deal with a summation over all possible
Z, we can efficiently compute this marginalization by using dynamic
programming thanks to the Markov property.

3.2. Attention-based encoder-decoder

Compared with CTC approaches, the attention-based approach does
not make any conditional independence assumptions, and directly
estimates the posterior p(C|X) based on the chain rule:

p(C|X) =
∏
l

p(cl|c1, · · · , cl−1, X)︸ ︷︷ ︸
,patt(C|X)

, (4)

where patt(C|X) is an attention-based objective function.
p(cl|c1, · · · , cl−1, X) is obtained by

p(cl|c1, · · · , cl−1, X) = Decoder(rl,ql−1, cl−1) (5)
ht = Encoder(X) (6)
alt = Attention({al−1}t,ql−1,ht) (7)

rl =
∑
t

altht. (8)

Eq. (6) converts input feature vectors X into a framewise hid-
den vector ht in an encoder network based on CNN/BLSTM, i.e.,
Encoder(X) , BLSTM(CNN(X)), which is the same structure
as Eq. (3). Attention(·) in Eq. (7) is based on a content-based
attention mechanism with convolutional features, as described in
[9]. alt is an attention weight, and represents a soft alignment of
hidden vector ht for each output cl based on the weighted sum-
mation of hidden vectors to form character-wise hidden vector rl
in Eq. (8). A decoder network is another recurrent network condi-
tioned on previous output cl−1 and hidden vector ql−1, similar to
RNN-LM, in addition to character-wise hidden vector rl. We use
Decoder(·) , Softmax(Lin(LSTM(·))).

Compared with CTC, attention-based models make predictions
conditioned on all the previous predictions, and thus can learn
language-model-like output contexts. However, the cost of using
an explicit alignment without monotonic constraints means the
alignment can become impaired.

3.3. Multi-task learning

In [12], we used the CTC objective function as an auxiliary task
to train the attention model encoder within the multi-task learning
(MTL) framework. This approach substantially reduces irregular
alignments during training and inference, and provides improved
performance in several benchmarks. The hybrid attention/CTC
shares the same CNN/BLSTM encoder with CTC and attention de-
coder networks in Eqs. (3) and (6). Unlike the sole attention model,
the forward-backward algorithm of CTC can enforce monotonic
alignment between speech and label sequences during training. That
is, rather than solely depending on the data-driven attention mech-
anism to estimate the desired alignments in long sequences, the
forward-backward algorithm in CTC helps to speed up the process
of estimating the desired alignment. The objective to be maxi-
mized is a logarithmic linear combination of the CTC and attention
objectives, i.e., pctc(C|X) in Eq. (1) and patt(C|X) in Eq. (4):

LMTL = λ log pctc(C|X) + (1− λ) log patt(C|X), (9)

with a tunable parameter λ : 0 ≤ λ ≤ 1.

3.4. Joint decoding

In addition to use the CTC objective through multi-task learning, we
use the CTC predictions also in the decoding process. The inference



Fig. 1. The proposed language-independent architecture. The system learns to predict the language ID in the beginning of an utterance
followed by a text output.

step of attention-based speech recognition is performed by output-
label synchronous decoding with a beam search. However, we take
the CTC probabilities into account to find a better aligned hypothesis
to the input speech, i.e. the decoder finds the most probable character
sequence Ĉ given speech input X , according to

Ĉ = arg max
C∈U∗

{λ log pctc(C|X)

+(1− λ) log patt(C|X)} . (10)

In the beam search process, the decoder computes a score of each
partial hypothesis. With the attention model, the score can be com-
puted recursively as

αatt(gl) = αatt(gl−1) + log p(c|gl−1, X), (11)

where gl is a partial hypothesis with length l, and c is the last char-
acter of gl, which is appended to gl−1, i.e. gl = gl−1 · c. The score
for gl is obtained as the addition of the original score α(gl−1) and
the conditional log probability given by the attention decoder in (5).
During the beam search, the number of partial hypotheses for each
length is limited to a predefined number, called a beam width, to
exclude hypotheses with relatively low scores, which dramatically
improves the search efficiency.

3.5. Decoder with RNN-LM

Finally, we combine an RNN-LM network in parallel with the at-
tention decoder. The hybrid attention/CTC and RNN-LM is trained
separately, where the RNN-LM is trained with character sequences
without word-level knowledge. Although the attention decoder im-
plicitly includes a language model as in Eq. (5), we aim at intro-
ducing language model states purely dependent on the output label
sequence in the decoder, which potentially brings a complementary
effect.

The RNN-LM probabilities are used to predict the output label
jointly with the decoder network. The RNN-LM information is com-

bined in the log-probability domain, as follows:

Ĉ = arg max
C∈U∗

{λ log pctc(C|X)

+(1− λ) log patt(C|X)}
+γ log prnnlm(C)} , (12)

where γ is an additional scaling parameter for RNN-LMs. Although
it is possible to apply the RNN-LM as a rescoring step, we combine
the RNN-LM network in the end-to-end model because we do not
wish to have an additional rescoring step for better latency. Also, we
can view this as a single large neural network model, even if parts of
it are separately pretrained. Furthermore, [3] also proposes to train
the RNN-LM and hybrid attention/CTC jointly, but this paper only
uses a pretrained RNN-LM.

4. LANGUAGE-INDEPENDENT ARCHITECTURE

This section explains the proposed monolithic multilingual ASR sys-
tem with a language-independent neural network architecture, as
shown in Figure 1. All the network parameters are shared across
languages including output softmax layer, which is represented by
the following augmented character set.

4.1. Augmented character set

We augment its set of output symbols to include the union of char-
acter sets appearing in all the target languages, i.e.,

U = UEN ∪ U JP ∪ · · · , (13)

where UEN/JP/··· is a character set of a specific language. The advan-
tage of using this augmented character set is to accept any language
without language identification modules. The network learns to pre-
dict a character sequence in a target language, automatically. How-
ever, since we do not explicitly constrain the character set for each
language, there is a risk that the language can be switched to the oth-
ers during an utterance. However, our preliminary experiments show
that this language switch was not observed frequently, probably due
to the strong context modeling in the decoder network.



Table 1. Multilingual ASR tasks using Wall Street Journal (English)
[15, 16], Corpus of Spontaneous Japanese [17], HKUST Mandarin
CTS [18], and Voxforge (German, Spanish, French, Italian, Dutch,
Portuguese, Russian) [19]. The voxforge data were downloaded at
May 2017.

Corpus Tasks # utterances Lengths (h)
WSJ

English
(EN)

Training (WSJ1 SI284) 37,416 80
Development (Dev93) 503 1.1
Evaluation (Eval92) 333 0.7

CSJ
Japanese

(JP)

Training (100k) 100,000 147
Training (Full) 445,068 581
Evaluation (task 1) 1,288 1.9
Evaluation (task 2) 1,305 2.0
Evaluation (task 3) 1,389 1.3

HKUST
Mandarin

(CH)

Training (100k) 100,000 90
Training (speed perturb.) 580,161 501
Development 4,000 4.8
Evaluation 5,413 4.9

Voxforge
German

(DE)

Training 33,272 45.5
Development 4,033 5.5
Evaluation 4,017 5.5

Voxforge
Spanish

(ES)

Training 17,954 40.3
Development 1,583 3.2
Evaluation 2,663 6.9

Voxforge
French
(FR)

Training 17,882 29.4
Development 2,386 3.9
Evaluation 2,218 3.5

Voxforge
Italian
(IT)

Training 8,362 15.7
Development 1,078 2.0
Evaluation 1,044 2.0

Voxforge
Dutch
(NL)

Training 6,739 8.3
Development 868 1.0
Evaluation 865 1.0

Voxforge
Portuguese

(PT)

Training 2,778 2.9
Development 352 0.3
Evaluation 306 0.3

Voxforge
Russian

(RU)

Training 5,009 11.9
Development 662 1.6
Evaluation 588 1.2

4.2. Joint language identification and speech recognition

Although our language-independent end-to-end ASR can implic-
itly predict a target language, it would be useful when we also
provide the predicted language ID explicitly for several applica-
tions. To do this extension, we introduce an additional variable
k ∈ {EN, JP, · · · } indicating a language ID, and deal with the
joint distribution of a language ID and text as p(k, C|X) instead
of p(C|X) in the attention-based approach. This is formulated by
using the probabilistic chain rule, used in Section 3.2, as follows:

p(k, C|X) = p(k)
∏
l

p(cl|k, c1, · · · , cl−1, X), (14)

This scheme is easily implemented with the current attention-based
ASR system by introducing language index in the beginning of the
output text in the training data, as follows:

• ”これらの”
→ ”[JPN]これらの”

• ”A L S O V O R W Ä R T S”
→ ”[DE] A L S O V O R W Ä R T S”

Table 2. Experimental configuration
Parameter initialization uniform dist. [-0.1, 0.1]
# of encoder BLSTM cells 320
# of encoder projection units 320
# of decoder LSTM cells 300
Optimization AdaDelta
AdaDelta ρ 0.95
AdaDelta ε 10−8

AdaDelta ε decaying factor 10−2

Gradient norm clip threshold 5
Maximum epoch 15
Threshold to stop iteration 10−4

Location-aware # of conv. filters 10
Location-aware conv. filter widths 100
Hybrid attention/CTC λ 0.5
RNN-LM weight γ 0.1

To do this end, we further augment the character set to include the
language id, i.e., Ufinal = U ∪ {EN, JP, · · · }. Note that with the
probabilistic chain rule, we could insert a language index into any
positions. However, setting a language index in the beginning is
straightforward since it first predicts a language ID, and performs
ASR conditioned on the predicted ID, which behaves similar to the
conventional scheme having a language identification module as pre-
possessing.

Thus, the augmented feature set and joint language identifica-
tion and speech recognition enable language-independent multilin-
gual ASR within an end-to-end fashion.

5. EXPERIMENTS

5.1. Setup

This section demonstrates multilingual ASR experiments with our
proposed language-independent end-to-end system. Table 1 shows
corpora based on WSJ, CSJ, HKUST, and Voxforge. For the Vox-
forge data, we randomly split them with 80% for a training set,
10% for a development set, and the rest of 10% for an evaluation
set1 Note that the size of corpora for each language is not well bal-
anced (Japanese and augmented Mandarin corpora have more than
500 hours while the Portuguese corpus only has 2.9 hours). We first
performed a relatively small-scale experiment based on a subset of
database by using 7 larger scale languages (i.e., JP, CH, EN, DE, ES,
FR, IT), and used a part of utterances (100K) for Japanese and Man-
darin (we call it 7lang). The total amount of 7lang training data is
449 hours while that of full training data (10lang) is 1327 hours.

Table 2 lists the common experimental hyperparameters among
all experiments. When we built language-independent and language-
dependent models, we use the exactly same hyperparameters listed
in the table, except for the encoder network architecture (number of
BLSTM layers and the use of the CNN layer). Each BLSTM in the
encoder network has 320 cells. A full connected layer is inserted
between BLSTM layers, which linearly transforms two-directional
outputs (640 dims.) to 320 dimensional vectors. The decoder net-
work consists of 1 layer LSTM with 300 cells.

To use the same dimensional input features, we used 40-
dimensional filterbank features with 3-dimensional pitch features

1More specifically, we split the database by making prompts open to each
other. Voxforge often uses the same prompts for several utterances, and we
have to avoid the same prompts appeared in the training and test data.



Table 3. Character Error Rates (CERs) of language-dependent and language-independent ASR experiments for 7 and 10 multilingual setups.
Language-dependent 7lang 7lang 7lang 10lang

4BLSTM 4BLSTM CNN-7BLSTM CNN-7BLSTM CNN-7BLSTM
RNN-LM RNN-LM

HKUST CH train dev 40.1 43.9 40.5 40.2 32.0
dev 40.4 43.6 40.5 40.0 31.0

WSJ EN dev93 9.4 9.6 7.7 7.0 9.7
eval92 7.4 7.3 5.6 5.1 7.4

CSJ JP
eval1 13.5 14.3 12.4 11.9 10.2
eval2 10.8 10.8 9.0 8.5 7.2
eval3 23.2 24.9 22.0 21.4 8.7

Voxforge

DE dev 6.6 7.4 5.7 5.4 7.3
eval 5.2 7.4 5.8 5.5 7.3

ES dev 50.9 28.1 31.9 31.5 25.8
eval 50.8 29.6 34.7 34.4 26.7

FR dev 27.7 25.0 22.0 21.0 24.1
eval 26.5 23.5 21.2 20.3 23.2

IT dev 14.3 14.3 11.8 11.1 13.8
eval 14.3 14.4 12.0 11.2 14.1

NL dev 27.0 23.2
eval 25.5 22.4

RU dev 47.8 45.0
eval 49.4 43.2

PT dev 56.9 35.5
eval 52.2 31.9

Avg. 7 langs 22.7 20.3 18.9 18.3 16.6
Avg. 10 langs 27.4 21.4

implemented in Kaldi [33] for both 8/16 kHz speech signals2. With
CNN/BLSTM-based encoder network, we used additional delta and
delta-delata features to form 3-channel inputs in the CNN. Our ini-
tial experiments only used BLSTM as an encoder network, and in
this configuration, we only used the static 43-dimensional feature
and subsampled hidden output activations on 1st and 2nd bottom
layers (skip every 2nd feature, yielding 4/T ).

The language-dependent multilingual ASR model was trained
for each of 10 languages. Similar to the 7lang setup, we only used
subsets for Japanese (150 hours from a subset of CSJ training data)
and Mandarin (90 hours from a subset of HKUST CTS training
data) corpora. This paper also strictly followed an end-to-end ASR
concept, and did not use any pronunciation lexicon, word-based
language model, GMM/HMM, or DNN/HMM. Our hybrid atten-
tion/CTC architecture was implemented with Chainer [34].

5.2. Results

Table 3 shows the character error rate (CER) of language-dependent
and language-independent end-to-end ASR systems with several
experimental configurations. The first experiment is to compare the
language-dependent and language-independent end-to-end ASR sys-
tems with the same network architecture, based on relatively small-
scale setup. To do this comparison, we only used 4-layer BLSTM
instead of CNN/BLSTM in the encoder network, and also limit
the training data with 7lang for language-independent architecture.
Columns ”Language-dependent 4BLSTM” and ”7lang 4BLSTM”
corresponds to this comparison. The language-independent ASR

2The features obtained from 8/16 kHz on this setup are not consistent,
and we may need to compensate this feature difference, which is one of our
future work.

system successfully improved the performance in average by 2.4%,
mainly improving the performance of Spanish task, which was ex-
tremely poor performance on a language-dependent setup. Although
the average performance was improved, the performance of many
languages were actually degraded probably due to the straightfor-
ward mixing of all languages into a sigle network.

The second experiments in the ”7lang CNN-7BLSTM” and
”7lang CNN-7BLSTM, RNN-LM” columns enhanced the network
architecture by using the CNN followed by the 7-layer BLSTM
instead of the 4-layer BLSTM in the encoder network, and also
combining RNN-LM, as described in Section 3. We first prepared
a language-independent LSTM-based RNN-LM with 800 cell size
trained by mixing the transcripts of 7lang with the same augmented
character set as the language-independent end-to-end architecture.
These two extensions significantly improved the performance by
2.0% absolutely in average, and also recovered most of degradations
observed in the previous experiments. We only observed marginal
degradation on the HKUST train dev and dev, and Voxforge German
evaluation set.

Given the success of our very deep encoder network, the final
experiment in the column ”10lang CNN-7BLSTM, RNN-LM” used
full training data of 10 language with the same CNN-7BLSTM
architecture in the encoder network. Similarly to the previous ex-
periment, we also prepared a language-independent LSTM-based
RNN-LM with 800 cell size trained by mixing the transcripts of
10lang. With the training data extension, we achieved further im-
provement for the 7 language test sets with 16.6% CER. We also
obtained 21.4% CER for the 10 language test set. Although it
cannot be directly compared with the average CER of 27.4% ob-
tained by language-dependent systems due to the different network
architectures and different amounts of training data, we could still



CH EN JP DE ES FR IT NL RU PT

CH
train_dev 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

dev 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

EN
test_eval92 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
test_dev93 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

JP

eval1_jpn 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
eval2_jpn 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
eval3_jpn 0.0 0.0 99.9 0.0 0.0 0.0 0.1 0.0 0.0 0.0

DE
et_de 0.0 0.0 0.0 99.7 0.0 0.0 0.0 0.3 0.0 0.0
dt_de 0.0 0.0 0.0 99.7 0.0 0.0 0.0 0.3 0.0 0.0

ES
dt_es 0.0 0.0 0.0 0.0 67.9 0.0 31.9 0.0 0.0 0.2
et_es 0.0 0.0 0.0 0.1 91.1 0.0 8.4 0.1 0.0 0.2

FR
dt_fr 0.0 0.0 0.0 0.1 0.0 99.4 0.0 0.2 0.0 0.3
et_fr 0.0 0.0 0.0 0.1 0.0 99.5 0.0 0.1 0.0 0.3

IT
dt_it 0.0 0.0 0.0 0.0 0.3 0.4 99.1 0.0 0.0 0.3
et_it 0.0 0.0 0.0 0.0 0.4 0.4 98.3 0.2 0.1 0.7

NL
dt_nl 0.0 0.0 0.0 1.3 0.0 0.1 0.1 97.2 0.0 1.3
et_nl 0.0 0.0 0.0 1.0 0.0 0.2 0.2 97.6 0.0 0.9

RU
dt_ru 0.2 0.0 0.0 0.0 0.2 0.6 0.5 0.0 97.9 0.8
et_ru 0.0 0.0 0.0 0.2 0.2 0.3 4.3 0.0 94.7 0.3

PT
dt_pt 0.0 0.0 0.0 0.3 0.3 2.6 1.7 3.4 0.6 91.2
et_pt 0.0 0.3 0.0 0.3 0.0 0.0 3.9 3.6 0.3 91.5

Fig. 2. Language identification (LID) accuracies/error rates (%). The diagonal elements correspond to the LID accuracies while the off-
diagonal elements correspond to the LID error rates.

state that our language-independent end-to-end systems achieved
reasonable performance with 10 multiple languages. Also, note that
among worst three performance languages (Spanish (ES), Russian
(RU), and Portuguese (PT)) in the language-dependent condition,
ES and PT significantly improved the performance in the language-
independent codtion, while RU did not. One reason of this different
trend is that ES and PT shared common graphemes (Roman Alpha-
bet) with the other languages, and their sparse data issues would be
largely mitigated by the training data of the other languages with
our language-independent monolithic architecture. However, since
the Cyrillic Alphabet in RU is not appeared in the other languages,
the RU task could not obtain the benefit from the training data of
the other languages, which would yield the marginal improvement
compared with ES and PT.

Finally, Figure 2 shows the language identification (LID) ac-
curacies/error rates (%) for 10lang CNN-7BLSTM, RNN-LM. The
diagonal elements correspond to the LID accuracies while the off-
diagonal elements correspond to the LID error rates. We can observe
that the language identification is almost perfect except for Spanish,
which tended to be mis-recognized as Italian, since Spanish and Ital-
ian are linguistically close to each other.

Thus, we confirmed that the proposed architecture can realize
language-independent speech recognition with high performance
language identification at the same time.

6. SUMMARY

We proposed a language-independent ASR architecture, and shows
the effectiveness of the proposed architecture. The architecture does
not have language-dependent components, and accepts speech input
of any target languages. One of the current issues is that the ASR
performance of several languages was degraded mainly due to the
unbalanced training data, which is always happened in the field data.
Our future work is to mitigate this unbalanced training data issue,
and perform language-independent ASR without the degradation of

specific languages.
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