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We propose a combination of character-based and word-based language models in an end-
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character-based LSTM RNN-LM with a hybrid attention/connectionist temporal classifica-
tion (CTC) architecture. The character LMs improved recognition accuracy to rival state-of-
the-art DNN/HMM systems in Japanese and Mandarin Chinese tasks. Although a charac-
terbased architecture can provide for open vocabulary recognition, the character-based LMs
generally under-perform relative to word LMs for languages such as English with a small
alphabet, because of the difficulty of modeling linguistic constraints across long sequences of
characters. This paper presents a novel method for end-to-end ASR decoding with LMs at
both the character and word level. Hypotheses are first scored with the character-based LM
until a word boundary is encountered. Known words are then re-scored using the word-based
LM, while the character-based LM provides for out-of-vocabulary scores. In a standard Wall
Street Journal (WSJ) task, we achieved 5.6 % WER for the Eval’92 test set using only the
SI284 training set and WSJ text data, which is the best score reported for end-to-end ASR
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ABSTRACT

We propose a combination of character-based and word-based lan-
guage models in an end-to-end automatic speech recognition (ASR)
architecture. In our prior work, we combined a character-based
LSTM RNN-LM with a hybrid attention/connectionist temporal
classification (CTC) architecture. The character LMs improved
recognition accuracy to rival state-of-the-art DNN/HMM systems
in Japanese and Mandarin Chinese tasks. Although a character-
based architecture can provide for open vocabulary recognition, the
character-based LMs generally under-perform relative to word LMs
for languages such as English with a small alphabet, because of the
difficulty of modeling linguistic constraints across long sequences of
characters. This paper presents a novel method for end-to-end ASR
decoding with LMs at both the character and word level. Hypotheses
are first scored with the character-based LM until a word boundary is
encountered. Known words are then re-scored using the word-based
LM, while the character-based LM provides for out-of-vocabulary
scores. In a standard Wall Street Journal (WSJ) task, we achieved
5.6 % WER for the Eval’92 test set using only the SI284 training set
and WSJ text data, which is the best score reported for end-to-end
ASR systems on this benchmark.

Index Terms— End-to-end speech recognition, language mod-
eling, decoding, connectionist temporal classification, attention de-
coder

1. INTRODUCTION

Automatic speech recognition (ASR) is currently a mature set of
widely-deployed technologies that enable successful user interface
applications such as voice search [1]. However, current systems
lean heavily on the scaffolding of complicated legacy architec-
tures that grew up around traditional techniques, including hidden
Markov models (HMMs), Gaussian mixture models (GMMs), hy-
brid HMM/deep neural network (DNN) systems, and sequence
discriminative training methods [2]. These systems also require
hand-made pronunciation dictionaries based on linguistic assump-
tions, extra training steps to derive context-dependent phonetic
models, and text preprocessing such as tokenization for languages
without explicit word boundaries. Consequently, it is quite diffi-
cult for non-experts to develop ASR systems for new applications,
especially for new languages.

End-to-end ASR has the goal of simplifying the above module-
based architecture into a single-network architecture within a deep
learning framework, in order to address these issues. End-to-end
ASR methods typically rely only on paired acoustic and language
data without linguistic knowledge, and train the model with a single

algorithm. Therefore, the approach makes it feasible to build ASR
systems without expert knowledge.

There are two major types of end-to-end architectures for ASR:
connectionist temporal classification (CTC) and attention-based
methods, both of which are based on recurrent neural networks.
Connectionist temporal classification (CTC) uses a system in which
the acoustic model network emits scores not only for each output
symbol, but also for extra blank, or neutral, symbols that act as filler
between output symbols. These neutral symbols allow the network
to implicitly align the input sequence of acoustic features to the
much shorter sequence of output symbols. The Markov conditional
independence assumption allows dynamic programming to search
for the best scoring sequential alignment by absorbing the neutral
symbols, while incorporating language modeling scores. Attention-
based methods, in contrast, use a neural attention mechanism to
explicitly estimate an alignment between input acoustic frames
and recognized output symbols within the network [3, 4, 5, 6, 7].
Attention-based methods do not rely on the frame-level Markov
assumption, and hence they can model a more general class of sta-
tistical dependency between input and output sequences. However,
without special constraints, the attention mechanism is too flexible
in the sense that it allows arbitrarily non-sequential alignments. Al-
though such alignments may be appropriate for applications such as
machine translation where word order may differ arbitrarily between
languages, they are inappropriate for speech recognition, where the
alignment between spoken and written speech is essentially mono-
tonic.

To avoid the shortcomings of both models, while retaining their
advantages, we have proposed a hybrid attention/CTC model for
end-to-end ASR training [8]. The hybrid model attaches a CTC
mechanism and objective to the attention model during training.
The CTC objective acts as a regularization term that encourages the
alignments in the attention model to be monotonic, and improves its
performance. Moreover, we proposed using the combined CTC and
attention-based objective for decoding, and demonstrated that a one-
pass search strategy can incorporate both objectives and efficiently
find better aligned hypotheses with an improved accuracy [9].

In our previous work [10], we have also shown that integrat-
ing a recurrent neural network language model (RNN-LM) with the
decoder network significantly improves the recognition accuracy in
Japanese and Mandarin Chinese tasks, reaching a comparable or
higher accuracy to those of state-of-the-art DNN/HMM systems. For
example, our result on the Chinese HKUST task is 28.0 % word error
rate (WER), which is slightly better than 28.2% given by a state-of-
the-art time-delay neural network (TDNN) system with lattice-free
maximum muMMI training [11]. Since the Japanese and Chinese
systems were designed to output character sequences, the RNN-LM
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Fig. 1. Hybrid attention/CTC network with LM extension: the
shared encoder contains a VGG net followed by BLSTM layers and
trained by both CTC and attention model objectives simultaneously.
The joint decoder predicts an output label sequence by the CTC, at-
tention decoder and RNN-LM.

was also designed as a character-based LM, and effectively com-
bined with the decoder network to jointly predict the next character.

A character-based architecture achieves high-accuracy ASR for
languages with a large set of characters such as Japanese and Chi-
nese. It also enables open vocabulary ASR, in contrast to word-based
architectures, which suffer from the out-of-vocabulary (OOV) prob-
lem. However, the character-based LMs generally under-perform
relative to word LMs for languages with a small alphabet, such as
English, because of the difficulty of modeling linguistic constraints
across long sequences of characters. To overcome this problem,
we present a novel method for end-to-end ASR decoding with LMs
at both the character and word level. Hypotheses are first scored
with the character-based LM until a word boundary is encountered.
Known words are then re-scored using the word-based LM, while
the character-based LM provides for out-of-vocabulary scores. This
approach exploits the benefits of both character and word level ar-
chitectures, and enables high-accuracy open-vocabulary end-to-end
ASR. We evaluate the proposed method with a standard Wall Street
Journal (WSJ) task and show significant improvement by the pro-
posed method.

2. HYBRID ATTENTION/CTC ARCHITECTURE

In this section, we explain the hybrid attention/CTC framework,
which utilizes both benefits of CTC and attention during training
and decoding [8, 9].

2.1. Network architecture

Figure 1 shows the latest architecture of our CTC-attention network
[10]. The encoder has deep convolutional neural network (CNN)
layers with the VGG net architecture [12], which are followed by
stacked bidirectional long short-term memory (BLSTM) layers. The
decoder network has a CTC network, an attention decoder network,
and an RNN-LM, which jointly predict the next label. Given input
sequenceX = x1, . . . , xT , the encoder network acceptsX and out-
puts hidden vector sequence H = h1, . . . ,hT ′ , where T ′ = T/4 by
using two max-pooling steps in the deep CNN. The decoder network
iteratively predicts a single label cl based on the hidden vectors H

and the label context c1, . . . , cl−1, and generates L-length label se-
quence C = {cl ∈ U|l = 1, · · · , L}, where U is a set of labels. In
this work, we assume U is a set of distinct characters or alphabet of
the target language.

2.2. Multi-task learning

In [8], we used the CTC objective function as an auxiliary task to
train the attention model encoder based on the multi-task learning
(MTL) framework. This approach substantially reduced irregular
alignments during training and inference, and provided improved
performance in several end-to-end ASR tasks.

CTC [13] is a latent variable model that monotonically maps
an input sequence to an output sequence of shorter length. We as-
sume here that the model outputs letter sequence C. CTC intro-
duces framewise letter sequence with an additional ”blank” symbol
Z = {zt ∈ U∪blank|t = 1, · · · , T}. By using conditional indepen-
dence assumptions, the posterior distribution p(C|X) is factorized
as follows:

p(C|X) ≈
∑
Z

∏
t

p(zt|zt−1, C)p(zt|X)︸ ︷︷ ︸
,pctc(C|X)

p(C) (1)

As shown in Eq. (1), CTC has three distribution components by
the Bayes theorem similar to the conventional hybrid ASR case,
i.e., framewise posterior distribution p(zt|X), transition probabil-
ity p(zt|zt−1, C), and letter-based language model p(C). We also
define the CTC objective function pctc(C|X) used in the later for-
mulation.

The framewise posterior distribution p(zt|X) is conditioned on
all inputsX , and it is quite natural to be modeled by using BLSTMs:

p(zt|X) = Softmax(Lin(ht)) (2)
ht = BLSTM(CNN(X)). (3)

Softmax(·) is a softmax activation function, and Lin(·) is a linear
layer to convert hidden vector ht to a (|U| + 1) dimensional vector
(+1 means a blank symbol introduced in CTC).

Although Eq. (1) has to deal with a summation over all possible
Z, we can efficiently compute this marginalization by using dynamic
programming thanks to the Markov property. In summary, although
CTC and hybrid systems are similar to each other due to conditional
independence assumptions, CTC does not require pronunciation dic-
tionaries and omits an HMM/GMM construction step.

Compared with CTC approaches, the attention-based approach
does not make any conditional independence assumptions, and di-
rectly estimates the posterior p(C|X) based on the chain rule:

p(C|X) =
∏
l

p(cl|c1, · · · , cl−1, X)︸ ︷︷ ︸
,patt(C|X)

, (4)

where patt(C|X) is an attention-based objective function.
p(cl|c1, · · · , cl−1, X) is obtained by

p(cl|c1, · · · , cl−1, X) = Decoder(rl,ql−1, cl−1) (5)
ht = Encoder(X) (6)
alt = Attention({al−1}t,ql−1,ht) (7)

rl =
∑
t

altht. (8)



Eq. (6) converts input feature vectorsX into a framewise hidden vec-
tor ht in an encoder network based on BLSTM, i.e., Encoder(X) ,
BLSTM(CNN(X)). Attention(·) in Eq. (7) is based on a content-
based attention mechanism with convolutional features, as described
in [14]. alt is an attention weight, and represents a soft alignment of
hidden vector ht for each output cl based on the weighted summa-
tion of hidden vectors to form letter-wise hidden vector rl in Eq. (8).
A decoder network is another recurrent network conditioned on pre-
vious output cl−1 and hidden vector ql−1, similar to RNN-LM,
in addition to letter-wise hidden vector rl. We use Decoder(·) ,
Softmax(Lin(LSTM(·))).

Attention-based ASR does not explicitly separate each module,
but it implicitly combines acoustic models, lexicon, and language
models as encoder, attention, and decoder networks, which can be
jointly trained as a single deep neural network. Compared with CTC,
attention-based models make predictions conditioned on all the pre-
vious predictions, and thus can learn language. However, the cost
of using an explicit alignment without monotonic constraints means
the alignment can become impaired.

The hybrid attention/CTC network shares the same CNN/
BLSTM encoder with CTC and attention decoder networks. Unlike
the solitary attention model, the forward-backward algorithm of
CTC can enforce monotonic alignment between speech and label
sequences during training. That is, rather than solely depending on
the data-driven attention mechanism to estimate the desired align-
ments in long sequences, the forward-backward algorithm in CTC
helps to speed up the process of estimating the desired alignment.
The objective to be maximized is a logarithmic linear combination
of the CTC and attention objectives, i.e., pctc(C|X) in Eq. (1) and
patt(C|X) in Eq. (4):

LMTL = λ log pctc(C|X) + (1− λ) log patt(C|X), (9)

with a tunable parameter λ : 0 ≤ λ ≤ 1.

2.3. Joint decoding

It has already been shown that the CTC objective helps guide the
attention model during training to be more robust and effective, and
produce a better model for speech recognition [8]. Furthermore, we
can use CTC predictions also in the decoding process [9, 10].

The inference step of attention-based speech recognition is per-
formed by output-label synchronous decoding with a beam search.
However, we take the CTC probabilities into account to find a bet-
ter aligned hypothesis to the input speech, i.e., the decoder finds the
most probable character sequence Ĉ given speech input X , accord-
ing to

Ĉ = arg max
C∈U∗

{λ log pctc(C|X) + (1− λ) log patt(C|X)} . (10)

In the beam search process, the decoder computes a score of
each partial hypothesis, which is defined as the log probability of
the hypothesized character sequence. With the attention model, the
score for hypothesis h can be computed recursively as

αatt(h) = αatt(g) + log p(c|g,X), (11)

where g is an existing partial hypothesis, and c is a character label
appended to g to generate h, i.e., h = g · c. The score for h is ob-
tained as the addition of the original score α(g) and the conditional
log probability given by the attention decoder in Eq. (5). During
the beam search, the number of partial hypotheses for each length
is limited to a predefined number, called a beam width, to exclude

hypotheses with relatively low scores, which dramatically improves
the search efficiency.

However, it is non-trivial to combine CTC and attention-based
scores in the beam search, because the attention decoder operates
character-by-character while CTC decodes at the frame rate. To in-
corporate CTC probabilities in the score, we compute the probability
of each partial hypothesis based on the CTC prefix probability [15]
defined as the cumulative probability of all label sequences that have
h as their prefix:

p(h, . . . |X) =
∑

ν∈(U∪{<eos>})+
P (h · ν|X), (12)

and we use the CTC score as

αctc(h) , log p(h, . . . |X), (13)

where ν represents all possible label sequences except the empty
string, and <eos> indicates the end of sentence. The CTC score
cannot be obtained recursively as in Eq. (11), but it can be computed
efficiently by keeping the forward probabilities over input frames for
each partial hypothesis. Then the hypothesis score is computed as

α(h) = λαctc(h) + (1− λ)αatt(h). (14)

2.4. RNN-LM integration

We combine an RNN-LM network in parallel with the attention de-
coder, which can be trained separately or jointly, where the RNN-
LM is trained with character sequences without word-level knowl-
edge. Although the attention decoder implicitly includes a language
model as in Eq. (5), we aim at introducing language model states
purely dependent on the output label sequence in the decoder, which
potentially brings a complementary effect.

As shown in Fig. 1, the RNN-LM probabilities are used to pre-
dict the output label jointly with the decoder network. The RNN-LM
information is combined at the logits level or log probability level.
If we use a pre-trained RNN-LM without any joint training, we need
a scaling factor on the log probabilities. If we train the model jointly
with the other networks, we may combine their pre-activations be-
fore the softmax without a scaling factor as this is learnt.

In this work, we use only pre-trained RNN-LMs without joint
training, because we assume a large text corpus is available to train
the RNN-LMs and joint training rarely improves recognition accu-
racy in such conditions.

We compute the decoding objective including an RNN-LM as

Ĉ = arg max
C∈U∗

{λ log pctc(C|X) + (1− λ) log patt(C|X)

+γ log plm(C)} , (15)

where the LM probability plm(C) is added with scaling factor γ in
the log probability domain, and the probability is computed as

plm(C) =

L∏
i=1

plm(ci|c1, . . . , ci−1) (16)

using the RNN-LM.

3. DECODING WITH MULTI-LEVEL LMS

In this section, we incorporate a word-level LM into our hybrid atten-
tion/CTC based ASR. In most end-to-end ASR systems, a finite lex-
icon and an N -gram language model are compiled into a Weighted



Finite-State Transducer (WFST), and used for decoding [16, 17].
The WFST framework efficiently handles frame-synchronous or
label-synchronous decoding with the optimized search network and
reduces the word error rate [18, 19]. However, this approach is not
suitable for RNN-LMs because an RNN-LM cannot be represented
as a static state network. In addition, we lose the benefit of the
open-vocabulary property given by the character-based architecture.

In this paper, we extend the character-based decoding to enable
open-vocabulary end-to-end ASR with a word-level RNN-LM. We
consider that the character-based systems can predict space charac-
ters between words as well as letters within the word. Note that the
space character has an actual character code, which is different from
the CTC’s blank symbol. With the space characters, it is possible
to deterministically map any character sequence to a word sequence,
e.g., character sequence

a <space> c a t <space> e a t s

is mapped to a unique word sequence

a cat eats

where <space> formally represents the space character. Accord-
ingly, only when the decoder hypothesizes a space character, it com-
putes the probability of the last word using the word-level RNN-LM
and simply accumulates it to the hypothesis score. No special treat-
ment is necessary for different types of homonyms: words with the
same spelling but different pronunciation are handled in a context-
dependent way by the word language model, whereas words with the
same pronunciation but different spellings are automatically handled
as different word hypotheses in the beam search. Similarly, ambigu-
ous word segmentations are automatically handled as different de-
coding hypotheses.

The proposed mechanism can be implemented by modifying the
character-level LM probabilities as follows. Let V be the vocabulary
of the word-level RNN-LM and be including an abstract symbol of
OOV word such as <UNK>. We compute the conditional character
probabilities in Eq. (16) as

plm(c|g) =


pwlm(wg|ψg)

pclm(wg|ψg)
if c ∈ S,wg ∈ V

pwlm(<UNK>|ψg)β̃ if c ∈ S,wg 6∈ V
pclm(c|g) otherwise

(17)

where S denotes a set of labels that indicate the end of word, i.e.,
S = {<space>,<eos>}, wg is the last word of the character se-
quence g, and ψg is the word-level history, which is the word se-
quence corresponding to g excluding wg . For the above example, g,
wg , and ψg are set as

g = a,<space>,c,a,t,<space>,e,a,t,s

wg = eats

ψg = a,cat.

β̃ is a scaling factor used to adjust the probabilities for OOV words.
The first condition on the right-hand side of Eq. (17) is used

when the character c indicates the end of the previous word. In this
case, the word-level probability pwlm(wg|ψg) is computed using the
word-level RNN-LM. The denominator pclm(wg|ψg) is the probabil-
ity of wg obtained by the character-level RNN-LM and used to can-
cel the character-based LM probabilities accumulated for wg . The
probability can be computed as

pclm(wg|ψg) =
|wg|∏
i=1

pclm(wg,i|ψgwg,1 · · ·wg,i−1), (18)

where |wg| is the length of word wg in characters and wg,i indicates
the i-th character of wg . The second term, pwlm(<UNK>|ψg) acts
as a weight on the character-level LM and ensures that the combined
language model is normalized over character sequences both at word
boundaries and in-between.

If wg is an OOV word as in the second condition, we assume
that a word-level probability for the OOV word can be computed
with the word and character-level RNN-LMs as

poov(wg|ψg) = pwlm(<UNK>|ψg)pclm(wg|<UNK>, ψg). (19)

Since the character-level probability satisfies

pclm(wg|<UNK>, ψg) ∝ pclm(wg|ψg), (20)

we approximate it as

pclm(wg|<UNK>, ψg) =
pclm(wg|ψg)

1−
∑
w∈V pclm(w|ψg)

(21)

= β(ψg) pclm(wg|ψg) (22)

≈ β̃ pclm(wg|ψg), (23)

and obtain

poov(wg|ψg) = pwlm(<UNK>|ψg) β̃ pclm(wg|ψg), (24)

where we assume the scaling factor β(ψg) = β̃, and set it as a tun-
able parameter. In the second condition of Eq. (17), character-based
probability pclm(wg|ψg) is eliminated since it is already accumulated
for the hypothesis. This term allows predicting OOV words as well
as in-vocabulary words and enables open-vocabulary ASR.

The third case gives the character-level LM probabilities to the
hypotheses within a word. Although the character-level LM proba-
bilities are canceled at the end of every known word hypothesis and
so are only used to score OOV words, they serve another impor-
tant role in keeping the correct word hypotheses active in the beam
search until the end of the word where the word-level LM probability
is applied.

Finally, the log probability of sentence-end label <eos> is
added to the log probability of each complete hypothesis g′ as

α(g′) = α(g) + γ log pwlm(<eos>|ψgwg) (25)

in the beam search process.

4. RELATED WORK

There are some prior works related to our multi-level LM approach
to oven-vocabulary ASR [20][21][22], which were designed for con-
ventional hybrid ASR systems, i.e., not for end-to-end systems. In
[20], subword units such as syllables were introduced to model OOV
words, and a subword-level LM was used together with a word-level
LM based on the WFST framework. In [21] and [22], character
and word-level N-gram LMs were combined with a grapheme-to-
phoneme model to handle multiple pronunciations of OOV words.

Our proposed method, in contrast, is specially designed for end-
to-end ASR. The proposed method is simpler than the prior methods
since we do not have to handle pronunciation variants of the charac-
ter sequences. In our case, the multi-level character and word-level
RNN-LMs are incorporated in our hybrid CTC/attention end-to-end
ASR. However, we have not normalized the character LM to exclude
character sequence probabilities of in-vocabulary words as done in
[22], which would make for interesting future work.



5. EXPERIMENTS

We evaluate our proposed method with the Wall Street Journal (WSJ)
corpus, which is a well-known English clean speech database [23,
24]. We used the si284 data set for training, the dev93 data set for
validation, and the eval92 data set for evaluation. The data sets are
summarized in Table 1.

Table 1. WSJ data sets used for evaluation
# utterances Length (h)

Training (WSJ1 si284) 37,416 80
Validation (dev93) 503 1.1
Evaluation (eval92) 333 0.7

As input features, we used 80 mel-scale filterbank coefficients
with pitch features and their delta and delta delta features for the
CNN/BLSTM encoder [25]. For the attention model, we used only
32 distinct labels: 26 English letters, apostrophe, period, dash, space,
noise, and sos/eos tokens. The CTC model used the blank instead of
sos/eos, and our MTL model used both sos/eos and the blank.

Our encoder network is boosted by using deep CNN, which is
motivated by prior studies [26, 25]. We used a 6-layer CNN archi-
tecture based on the initial layers of the VGG net architecture [12]
followed by eight BLSTM layers in the encoder network. In the
CNN architecture, the initial three input channels are composed of
the spectral features, delta, and delta delta features. Input speech
feature images are downsampled to (1/4× 1/4) images along with
the time-frequency axes through the two max-pooling layers. The
BLSTM layers had 320 cells in each layer and direction, and the
linear projection layer with 320 units is followed by each BLSTM
layer. We used the location-based attention mechanism [14], where
the 10 centered convolution filters of width 100 were used to extract
the convolutional features. The decoder was a one-layer unidirec-
tional LSTM with 300 cells.

The AdaDelta algorithm [27] with gradient clipping [28] was
used for the optimization. We also applied a unigram label smooth-
ing technique [29] to avoid over-confidence predictions. In the hy-
brid attention/CTC architecture, we used the λ = 0.1 for training
and the λ = 0.2 for decoding. The beam width was set to 30 in
decoding under all conditions. The joint CTC-attention ASR was
implemented by using the Chainer deep learning toolkit [30].

Character and word-based RNN-LMs were trained with the WSJ
text corpus, which consisted of 37M words from 1.6M sentences.
The character-level LM had a single LSTM layer with 800 cells and a
32-dimensional softmax layer while the word-level LM had a single
LSTM layer with 1000 cells and a 20K-dimensional softmax layer,
which equals the vocabulary size of the LM. We used the stochastic
gradient descent (SGD) to optimize the RNN-LMs.

The first experiment evaluates the contributions of language
models. Table 2 shows word error rate (WER) with different lan-
guage models. The character-level LM reduces the WER from
13.4% to 11.5% even when using the transcriptions of si284 speech
data for LM training, whose size is only 1.8% of the WSJ text
corpus. This means that the separate language model has some
complementary effect on the prediction performance. The WER is
reduced to 7.7% by using more data from the WSJ text corpus. Next,
we incorporate a word-level RNN-LM without any character-level
RNN-LMs, where only word-based probabilities were applied at
every position of space or end-of-sentence character. In this case,
the WER increased up to 12.6%. Finally, when using both character

Table 2. Word Error Rate (WER) with different language models on
WSJ.

Language models LM train dev93 eval92
data

No LM - 17.3 13.4
Character RNN-LM si284 15.5 11.5
Character RNN-LM WSJ 12.3 7.7
Word RNN-LM WSJ 17.1 12.6
Word+charachter RNN-LM WSJ 9.6 5.6
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Fig. 2. Beam width vs. word error rate when using different lan-
guage models

and word-level RNN-LMs according to the proposed method, we
have obtained a big improvement reaching 5.6% WER.

To investigate the reason for the high WER when using only
the word-level RNN-LM, we conducted additional experiments with
different beam widths ranging from 5 to 40. Figure 2 shows WERs
for each beam width. Without character LM, i.e., No LM or Word
LM, the WER is almost independent of the beam width. This means
that the decoder network predicts labels with high confidence and
does not change the result even with a wider beam. Consequently,
applying the word-level LM probability at each word end is too late
to recover better hypotheses using the word-level information. Our
proposed method (word+character LM) achieves the lowest WER by
combining the character-level LM as a guide for finding better word
sequence hypotheses in beam search. Although the label smooth-
ing technique we used for training the network mitigates this over-
confidence problem to some extent, it seems difficult to recover the
less-confident labels without any help of character-level LMs.

The second experiment investigates the benefit of the open vo-
cabulary provided by the proposed method. Table 3 compares WERs
when using different vocabulary sizes from 20K to 65K and the open
vocabulary condition. The vocabularies were just used to constrain
all hypotheses to be consisted of only in-vocabulary words. This
constraint can be forced by allowing only character sequences ap-
pearing in the vocabulary during decoding. As shown in the table,
when using a closed vocabulary, the WER does not reach the best
WER in the open vocabulary condition. Even with a small OOV rate
by the 65K vocabulary, there is still a 1.8% gap to the best WER.
We checked the recognition results, and found that they had more
deletion errors. This seems to be because when the decoder can-
not hypothesize label sequences with high probabilities due to the



Table 3. Comparison of WERs with restricted vocabulary during
decoding. We used a 20K-word RNN-LM with a character RNN-
LM in all conditions.

Vocabulary size OOV rate WER
20K 1.98 8.1
40K 0.57 8.1
65K 0.18 7.4
open - 5.6

Table 4. Comparison with other end-to-end ASR systems reported
on WSJ.

End-to-end ASR systems dev93 eval92
seq2seq [17] - 9.3
CTC [31] - 8.2
CTC [16] - 7.3
seq2seq [29] 9.7 6.7
CTC-Attention+LM (this work) 9.6 5.6

vocabulary constraint, the scores for the active hypotheses become
smaller, and therefore shorter hypotheses tend to be selected as the
result.

Finally, we compare our result with other end-to-end systems
reported on the WSJ task. Table 4 summarizes the WER numbers
obtained from other articles and this work. Since the systems in
the table have different network architectures from each other, it is
difficult to compare these numbers directly. However, we confirmed
that our system has achieved the best WER in the state-of-the-art
systems on the WSJ benchmark.

6. CONCLUSION

In this paper, we proposed a novel method that combines character-
based and word-based language models in an end-to-end ASR
architecture. Previously character-based end-to-end systems suf-
fered in languages with small alphabets, due to the difficulty of
modeling language constraints over long sequences of characters.
The proposed end-to-end ASR decoding model combines the ben-
efit of character-based open vocabulary recognition, while using
word-based language modeling to overcome the weaker language
modeling power of character-based language models. This paper
demonstrates that a multilevel LM with both character-level and
word-level dependencies outperforms models with only word-level
or only character-level RNN-LMs, in the open vocabulary ASR con-
dition. In a standard Wall Street Journal (WSJ) task, we achieved
5.6 % WER for the Eval’92 test set using only the SI284 training
set and WSJ text data, which is the best score reported for end-
to-end ASR systems on this benchmark. Future work will include
evaluation of the proposed framework with different tasks in dif-
ferent languages, and extension to joint training for the end-to-end
architecture including the multi-level language models.
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