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nications between biologically-enabled nanomachines in in-vivo aqueous environment. The
proposed method exploits periodic flow, e.g., induced by repeated heart pumping. We make
an analysis of channel impulse response (CIR) for such drift-diffusion fluid systems. In order
to take the cyclic CIR into account, the proposed method optimizes the release timing and
size of information molecules so that highest equalization gain can be achieved. We reveal
that error rate performance can be significantly improved with adaptive molecule loading by
taking care of the cyclic CIR.
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Abstract—This paper investigates a method to improve
performance of diffusive molecular communications between
biologically-enabled nanomachines in in-vivo aqueous environ-
ment. The proposed method exploits periodic flow, e.g., induced
by repeated heart pumping. We make an analysis of channel
impulse response (CIR) for such drift-diffusion fluid systems. In
order to take the cyclic CIR into account, the proposed method
optimizes the release timing and size of information molecules
so that highest equalization gain can be achieved. We reveal
that error rate performance can be significantly improved with
adaptive molecule loading by taking care of the cyclic CIR.

I. INTRODUCTION

Thanks to recent advancement on nano-scale bio-chemical
engineering [1–3], molecular communications network [4–
7] has emerged as a new paradigm to connect biologically-
enabled nanomachines in the intrabody environment. The bio-
machines are small-scale devices (nano-to-micro meter order)
that are capable of sensing, actuating, computing, and ex-
changing data by means of information molecules. Molecular
communications are expected to enable various biomedical
and healthcare applications such as nanoscale lab-on-a-chip,
in-situ physiological sensing, targeted drug delivery, artificial
morphogenesis, and neural signal transduction [5–9].

It is known that molecular communications are inherently
unreliable due to stochastic molecular propagation, molecule-
to-molecule collisions, chemical degradation, and environ-
mental noise. Accordingly, the molecular channels experience
extremely long latency, large jitters, high erasure rate, and
low capacity [10–13]. To deal with the unreliable molecular
channels, several error control schemes have been investigated
including feedback-based rate control [14–16], automatic re-
peat request [17, 18], and forward error correction [19–23].
In addition, various studies on molecular channel modeling
[24–28, 30] revealed that we need to deal with a severe inter-
symbol interference (ISI) caused by a long channel memory
due to molecule diffusion. Hence, a typical receiver employs a
communication distance estimation [31, 32], channel impulse
response (CIR) acquisition [33], and ISI channel equalization
[34–36].

In this paper, we investigate a transmitter design to enhance
the equalization gain in a fluid environment having a periodic
flow. This is motivated by the fact that biological behaviors
such as heart pumping are often cyclic. For example, cardiac
cycle in human body leads to periodic dynamics of blood
flow [38]. Although molecular communications in the presence

of constant flow have been studied in literature [34], there
exist few studies analyzing the impact of periodic flow to the
best of authors’ knowledge. Since the expected CIR becomes
cyclic, the error rate performance will be highly dependent
on the molecule release timing. We show that a significant
performance improvement may be achieved by adaptive con-
trol of molecular transmission to exploit the periodic channel
memory.

The key contributions of this paper are summarized below.
• Cyclic CIR analysis: We analyze the impact of periodic

flow on the channel memory for drift-diffusion molecular
communications.

• Release timing and particle size design: To exploit the
cyclic CIR, we optimize release timing at which the lowest
error rate is achieved in a cycle for different particle sizes.

• Adaptive molecule loading: As an efficient resource as-
signment, we also propose an adaptive allocation of infor-
mation molecules across a cycle to compensate for poor
equalization performance at bad timing.
Notations: Throughout the paper, boldface lowercase letters

denote column vectors. An operator [·]T denotes transpose,
E[·] represents the expectation, and Pois(λ) is a Poisson
distribution with a mean of λ.

II. MOLECULAR COMMUNICATIONS SYSTEM

Fig. 1 shows the molecular communications system under
consideration, where a number of molecules are released from
a transmitter (Tx) bio-nanomachine to a receiver (Rx) bio-
nanomachine over in-vivo aqueous environment. The released
molecules are propagated by stochastic diffusion process, i.e.,
Brownian motion. In addition to the diffusion, we consider
drift flow, e.g., induced by heart pumping. We consider a tube-
like transport such as vein blood vessel, whose diameter is
about 5 mm, which is relatively larger than the communication
distance x0 ≈ 300µm. For simplicity, we consider the com-
munication distance does not change across the time, assuming
that the Tx and Rx nanomachines are stabilized by membrane
fixation.

A. Drift-Diffusion Molecular Propagation

In bio-physics [39], molecules propagated in fluid follow
the stochastic differential equation:

dx = µF (t)dt+
√

2Ddw, (1)
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Fig. 1. Molecular communications system in drift-diffusion fluid environment.

where x is the location of molecule, µ is the mobility of
the molecule in the fluid, F (t) is time-varying external force
in fluid, D is the diffusion coefficient, and dw denotes the
Wiener process. The mobility is a function of viscosity η of
environment (η ' 10−3 kg/m/s for aqueous environment) and
the effective radius R of molecules [39] as follows:

µ =
1

6πηR
, (2)

and the diffusion coefficient D is a function of the mobility µ
according to the Einstein relation:

D = µkBT0, (3)

where kB = 1.38× 10−23 J/K is the Boltzmann constant, and
T0 is the temperature in Kelvin.

The Fokker–Planck equation [41] for (1) provides the
following drift-diffusion equation for the probability density
function (PDF) ρ(x, t) of the molecule distribution:

∂ρ(x, t)

∂t
= −µF (t)

∂ρ(x, t)

∂x
+ 2D

∂2ρ(x, t)

∂x2
. (4)

Supposed that the environment is unbounded (i.e., tube diame-
ter is sufficiently larger than the communication distance) and
the initial distribution released from the Tx nanomachine is
Dirac’s delta impulse assuming a point source, its solution is
expressed as a Gaussian profile as follows:

ρ(x, t) =
1√

4πDt
exp

(
−
(
x−m(t)

)2
4Dt

)
, (5)

where m(t) is the mean of molecule location, which is derived
by Itô’s calculus [41] for (1) as follows:

m(t) = E[x] =

∫ t

0

µF (τ)dτ. (6)

Note that the PDF in (5) is readily generalized to three-
dimensional diffusion.

For the case when the information molecule can degrade
via chemical reaction e.g., with enzymes, the concentration
is also exponentially decaying over time. Specifically, the
concentration C(x, t) of the released molecules from the Tx
nanomachine is modeled as follows [34]:

C(x, t) =
Ntx

(4πDt)3/2
exp

(
−κt−

∥∥x−m(t)
∥∥2

4Dt

)
, (7)

where Ntx is the number of released molecules from Tx, κ
is the degradation rate with a unit of s−1, x = [x, y, z]T is
the three-dimensional coordinate of the location, and m(t) =
[m(t), 0, 0]T is the expected molecular location. Since we
consider the tube-like transport with one-dimensional flow
in Fig. 1, we focus on one-dimension diffusion throughput
the paper. Nevertheless, our analysis is applicable to three-
dimensional diffusion with a minor modification.

B. Cyclic Flow Environment

In [34], Noel et al. investigated optimal and sub-optimal re-
ceiver designs based on maximum-likelihood sequence detec-
tion (MLSD) and weighted-sum detection (WSD) for diffusive
molecular communications in the presence of constant flow,
i.e., F (t) = F0 for all t. In this paper, we study transmitter
design in the presence of periodic flow, i.e., F (t) = F (t+T )
with a certain duration of period T . This is motivated by
the fact that biological functionalities are often cyclic. For
example, a period of heart pumping is relatively stable around
T ' 1 s. To the best of our knowledge, this is the first study in-
vestigating molecular communications in a time-varying flow
fluid environment. We will show the potential improvement of
transmission performance by exploiting the periodic channels.

In order to obtain useful insights in molecular transmissions
under such cyclic drift-diffusion fluids, this paper considers a
simplified case having sinusoidal flow force as follows:

F (t) = F0 cos2(πt/T + β/2), (8)

where F0 and β denote the peak force and initial phase,
respectively. In the presence of such sinusoidal force, the peak
concentration is shifted at

m(t) =
µF0t

2
+

µF0

4π/T

(
sin(2πt/T + β)− sin(β)

)
. (9)

The first term comes from an averaged constant flow force
F0/2, while the rest of the terms are based on the contribution
of time-varying sinusoidal force. The study for more realistic
flow waveforms [38] will be left as a future work.

Fig. 2 shows the impact of particle size R ∈ {0.5, 1.0} nm
on the mean location m(t) of molecular concentrations re-
leased from the Tx nanomachine at t = 0, x = 0, and initial
phase of β ∈ {0, π/2, π} rad. Here, we consider a peak force
F0 according to a typical peak blood pressure of 100 mmHg,
i.e., F0 = πR2 · 13.3 kN, where πR2 comes from a total area
of spherical particle of radius R. Although larger molecules
have lower mobility (also diffusion coefficient) in general as
in (2), a product of mobility µ and force F0 can be increased
given a certain pressure (i.e., force per unit area). In Fig. 3,
we also illustrate several example snapshots of PDF evolution
ρ(x, t) over time at t ∈ {0.01, 0.02, 0.03} s in the presence
of sinusoidal flows. As shown in those figures, the molecular
distribution is highly dependent on the initial phase β as well
as the particle size R because of the specific characteristics in
its mean and variance of the shifted Gaussian PDF ρ(x, t).
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Fig. 2. Mean location m(t) for particle sizes R = {0.5, 1.0} nm with initial
phases β ∈ {0, π/2, π}.
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Fig. 3. Molecular PDF ρ(x, t) for particle sizes R = {0.5, 1.0} nm with
initial phase β ∈ {0, π} at time instance t ∈ {0.01, 0.02, 0.03} s.

C. Channel Impulse Response (CIR)

The CIR for diffusive molecular communications has been
intensively investigated in literature [13, 27, 30, 32–35, 40]. As-
suming a transparent receiver [35], the expected number of
arrival molecules at the Rx is obtained as

c̄(t) =

∫
x∈Vrx

C(x, t)dx, (10)

where Vrx is the volume of the Rx nanomachine. For example,
when a membrane-type Rx nanomachine of thickness 2Rrx

is located at x0 for 1D Gaussian profile ρ(x, t) in (5), the
expected number of molecules is expressed by the error
function erf(·) as follows [37]:

c̄(t) =
Ntx

2

(
erf
(x0+Rrx−m(t)√

4Dt

)
− erf

(x0−Rrx−m(t)√
4Dt

))
. (11)

Note that the mean location m(t) is given in (9) for sinusoidal
flows.

Due to a Gaussian profile having long tail, the diffusive
channels typically cause a severe ISI [13, 33–35, 40] unless

the symbol interval Ts is chosen sufficiently large such that
the CIR decays to a negligible level within one symbol
interval. Because a long symbol interval will seriously limit
the transmission rate of the communication system, we shall
deal with ISI in practice by employing equalization techniques.
The ISI channels in the molecular communications system can
be modeled as follows [33]:

r[k] =

L∑
l=1

cl[k]s[k − l + 1] + c0[k] , cT[k]s[k], (12)

where r[k] is the number of molecules detected at the Rx
in symbol instance t = kTs, L is the number of mem-
ory taps of the channel, cl[k] is the number of molecules
observed at the Rx in symbol interval k contributed from
the past molecule release from the Tx in symbol interval
k − l + 1, and s[k] ∈ {0, 1} denotes the on-off keying
(OOK) concentration-modulated symbols [40]. Here, c0[k] is
the number of external noise molecules detected by the Rx in
symbol interval k but not released by the Tx nanomachine.
We let c[k] ,

[
c0[k], c1[k], c2[k], . . . , cL[k]

]T
and s[k] ,[

1, s[k], s[k−1], . . . , s[k−L+1]
]T

be stacked CIR (including
noise) and transmission sequence at symbol instance k, re-
spectively. According to literature [13, 27, 30, 32–35, 40], cl[k]
is well modeled by a Poisson random variable (RV) with a
mean of λl[k] = c̄((k − l)Ts), i.e., cl[k] ∼ Pois(λl[k]). Noise
molecules for c0[k] may originate from interfering sources
employing the same type of molecule. Hence, c0[k] can also
be modeled as a Poisson RV: c0[k] ∼ Pois(λ0[k]) with a mean
of λ0[k].

Fig. 4 depicts examples of CIR (a.k.a. delay profile) c̄(t)
normalized by Ntx, i.e., arrival probability, at a communication
distance of x0 = 300µm. One can see that the CIR may have
longer memory at some conditions, e.g., when released at the
initial phase of β = 0 for a particle size of R = 1.0 nm.
Fig. 5 shows the detailed impact of initial phase β on the
delay profile for R = 0.3 nm. We observe that the delay
profile highly depends on the release timing in the time-
varying flow. In this paper, we exploit such a cyclic CIR to
design the molecular transmission. In particular, short delay
may not always be favorable since higher diversity gain may
be potentially achieved by intentionally creating longer delay.

III. MOLECULAR SIGNALING DESIGN

In this section, we discuss a potential performance improve-
ment by exploiting the cyclic CIR for molecular communi-
cations under drift-diffusion fluid environment with periodic
flow. Unless otherwise stated, we assume a peak flow force
corresponding to 133 Pa (πR2 · 13.3 kN) at a temperature
of T0 = 35 ◦C. The Tx nanomachine emits impulses of
Ntx = 300 molecules using OOK concentration modulation
at a symbol interval of Ts = 10 ms. When degradation is
considered, we use κ = 10 /s. The radius of the information
molecule is R = 0.3 nm, corresponding to a mobility of
µ = 1.77×1011 s/kg and a diffusion coefficient of D = 7.52×
10−10 m2/s according to (2) and (3). The Rx nanomachine with
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a radius of Rrx = 45 nm is located x0 = 300µm apart from
the Tx nanomachine.

A. Equalization Algorithm

Due to the intrinsic randomness of diffusion, the Rx
nanomachine tries to estimate the expected CIR λl[k] as
discussed in [33], where training sequence designs and prac-
tical channel estimation methods achieving near Cramer–Rao
bound were investigated. In order to simplify the problem,
we assume a perfect knowledge of expected CIR λ[k] ,[
λ0[k], λ1[k], . . . , λL[k]

]T
, while in practice we should first

estimate it by employing such channel estimation methods.
Given expected CIR λ[k], the Rx nanomachine equalizes the
ISI channels. We use an optimal equalizer based on MLSD
with a modified Viterbi algorithm proposed in [34].

As discussed in [34], in order to handle long memory of
diffusive molecular channels (i.e., theoretically L = ∞ due
to Gaussian profile), MLSD in practice uses delayed decision-

feedback sequence estimation (DDFSE), which is prudent to
include the impact of all prior ISI symbols on the current
candidate states, whereas only a finite number of trellis states
are considered. Let L′ ≤ L be the explicit channel memory,
and thus there will be 2L

′
trellis states in DDFSE, where each

state represents a candidate sequence for the previous L′ bits
for OOK symbols. For a trellis branch corresponding to a
candidate sequence s̃[k] =

[
1, s̃[k], s̃[k−1], . . . , s̃[k−L+1]

]T
,

a log-likelihood for the branch in the Viterbi algorithm is given
for Poisson channels in (12) as follows:

Φ(s̃[k]) = −λTs̃[k] + r[k] ln(λTs̃[k])−
r[k]∑
j=1

ln(j), (13)

considering the fact that the sum of Poisson RVs is also
a Poisson RV, i.e., r[k] ∼ Pois(λTs[k]), whose PDF is
expressed as exp(Φ(s[k])). Note that the candidate sequence
s̃[k] consists of a new branch s̃[k] for the present bit s[k],
current state

[
s̃[k − 1], s̃[k − 2], . . . , s̃[k − L′]

]
, and delayed

decisions
[
s̃[k − L′ − 1], . . . , s̃[k − L + 1]

]
for past bits

across trellis diagram. The MLSD can be readily generalized
to a fractionally-spaced equalization by taking a sum of over-
sampled log-likelihoods as studied in [34], where higher over-
sampling factor M offers a significant gain if the arrival events
of molecules are mutually independent across samples.

The bit-error rate (BER) performance can be analyzed using
classical techniques by considering all possible erroneous
paths over the trellis diagram. For example, the conditional
probability that a true path s[k] will be wrong to an erroneous
path s′[k] , s[k] + δ[k] is given as follows:

Pr(s[k]→ s′[k]) = Pr
(
Φ(s[k]) < Φ(s′[k])

)
= Pr

(
r[k] ln

(
1 + λTδ[k]

λTs[k]

)
> λTδ[k])

)
. (14)

This can be readily calculated by the cumulative distribution
function (CDF) of Poisson RV r[k], i.e., Pr(r < x) = Γ (bx+
1c, λ)/Γ (bx + 1c, 0) for r ∼ Pois(λ) where b·c is the floor
function and Γ (x, a) denotes the incomplete gamma function:

Γ (x, a) =

∫ ∞
a

tx−1 exp(−t)dt. (15)

By taking a product of the error probabilities for the two
branch metrics across all possible error transitions, we can
analytically obtain the BER of MLSD. It should be noted
that the false negative error (s[k] = 1 has been wrong)
occurs generally more often than false positive error (s[k] = 0
has been wrong) due to the non-negativity of Poisson RV.
It suggests that it is better to use a non-equiprobable data
sequence in order to improve the reliability. In this paper, we
consider equiprobable OOK signaling for simplicity.

B. Release Timing and Particle Size Design

As depicted in Figs. 4 and 5, the CIR highly depends on
the molecule release timing against the periodic force phase
β in addition to the particle size R. It is known that the
equalization usually performs better in longer-memory ISI for
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Fig. 6. BER performance as a function of Ntx = 300 molecules release timing at sinusoidal force phase β with M -over-sampled fractionally-spaced MLSD
for particle sizes R = {0.1, 0.2, 0.3, 0.4, 0.5, 1.0} nm, average noise molecules λ0 = 10, and communication distance x0 = 300µm.

wireless fading channels because higher gain due to multi-
path diversity can be achieved. In this paper, we show the
equalization performance can be also improved in molecular
communication channels by considering molecule release tim-
ing and particle sizes. In Fig. 6, we plot the BER performance
as a function of release timing at force phase β for MLSD
employing fractionally-spaced M over-samples. Here, we con-
sider particle sizes of R ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 1.0} nm, and
the number of released molecules Ntx = 300 with an average
number of noise molecules λ0 = 10.

As discussed in [34], we can observe that higher over-
sampling factor M improves the BER performance more
significantly. Because smaller particles have larger diffusion
coefficient causing longer memory in general, the BER is rel-
atively less sensitive to the release timing. Nevertheless, it can
be seen that the BER performance can vary by several orders
of magnitude depending on the release timing for R ≥ 0.2 nm.
For example, the best release timing was around β ' 1.5π
(i.e, 270 ◦) for a particle size of R = 0.3 nm because a longer
channel memory appears at this phase as shown in Fig. 5.
For larger particle sizes, the performance selectivity is more
significant; specifically, the BER performance is extremely
poor among most of the release timing except at around β ' 0
for R = 0.5 nm. It is also because the CIR has longer delay
profile at β = 0 compared to other phases as shown in Fig. 4.
In addition, we should notice that the best timing is not always
at the time of β = 0 in which the flow force F (t) is maximal;

more specifically, β ' 0.24π was best for R = 1.0 nm
as shown in Fig. 6(f). Although the smallest particle size
of 0.1 nm in Fig. 6(a) performs the best, using such small
particles in the system is often unrealistic. Therefore, it is
suggested that we shall design the communications system
to fully utilize the knowledge of fluid environment, e.g., by
optimizing the timing of molecule release and particle size,
such that the CIR memory can be sufficiently large to enjoy
the diversity gain.

C. Adaptive Molecule Loading

The BER performance is also dependent on the number
of released molecules Ntx. In general, the release of more
molecules provides more reliable data transmission, as shown
in Fig. 7, where we plot BER vs. phase β with a different
number of molecules of Ntx ∈ {100, 200, . . . , 600} for a
particle size of R = 0.3 nm and an over-sampling factor of
M = 8 for MLSD. However, the Tx nanomachine may have
a physical limitation on the maximum number of molecules
transferable in a certain time period. If the system has no
ability to use adaptive bit loading with higher-order modula-
tion such as 4-ary pulse-amplitude modulation (PAM) rather
than OOK, one possible way to efficiently utilize the finite
number of molecules is the aforementioned timing control,
where all available molecules are released at around the best
phase achieving the lowest BER. However, such a selective
time resource allocation may constrain the total throughput.
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As an alternative way for efficient time resource allocation,
we consider an adaptive molecule loading, which saves the
number of molecules at good timing and uses more molecules
at bad timing to flatten the BER performance across the whole
time.

In order to optimize the number of molecules adaptive to
the cyclic force, we consider a few discrete phases β and
molecule loading Ntx to minimize the worst BER subject to
a condition that average number of molecules over cycle T
remains constant of N̄tx = 300. We divide the cycle into
B regions, bth of which is β[b] ∈

[
2π(b − 1)/B, 2πb/B

)
for b ∈ {1, 2, . . . , B}. The granularity of controllable number
of releasing molecules is assumed to be 50, and thus Ntx ∈
{50, 100, 150, . . .} is assigned to each region depending on the
reliability. The following discrete optimization was carried out:

min
{Nb}

1

B

B∑
b=1

BERb(Nb), s.t
1

B

B∑
b=1

Nb ≤ N̄tx, (16)

where BERb(n) denotes an average BER within the bth region
provided that Ntx = n molecules are used. This adaptation
may need a prior knowledge of communication distance,
particle size, flow dynamics, and so on.

Fig. 8 shows the BER averaged over the whole cycle as
a function of over-sampling factor M to show the benefit of
adaptive molecule loading. It is demonstrated in this figure that
optimal molecule loading can offer a significant performance
improvement. For example, average BER performance for
a particle size of R = 0.3 nm can be improved by more
than one order of magnitude at an over-sampling factor of
M = 16, with an adaptive molecule loading. Although the
adaptive loading requires complicated control compared to
oversampling, such a significant gain in BER performance is
remarkable for molecular communications.
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Fig. 8. Impact of adaptive molecule loading Ntx to flatten BER over flow
cycle for R ∈ {0.2, 0.3, 0.4} nm.

IV. CONCLUSIONS

We investigated molecular communications in drift-
diffusion fluid environment where periodic flow force is
present, motivated by the fact that biological functionality is
often cyclic, e.g., heart pumping. We made an analysis of
cyclic CIR in such an environment. It is found that the channel
memory highly depends on the molecule release timing and
particle size. Through the analysis, we showed a potential
performance improvement by designing release timing and
sizes for molecular communications. By exploiting the multi-
path diversity with channel equalization, it was verified that
the BER performance can be improved by several orders of
magnitude if we intentionally release the molecules at the
timing when the CIR memory can be long enough. Further
rigorous analyses under more realistic environments such
as non-sinusoidal flow, low-complexity equalizers, and high-
order modulation schemes remain as future works.
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