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Abstract
Recent advancements in polar coding have achieved practical performance competitive with
other capacity-achieving codes such as low-density parity-check codes. In this paper, we
propose a new family called irregular polar codes, where polarlization units are irregularly
inactivated to achieve additional degrees of freedom for code design. We first discuss the
code construction for irregular polar-coded modulation by taking non-uniform bit-reliability
into consideration. We then apply the proposed polar codes to wireless massive multiple-
input multipleoutput (MIMO) communication channels. Simulation results show that the
irregular polar codes can significantly reduce encoding/decoding complexity up to 50% while
also yielding a marginal improvement in error rate performance.
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Abstract—Recent advancements in polar coding have achieved
practical performance competitive with other capacity-achieving
codes such as low-density parity-check codes. In this paper,
we propose a new family called irregular polar codes, where
polarlization units are irregularly inactivated to achieve addi-
tional degrees of freedom for code design. We first discuss the
code construction for irregular polar-coded modulation by taking
non-uniform bit-reliability into consideration. We then apply the
proposed polar codes to wireless massive multiple-input multiple-
output (MIMO) communication channels. Simulation results
show that the irregular polar codes can significantly reduce
encoding/decoding complexity up to 50% while also yielding a
marginal improvement in error rate performance.

I. INTRODUCTION

Recently, polar codes [1] have been regarded as strong
candidates for the fifth-generation (5G) wireless communi-
cations systems [2]. They are able to provide low error rate
performance [2–16], which is highly competitive against other
capacity-approaching codes such as low-density parity-check
(LDPC) codes. Therefore, it is of interest to study polar codes
for the 5G wireless communications, particularly in the context
of massive multiple-input multiple-output (MIMO) systems.
For 5G networks, internet-of-things (IoT) [17] have received
much attention as an important application to realize seamless
inter-connections among a great number of heterogeneous sys-
tems, such as wearable devices, smart phones and augmented
reality devices. Such systems are often energy and latency
constrained, and thus require relatively short-length codes with
low encoding/decoding complexity.

Arıkan has shown that low-complexity successive cancella-
tion (SC) for polar decoding can achieve capacity for arbitrary
discrete-input memoryless channels (DMC) [1]. More recently,
it was reported that SC list decoding with cyclic redundancy
check (CRC) outperforms state-of-the-art LDPC codes [9–11].
For energy-efficient applications such as IoT, a number of
lower-complexity variants of polar list decoding algorithms
have also been proposed [12–16].

In this paper, we propose a new family of polar codes,
whose polarization units are irregularly pruned to drastically
reduce the computational complexity in both encoding and
decoding. In the context of LDPC codes, it is well-known that
irregular codes with specific degree distributions outperform
regular ones. Relaxed polar codes [18] were proposed to
incorporate irregularity, where some polarization units are
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inactivated when the bit-channels are sufficiently good or
bad. However, the relaxed polar code [18] does not consider
all possible combinations of inactivation; specifically once a
polarization unit is inactivated, further polarizations after the
inactivated unit are not considered. This limits the flexibility in
selection of polarization units that can be inactivated and does
not exploit the possibility of further complexity reduction. In
this paper, we propose fully irregular polar codes by taking the
non-uniform reliability of bit-channels into consideration when
performing inactivation of polarization units. We show that the
performance can be improved compared to the conventional
regular polar codes, while also significantly reducing encoding
and decoding complexity up to 50%.

The contribution of this paper is summarized as follows.
• Joint design of frozen bit and interleaver: We first

introduce the use of extrinsic information transfer (EXIT)
analysis [19] to jointly optimize the frozen bit locations
and interleaver, by exploiting non-uniform reliability in
different bit-planes of high-order modulations.

• Irregular inactivation of polarization units: We gen-
eralize the idea in [18] to fully consider all possible se-
lection of the inactivated polarization units for significant
reduction of the encoding/decoding complexity.

• Efficient code construction algorithm: We propose a
greedy algorithm to construct irregular polar codes that
have the lowest bit error rate (BER) given particular
channels and modulation schemes.

• One-shot massive MIMO transmission: We apply ir-
regular polar coding to massive MIMO transmission in
wireless fading channels. To realize the minimum latency
and maximum antenna diversity, a whole polar codeword
is multiplexed at once through massive antennas.

II. SYSTEM DESCRIPTION

A. Polar Codes

Polar codes [1] have the ability to achieve the capacity
over arbitrary DMCs, by leveraging the channel polarization
phenomenon. An (N, k) polar code with k information bits
and N encoded bits (N = 2n) uses an N × N generator

matrix F⊗n for encoding, where F =

[
1 0
1 1

]
is a binary

kernel and [·]⊗n denotes the n-fold Kronecker power. Let
u = [u1, u2, . . . , uN ]T and x = [x1, x2, . . . , xN ]T respec-
tively denote the vectors of input bits and encoded bits where
x = Fu, and y = [y1, y2, . . . , yN ]T denotes the vector of



decoder inputs. Due to the assumption of memorylessness, the
transition probability WN (y|x) between x and y is defined
as WN (y|x) =

∏N
i=1W (yi|xi).

The polar coding maps the information bits to the k most
reliable locations in u. The remaining N − k input bits are
“frozen” bits, fixed to values known to both the encoder
and the decoder. We use K and K̄ to denote the subsets of
{1, 2, . . . , N} that correspond to the information bit and frozen
bit locations, respectively. By using various methods [1, 20–
22] including density evolution (DE), the locations in u with
the lowest reliability can be selected as K̄. Due to the nature
of Kronecker product, polar encoding and decoding can be
performed at a complexity on the order of O(N log2N).

B. Polar-Coded High-Order Modulation

In order to achieve higher spectral efficiency, we consider
higher-order modulation schemes whose constellation A has
|A| = 2m signal points. The modulation index l is determined
by the length-m binary tuple [x1, x2, . . . , xm]. For multi-layer
coding (MLC) [23–25], m component codes are used which
have the same length Lc but different rates. A modulated
symbol is formed by mapping each coded bit in the m
component codes to a different bit-plane of the constellation
point. An upper bound on the achievable rate of the MLC
schemes is obtained using the chain rule as follows [23]:

CMLC =
1

m

m∑
i=1

I(y;xi|xi−1, . . . , x1) =
1

m

m∑
i=1

Ci, (1)

where I(y;xi|xi−1, . . . , x1) denotes the mutual information
of the ith bit conditioned on the lower significant bit-planes.

The MLC decoder of the ith component code uses estimates
of [x̂1, x̂2, . . . , x̂i−1] that result from decodings of the bit-
planes of lower significance. A drawback of such multistage
decoding is its long latency. Decoding the ith component code
must be delayed until the decoding has completed for all codes
of lower significance. Furthermore, one is required to design
multiple component codes, whose code rates must match the
conditional mutual information Ci individually.

As a more practical approach than MLC, bit-interleaved
coded-modulation (BICM) [7–9] uses a single code whose rate
agrees with the averaged mutual information calculated over
symbols of differing significance. The interleaver is used to
randomize the non-identical reliability. The achievable rate of
BICM schemes is bounded as

CBICM =
1

m

m∑
i=1

I(y;xi) =
1

m

m∑
i=1

C̃i ≤ CMLC, (2)

where C̃i := I(y;xi) is the unconstrained mutual information
for the ith bit-plane.

Although the upper bound on BICM cannot exceed that on
MLC in theory, in practice BICM schemes have the potential
to achieve better performance than MLC, as discussed in [24].
This is because in BICM the codeword length of the underly-
ing code can be m-times longer than any m component codes
used in MLC. The effect can be significant at short block
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Fig. 1. MLC and BICM bounds for 256QAM (16PAM in each quadrature).
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Fig. 2. Irregular polar-coded BICM scheme for massive MIMO transmission.

lengths and higher-order modulations. The mutual information
of BICM systems using 256-ary quadrature-amplitude modu-
lation (256QAM) is plotted in Fig. 1 for different bit-planes.
The figure also compares the mutual information (averaged by
the number of bits m in symbol) of BICM with MLC. It can
be observed that the gap between MLC and BICM bounds
is negligible with higher code rate. It can also be observed
that the reliability of each bit-plane is not identical, which
yields non-uniformity in bit reliability that can be exploited in
the design of polar codes for BICM systems. Specifically, the
DMC transition probabilities Wi(yi|xi) are no longer identical
across bit locations i.

C. Single-User Massive MIMO Transmission

Fig. 2 illustrates the system under consideration, where
the polar-coded bits x are first interleaved via a permutation
denoted by Π(x) followed by the 2m-ary QAM modulator
to generate N ′ = N/m symbols s = [s1, s2, . . . , sN ′ ]T.
The modulated symbols are multiplexed in eigen-modes by
N ′ transmitter antennas to have the minimum latency. The
receiver having N ′ antenna branches obtains the received
signal r = [r1, r2, . . . , rN ′ ]T, which is modeled as r =
HDs + z where the N ′ × N ′ channel matrix can be ex-
pressed as H = SV DH according to the singular value
decomposition, D is the eigen-mode precoding matrix, and



z is a complex additive white Gaussian noise (AWGN) vector
with an element-wise variance of 1/ρ. For simplicity, the
MIMO channel coefficient Hi,j with E[|Hi,j |2] = 1 follows an
independent and identically distributed (i.i.d.) Rayleigh fading.
After demodulation and de-interleaving, the receiver provides
log-likelihood ratio (LLR) data as input to the polar decoder,
which employs SC list decoding with CRC [10].

III. IRREGULAR POLAR CODES

A. Basic Concept of Irregular Polarization

In this section, we explain the basic idea of irregular polar
codes, which is to inactivate some polarization units to obtain
potential error-rate performance improvement and complexity
reduction. We first consider the conventional Bhattacharyya
parameter analysis [1] to discuss the irregular polar coding,
and will later propose a more sophisticated code construction
method using EXIT [19] in the next section.

For an (N, k) polar coding, there are n = log2(N) polar-
ization stages, each of which contains N/2 polarization units
(thus NU , N log2(N)/2 polarization units in total), as shown
in Fig. 3(a) for N = 4. We propose a new family called
irregular polar coding where some of the polarization units are
inactivated, as exemplified in Figs. 3(b) through (d). We denote
U(r, l) as the rth polarization unit from top to bottom in the
lth polarization stage from left to right. For example, irregular
polar codes in Figs. 3(b), (c), and (d) have an inactivated
polarization unit at U(1, 1), U(2, 1), and U(1, 2), respectively.
At the inactivated polarization unit, the exclusive-or (XOR)
operation is removed.

B. Bhattacharyya Parameter

The word error rate (WER) of the irregular polar codes for
the binary erasure channel (BEC) can be expressed via Bhat-
tacharyya parameter evolution [1]. Starting from the channel
side (nth polarization stage), the Bhattacharyya parameter Z [n]

i

is given as

Z
[n]
i ,

∑
yi∈Y

√
Wi(yi|0)Wi(yi|1) = ε. (3)

where ε is the erasure probability of the BEC. Let Z [l]
rU and

Z
[l]
rL be the incoming Bhattacharyya parameters, respectively,

for upper and lower branches at polarization unit of U(r, l).
If a polarization unit U(r, l) is inactivated, the bit reliabilities
do not change as follows:

Z [l−1]
rU = Z [l]

rU , Z [l−1]
rL = Z [l]

rL . (4)

Whereas, the evolution of the Bhattacharyya parameters is
given for active polarization units as follows:

Z [l−1]
rU = Z [l]

rU + Z [l]
rL − Z

[l]
rUZ

[l]
rL , Z [l−1]

rL = Z [l]
rUZ

[l]
rL . (5)

Note that the above evolution will be identical to the original
polar codes [1] only if the incoming Bhattacharyya parameters
at upper and lower branches of polarization units are equal,
Z

[l]
rU = Z

[l]
rL . In order to account for possible non-uniformity

of bit reliabilities, we shall use the modified evolution in (5).

In fact, non-uniform bit reliabilities occur in various situa-
tions, e.g., when polar coding is used for high-order modula-
tion schemes [7, 8] as discussed in Fig. 1, and/or in frequency-
selective fading channels [9]. Moreover, our proposed polar
codes with irregular inactivation can inherently produce non-
uniform reliabilities even when the channels are identical. This
is illustrated in Fig. 3(d), where an inactivated polarization
unit at U(1, 2) involves non-equal Bhattacharyya parameters
for the first polarization stage U(1, 1) and U(2, 1).

Once we obtained the left-most Bhattacharyya parameters
Z

[0]
i , the WER Pε of SC decoding is expressed as follows [1]:

Pε = 1−
∏
i∈K

(
1− Z

[0]
i

2

)
<
∑
i∈K

Z
[0]
i

2
. (6)

In Fig. 3, we present the WER and the Bhattacharyya param-
eters at every polarization unit for a channel erasure rate of
ε = 0.5. The WER of the conventional regular polar code in
Fig. 3(a) is Pε = 0.2365, whereas the irregular polar codes in
Figs. 3(b), (c), and (d) perform no worse than the regular polar
code; i.e., Pε = 0.2365, 0.21875, and 0.22656, respectively.
This indicates that with appropriate inactivation of polarization
units, irregular polar codes can outperform regular polar codes.
More importantly, since no computation is required for the
inactivated polarization units during encoding and decoding,
the computational complexity of irregular polar codes can be
significantly reduced without any penalty.

C. Motivations

The above-mentioned benefits were partly discussed in
relaxed polar coding [18], which inactivates a series of po-
larization units when the incoming Bhattacharyya parameters
are sufficiently good or bad. For example, the polarization
unit at U(1, 1) in Fig. 3(b) has already poor messages (Z [1]

1U
=

Z
[1]
1L

= 0.75), and thus no performance degradation is incurred
by inactivating it because u1 and u3 will be chosen as frozen
bits. Another example in Fig. 3(c) inactivated the polarization
unit U(2, 1) since the second polarization stage already created
good messages (Z [1]

2U
= Z

[1]
2L

= 0.25). This irregular code
achieves not only reduced complexity but also improved WER
because the worst information bit u2 is improved from 0.4375
to 0.25 by flattening reliability compared to the regular one.

However, relaxed polar coding [18] has limited flexibility in
the inactivation pattern in order to accommodate conventional
code construction methods [1] while preventing non-uniform
reliabilities. For example, relaxed polar coding excludes the
case in Fig. 3(d), where the first polarization units U(1, 1) and
U(2, 1) are still active even after inactivating the polarization
unit at U(1, 2). In this paper, we generalize the concept in [18]
by considering arbitrary irregular inactivation with the help
of a modified code construction method, which takes non-
uniform reliability into consideration, in order to further reduce
the computational complexity.
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u2

u3

u4

u1

x2

x3

x4

x1+ 0.5

0.5

0.5

0.5

0.75

0.25

0.75

0.25

+

+

+

0.9375

0.25

0.5625

0.25

Inactive

(c) Irregular U(2, 1): Pε = 0.21875

u2

u3

u4

u1

x2

x3

x4

x1+ 0.5

0.5

0.5

0.5

0.5

0.5

0.75

0.25

+

+

+

0.875

0.625

0.375

0.125

Inactive

(d) Irregular U(1, 2): Pε = 0.22656

Fig. 3. Examples of inactivated polarization units for (4, 2) irregular polar coding (corresponding WER is Pε).

IV. DESIGN METHOD FOR IRREGULAR POLAR CODING

A. EXIT Evolution with Non-Uniformity

Now we consider generalized channels including massive
MIMO channels instead of BEC to design fully irregular polar
coding, where there are a maximum of NU = N log2(N)/2
polarization units that can be inactivated. We address how to
accommodate the non-uniform bit-LLRs to construct irregular
polar codes by appropriately inactivating polarization units that
lead to the best performance and minimum complexity.

As discussed in the previous section, the conventional
construction methods [20–22] assuming uniform bit-LLRs
cannot be applied to optimize polar codes in the presence of
irregular inactivation (and/or fading, high-order modulations,
etc.). Motivated by a fact that polar codes can be represented
by a factor graph [1], we propose to introduce EXIT analy-
sis [19] for tracking the non-uniform mutual information at
every polarization unit. Letting I [l]rU and I [l]rL denote mutual
information of the upper and lower branches at the rth active
polarization unit of lth stage, we use the following evolution:

I [l−1]rU = 1− J
(√[

J−1(1− I [l]rU)
]2

+
[
J−1(1− I [l]rL)

]2)
,

I [l−1]rL = J
(√[

J−1(I [l]rU)
]2

+
[
J−1(I [l]rL)

]2)
,

(7)

where J(·) is ten Brink’s J-function [19], defined as

J(x) = 1−
∫ ∞
−∞

e−(t−x
2/2)2/2x2

√
2πx2

log2(1 + e−t) dt, (8)

and J−1(·) is its inverse function. For inactive polarization
units, mutual information is propagated without modification.

We perform the EXIT evolution in (7) iteratively to trace the
mutual information of each stage until we obtain the output
mutual information I [0]i for all i ∈ {1, 2, . . . , N}. Once the
output mutual information I [0]i are obtained, the union bound
of error rate Pe is derived as below:

Pe =
1

|K|
∑
i∈K

Q
(1

2
J−1(I [0]i )

)
, (9)

where Q(·) is the Q-function defined as

Q(x) =
1√
2π

∫ ∞
x

exp
(
− u2

2

)
du. (10)

Algorithm 1 Joint interleaver and irregular polar codes design
Initialize:

1: C̃ = [C̃1, C̃2, ..., C̃N ]: mutual information of each modu-
lated bit at eigen-mode channels for an ave. SNR of ρ

Start:
2: for all interleaver sets Π in consideration do
3: perform de-interleaving: I = Π−1(C̃)
4: activate all polarization units
5: while Ninact ∈ {1, 2, . . . , NU} do
6: for all active polarization units do
7: inactivate the target polarization unit
8: I ′ = UpdateMI(I) according to (7)
9: select frozen bits K̄ having the N − k smallest I ′

10: calculate the upper bound Pe according to (9)
11: reactivate the target polarization unit
12: end for
13: inactivate the polarization unit having smallest Pe

14: end while
15: end for
16: Return: best interleaver, frozen bit locations, and inacti-

vated polarization units achieving the smallest Pe

Note that the EXIT evolution in (7) assumed SC decoding,
where extrinsic information at the (l − 1)th polarization
stage are not propagated back to the lth polarization stage.
Nonetheless, the EXIT evolution can be readily modified for
belief-propagation decoding as well.

B. Joint Inactivation, Frozen Bit, and Interleaver Design

We describe our proposed design method of irregular polar
codes for BICM and massive MIMO in Algorithm 1. Given
an input mutual information array C̃ = [C̃1, C̃2, . . . , C̃N ] for
every bit of modulated symbols si in eigen-mode MIMO
channels at an average signal-to-noise ratio (SNR) ρ, the
algorithm performs joint optimization of inactivation, frozen
bit, and interleaver to minimize the union bound Pe. Since a
brute-force search for all possible inactivations is unrealistic
(i.e., the maximum search space is scaled to 2NU = NN/2),
we use a greedy method, which looks for the best polarization
unit to be inactivated in a successive manner until we inactive
Ninact polarization units which achieved the smallest Pe.



Since the polarization phenomenon depends highly on the
mapping of the coded bits xi to modulation bits in fading
channels as discussed in [7–9], we analyze every one of the
interleavers under consideration, and first de-interleave the
mutual information array C̃ as I = Π−1(C̃). For each inter-
leaver Π , the mutual information I are updated to obtain the
output mutual information I ′ according to evolution in (7) for
each candidate of inactivation. The frozen bit locations K̄ are
decided by choosing N −k indices having the smallest values
in I ′. For each iteration up to Ninact inactivations, the next
polarization unit to be inactivated is successively decided by
analyzing the union bound Pe as in (9). Through the iterations
over interleavers and successive inactivation, we finally select
the best irregular polar code with the set of inactivated units
and interleaver as well as frozen bit locations, that result in
the minimum Pe as the output of Algorithm 1. Although the
global optimum is not guaranteed, excellent performance was
empirically observed with this greedy method.

C. Interleaver for Massive MIMO Channels

Appropriate design of interleavers in BICM schemes can
result in considerable gain especially in wireless fading sce-
narios, as discussed in [7–9]. We consider two types of
interleavers in Algorithm 1: block interleavers and quadratic
polynomial permutation (QPP) interleavers [8, 9]. Both have
been used in wireless standards for turbo coding due to
their practical advantages. Among others these include a high
degree of parallelism due to its maximum contention-free
property, and high flexibility despite a relatively small number
of parameters to be optimized. It is reported in [8, 9] that the
QPP interleaver (originally introduced for turbo codes) with
appropriate parameters can achieve significant performance
gains for polar-coded BICM when compared to block inter-
leavers over wireless fading channels.

When block interleavers are used, coded bits are first written
row-by-row to a block of size B× N

B where N is divisible by
B. Next, the interleaved coded bits are retrieved column-by-
column from the block. For interleaver design in Algorithm 1,
we consider all possible block sizes B ≤ N that are integer
powers-of-two. When using QPP interleavers, the ith coded
bit is interleaved as

Π(i) =
{(
f0 + f1(i− 1) + f2(i− 1)2

)
mod N

}
+ 1, (11)

where f0, f1, and f2 are the interleaver coefficients to be
optimized under the constraints that f1 is co-prime to N and
f2 contains all prime factors of N . In Algorithm 1, we consider
all possible QPP interleavers over 0 ≤ f0 ≤ 3, 0 ≤ f1 ≤ 71
and 0 ≤ f2 ≤ N .

In order to design irregular polar codes for massive MIMO
channels, we need to know the eigenvalue distribution of the
Gram channel matrix H†H to calculate the mutual informa-
tion array C̃ for every spatially multiplexed modulation. It is
known from random matrix theory [26] that the probability
density function (PDF) of eigenvalues asymptotically con-
verges to f(ν) =

√
2−ν
2πν for uncorrelated MIMO Rayleigh fad-

ing channels. Although this asymptotic PDF does not provide

the exact PDF for the case with a finite number of antennas
and correlated fading channels, it may still be useful for code
construction in an MIMO system using a moderately massive
number of antennas. The asymptotic cumulative distribution
function (CDF) of the eigenvalues is expressed as follows:

F (ν) =

√
ν(4− ν) + 4 sin−1(

√
ν/4)

2π
. (12)

We use a precoding matrix D which allocates the modulated
symbols to the instantaneous eigen-modes in an ascending
order from the worst to best. Supposed that eigenvalues are
independent, the instantaneous SNR ρi of the ith worst symbol
(of the ith worst eigen-mode) follows an order statistics:

Pr(ρi ≤ ν) =

N ′∑
j=i

(
N ′

j

)[
F (ν)

]j[
1− F (ν)

]N ′−j
. (13)

Based on this distribution, we can calculate the expectation of
the bit-wise mutual information for every symbol to obtain C̃.

D. Encoding and Decoding

Even with inactivation of polarization units in irregular polar
codes, modification for encoding and decoding is not cumber-
some as it requires no computation for inactivated polarization
units. Therefore, the encoding and decoding complexity can
be significantly reduced from the total number of polarization
units NU to the number of active units NU −Ninact.

Although we use SC list decoding with CRC [10] in this
paper, various reduced-complexity decoding methods [12–16]
are available. Among them, our proposed polar codes with
pruned polarization units are partly related to a tree-based list
decoding [16], in which the decoding complexity is reduced
by pruning/merging tree branches involving frozen bits to
avoid unnecessary computation. However, our work directly
modifies the degree distribution of polar generator matrix to
drastically reduce both the encoding and decoding complexity
without limitation of the tree structure regardless of frozen
bits, and has the flexibility to incorporate any other methods
including [16] to further reduce the decoding complexity.

It is known that non-binary kernels [27, 28] can yield faster
rates of polarization than the conventional binary kernel, with
the cost of increasing complexity. We note that the concept of
irregular polar coding is applicable for non-binary kernels as
well, by either pruning the kernel or replacing the kernel with
other full-rank kernels in an irregular fashion. We also note
that the method of systematic polar coding in [29] remains
applicable to our irregular polar coding.

V. PERFORMANCE RESULTS

We evaluate the performance of the proposed irregular polar
codes in this section. We first validate our EXIT-based design
method in BICM to show the benefit achieved by exploiting
non-uniform bit-reliability. We then analyze the computational
complexity and BER performance of irregular polar codes in
massive MIMO channels, to compare with relaxed polar codes
[18] and conventional regular polar codes.
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Fig. 4. BER of polar-coded 256QAM in AWGN channels.
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A. Non-Uniformity-Aware Polar-Coded BICM Design

We demonstrate that a performance gain is attained by
exploiting the non-uniformity of coded bits for BICM trans-
mission in AWGN and Rayleigh fading channels. In Rayleigh
fading channels, the symbol SNRs follow an exponential
distribution whose CDF is F (ν) = 1 − exp(−ν/ρ). We
compare the design methods with and without considering
the non-uniformity of bit-LLRs. Note that the conventional
construction method relies on an assumption of uniform bit
reliability via idealistic interleaving to realize averaged mutual
information for optimizing frozen bit locations.

We employ a systematic regular polar code with N = 1024
and code rate 0.8 with 8-bit CRC for 256QAM transmission.
We use a list size of 32 for decoding. The BER performance
for AWGN and Rayleigh fading channels are shown in Figs. 4
and 5, respectively, where the best QPP parameters were
(f0, f1, f2) = (0, 7, 0) and (2, 7, 16). It is demonstrated that
significant gain can be realized when we take into consid-
eration the non-uniform bit reliabilities. Comparing Fig. 5
with Fig. 4, it was verified that the performance gains of
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Fig. 6. Union bound Pe as a function of codeword length N for polar-coded
256QAM in AWGN channel at 19 dB and Rayleigh fading channel at 22 dB.

our method in fading channels are more significant than in
AWGN channels because extreme non-uniformity in bit-LLRs
is inherent in selective fading.

More importantly, we found that our new design method
can improve the rate of polarization by taking the non-uniform
reliability into consideration for code construction. This can be
seen in Fig. 6, where we plot the union bounds Pe as a function
of the codeword lengths N . In particular for fading channels,
we observe a significant improvement in polarization rate from
the joint optimization of frozen bit locations and interleaver.

B. Irregular Polar Codes for Massive MIMO

We explore the benefit of our design method for irregular
polar codes in massive MIMO channels to evaluate the BER
improvement and the complexity reduction in comparison to
the conventional regular polar codes and relaxed polar codes
[18]. We consider a (256, 128) polar code with a rate of 0.5
for 64× 64 MIMO transmission with 256QAM.

Fig. 7 presents the union bound Pe vs. the number of inac-
tivated polarization units Ninact for the greedy design method.
Note that Ninact = 0 corresponds to conventional regular polar
codes, whereas Ninact = NU = 1024 corresponds to uncoded
case. It is confirmed that our proposed irregular polar codes
can drastically reduce computational complexity by up to 52%
with a marginal improvement in the union bound, whereas
relaxed polar codes achieve little complexity reduction since
fewer degrees are available for selecting inactivations when
the code construction method cannot handle non-uniformity.

Finally, we confirm that our irregular polar codes with
reduced complexity have no penalty in performance in Fig. 8,
where the BER performance with a list size of L = {1, 32}
is shown. Here, Ninact = 397 units are inactivated in the best
irregular polar code (with a complexity reduction by 38.8%),
while 156 units are inactivated in the best relaxed polar codes
(with a complexity reduction by 15.2%). It can be seen that
the BER of the irregular polar codes is comparable to that of
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relaxed polar codes, and slightly better than the conventional
polar codes while also reducing complexity.

VI. CONCLUSION

We proposed irregular polar codes having irregular inac-
tivations of polarization units. With careful inactivation of
polarization units, the computational complexity for encoding
and decoding can be significantly reduced and meanwhile the
BER performance can be improved because we can flatten the
reliability to improve the worst non-frozen bit. We introduced
an EXIT-based code construction to address non-uniform bit
reliability to jointly optimize inactivation, frozen bit locations,
and interleaver. The proposed design method showed an im-
proved rate of polarization in particular for fading channels.
We demonstrated that the irregular polar codes perform better
than the conventional regular polar codes in massive MIMO
transmission while significantly reducing complexity by 50%.
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