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leakage with respect to sensitive data and distortion with respect to useful data. Depen-
dencies between sensitive and useful data results in a privacy-utility tradeoff that has strong
connections to generalized rate-distortion problems. In this work, we study how the optimal
privacy-utility tradeoff region is affected by constraints on the data that is directly available
as input to the release mechanism. In particular, we consider the availability of only sensitive
data, only useful data, and both (full data). We show that a general hierarchy holds: the
tradeoff region given only the sensitive data is no larger than the region given only the useful
data, which in turn is clearly no larger than the region given both sensitive and useful data. In
addition, we determine conditions under which the tradeoff region given only the useful data
coincides with that given full data. These are based on the common information between the
sensitive and useful data. We establish these results for general families of privacy and utility
measures that satisfy certain natural properties required of any reasonable measure of privacy
or utility. We also uncover a new, subtler aspect of the data processing inequality for gen-
eral non-symmetric privacy measures and discuss its operational relevance and implications.
Finally, we derive exact closed-analyticform expressions for the privacy-utility tradeoffs for
symmetrically dependent sensitive and useful data under mutual information and Hamming
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Abstract

Privacy-preserving data release mechanisms aim to simultaneously minimize information-leakage with respect to sensitive
data and distortion with respect to useful data. Dependencies between sensitive and useful data results in a privacy-utility tradeoff
that has strong connections to generalized rate-distortion problems. In this work, we study how the optimal privacy-utility tradeoff
region is affected by constraints on the data that is directly available as input to the release mechanism. In particular, we consider
the availability of only sensitive data, only useful data, and both (full data). We show that a general hierarchy holds: the tradeoff
region given only the sensitive data is no larger than the region given only the useful data, which in turn is clearly no larger than
the region given both sensitive and useful data. In addition, we determine conditions under which the tradeoff region given only
the useful data coincides with that given full data. These are based on the common information between the sensitive and useful
data. We establish these results for general families of privacy and utility measures that satisfy certain natural properties required
of any reasonable measure of privacy or utility. We also uncover a new, subtler aspect of the data processing inequality for general
non-symmetric privacy measures and discuss its operational relevance and implications. Finally, we derive exact closed-analytic-
form expressions for the privacy-utility tradeoffs for symmetrically dependent sensitive and useful data under mutual information
and Hamming distortion as the respective privacy and utility measures.

Index Terms

data privacy, privacy-utility tradeoff, privacy measures, data processing inequality, common information

I. INTRODUCTION

The objective of privacy-preserving data release is to provide useful data with minimal distortion while simultaneously
minimizing the sensitive data revealed. Dependencies between the sensitive and useful data results in a privacy-utility tradeoff
that has strong connections to generalized rate-distortion problems [2]. In this work, we study how the optimal privacy-utility
tradeoff region, for general privacy and distortion measures, is affected by constraints on the data that is directly available
as input to the release mechanism. Such constraints are potentially motivated by applications where either the sensitive or
useful data is not directly observable. For example, the useful data may be a latent property that must be inferred from
only the sensitive data. Alternatively, the constraints may be used to capture the limitations of a particular approach, such as
output-perturbation data release mechanisms that take only the useful data as input, while ignoring the remaining sensitive
data.

The general challenge of privacy-preserving data release has been the aim of a broad and varied field of study. Basic attempts
to anonymize data have led to widely publicized leaks of sensitive information, such as [3], [4]. These have subsequently
motivated a wide variety of statistical formulations and techniques for preserving privacy, such as k-anonymity [5], L-
diversity [6], t-closeness [7], and differential privacy [8]. Our work concerns a non-asymptotic, information-theoretic treatment
of this problem, such as in [2], [9], where the sensitive data and useful data are modeled as random variables X and Y ,
respectively, and mechanism design is the problem of constructing channels that obtain the optimal privacy-utility tradeoffs.
While we consider a non-asymptotic, single-letter problem formulation, there are also related asymptotic coding problems that
additionally consider communication efficiency in a rate-distortion-privacy tradeoff, as studied in [10], [11].

This work makes three main contributions. First, we establish a fundamental hierarchy of data-release mechanisms in terms
of their privacy-utility tradeoff regions. In particular, we prove that the tradeoff region given only sensitive data is contained
within the tradeoff region given only useful data. These results are established for general families of privacy and utility
measures that satisfy certain natural properties required of any reasonable measure of privacy or utility. Second, we uncover
a new, subtler aspect of the data processing inequality for general non-symmetric privacy measures, which we term as the
linkage inequality, and discuss its operational relevance and implications. In particular, we show that certain well-known privacy
measures such as maximal information and differential privacy are not guaranteed to satisfy the linkage inequality. Third, we
derive exact closed-analytic-form expressions for the privacy-utility tradeoffs for symmetrically dependent sensitive and useful
data under mutual information and Hamming distortion as the respective privacy and utility measures, for all three data-release
mechanisms that we analyze in this work.
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Fig. 1. The observation W of the sensitive data X and useful data Y is input to the data release mechanism which produces the released data Z.

The rest of this paper is organized as follows. In Sec. II, we generalize the framework of [2], [9] to address arbitrary
data observation constraints and general measures for privacy and utility. These generalizations allow us to consider scenarios
where the sensitive and useful data are partially unavailable and/or observed through a noisy channel. The connections of
this framework to other privacy-utility and generalized rate-distortion problems encountered in the literature, when specialized
to specific data observation constraints and privacy and utility measures, are discussed in Sec. III. We also note that the
tradeoff optimization problem with arbitrary observation constraints is convex if the particular privacy and utility measures
have convexity properties.

In Sec. IV, we discuss several privacy measures, including maximal leakage [12] and differential privacy [8]. We also
examine several basic properties of these privacy measures and their operational relevance. A general privacy leakage measure,
denoted by J(X;Z), is a functional of the joint distribution of the sensitive data X and data release Z. For non-symmetric
privacy measures (where J(X;Z) does not necessarily equal J(Z;X)), and given A → B → C that form a Markov chain,
the inequality J(A;C) ≤ J(A;B) is distinct from J(A;C) ≤ J(B;C). The first inequality is equivalent to the well-known
post-processing inequality that is considered an axiomatic requirement of any reasonable privacy measure [13]. The second
inequality could be interpreted as bounding privacy leakage for some secondary sensitive data A when a release mechanism
that produces C offers a privacy leakage guarantee for the primary sensitive data B. Interestingly, this second inequality does
not hold for some privacy measures, such as differential privacy, and is necessary to show some of our tradeoff results in
Sec. V.

In Sec. V, we compare the optimal privacy-utility tradeoffs under three scenarios, where only the sensitive data, only the
useful data, or both (full data) are available. We show that a general hierarchy holds, that is, the tradeoff region given only the
sensitive data is no larger than the region given only the useful data, which in turn is clearly no larger than the region given
both sensitive and useful data. We also show that if the common information and mutual information between the sensitive
and useful data are equal1, then the tradeoff region given only the useful data coincides with that given full data, indicating
when output perturbation is optimal despite unavailability of the sensitive data. Conversely, when the common information
and mutual information are not equal, there exist distortion measures where the tradeoff regions are not the same, indicating
that output perturbation can be strictly suboptimal compared to the full data scenario. In Sec. VI, we present an example with
analytically derived optimal privacy-utility tradeoffs illustrating the hierarchy established by the results in Sec. V.

II. PRIVACY-UTILITY TRADEOFF PROBLEM

Let X , Y , and W be discrete random variables (RVs) distributed on finite alphabets X , Y andW , respectively. Let X denote
the sensitive information that the user wishes to conceal, Y the useful information that the user is willing to reveal, and W the
directly observable data, which may represent a noisy observation of X and/or Y . The target application imposes the specific
data model PX,Y and observation constraints PW |X,Y so that (X,Y,W ) ∼ PX,Y PW |X,Y . The data release mechanism takes
W as input and (randomly) generates output Z in a given finite alphabet Z dictated by the target application (perhaps implicitly
via the distortion measure). Note that (X,Y ) → W → Z form a Markov chain and the mechanism can be specified by the
conditional distribution PZ|W . A diagram of the overall system is shown in Figure 1.

The mechanism should be designed such that Z provides application-specific utility through the information it reveals about
Y while protecting privacy by limiting the information it reveals about X .

Privacy: The privacy of the mechanism-output Z is inversely quantified by a general privacy-leakage measure J(X;Z),
which is a functional2 that assigns values in [0,∞) to joint distributions of X and Z. Thus, the aim of privacy is to minimize
J(X;Z), which ideally becomes perfect when J(X;Z) = 0. The privacy-leakage measure need not be symmetric, i.e.,
J(X;Z) need not equal J(Z;X). Examples of privacy measures include symmetric ones like mutual information, where
J(X;Z) = I(X;Z), which captures an average-case information leakage, and asymmetric ones like maximal information
leakage, where J(X;Z) = maxz∈Z H(X) − H(X|Z = z) [9]. In Sec. IV we will discuss three other privacy measures:
information privacy, differential privacy, and Sibson mutual information. The first of these is symmetric, while the other two
are not.

Utility: The amount of utility that the mechanism-output Z provides about the useful information represented by Y is
inversely quantified by a general distortion measure D(PY,Z), which is a functional that assigns values in [0,∞) to joint
distributions of Y and Z. Thus, the aim is to minimize D(PY,Z). As in the case of privacy, distortion measures need not
be symmetric. The specific distortion measure is dictated by the target application. Example distortion measures include: 1)

1This statement applies for both the Wyner [14] and Gács-Körner [15] notions of common information.
2Formally, the privacy measure notation should be J(PX,Z), but for convenience we adopt J(X;Z), an abuse of notation similar to the use of I(X;Y )

for mutual information.
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expected distortion, where D(PY,Z) = E[d(Y,Z)] for some distortion function d : Y×Z → [0,∞), and 2) conditional entropy,
where D(PY,Z) = H(Y |Z) which corresponds to the goal of maximizing the mutual information between Y and Z. Note that
probability of error Pr(Y 6= Z) is an example within the class of expected distortion measures where d(y, z) is equal to zero
when y = z and equal to one otherwise.

Privacy-utility tradeoff: Given a target application that specifies the data model PX,Y , observation model PW |X,Y , and
distortion measure D(PY,Z), the goal of the system designer is to construct mechanisms PZ|W that provide the desired levels
of privacy and utility while achieving the optimal tradeoff. We say that a particular privacy-utility pair (ε, δ) ∈ [0,∞)2 is
achievable if there exists a mechanism PZ|W with privacy leakage J(X;Z) ≤ ε and distortion D(PY,Z) ≤ δ. The set of
all achievable privacy-utility pairs forms the achievable region of privacy-utility tradeoffs. We are particularly interested the
optimal boundary of this region, which can be expressed by the optimization problem

π(δ) := inf
PZ|W

J(X;Z)

s.t. D(PY,Z) ≤ δ,
(1)

which determines the optimal privacy leakage as a function of the allowable distortion δ.
The distortion constraint, D(PY,Z) ≤ δ, can be equivalently expressed as a constraint on the conditional distribution PZ|Y

since PY is fixed by the data model. Note that a mechanism specified by PZ|W determines the corresponding PZ|Y through
the linear relationship3

PZ|Y (z|y) =
∑

w∈W,x∈X
PZ|W (z|w)PW |X,Y (w|x, y)PX|Y (x|y). (2)

Similarly, PZ|X is determined by PZ|W through the linear relationship

PZ|X(z|x) =
∑

w∈W,y∈Y
PZ|W (z|w)PW |X,Y (w|x, y)PY |X(y|x). (3)

While general observation models PW |X,Y can be considered within this framework, particular structures may be of interest
for certain applications. We highlight and explore the relationship between three specific cases for W , while allowing a general
distribution PX,Y between the sensitive and useful data.

1) Full Data: In this case, PX,Y is general but W = (X,Y ), capturing the situation when the mechanism has direct access
to both the sensitive and useful information. For this case, the privacy-utility optimization problem of (1) reduces to

πFD(δ) := inf
PZ|X,Y

J(X;Z)

s.t. D(PY,Z) ≤ δ.
(4)

2) Output Perturbation: In this case, PX,Y is general but W = Y , capturing the situation when the mechanism only has
direct access to the useful information. For this case, the privacy-utility optimization problem of (1) reduces to

πOP(δ) := inf
PZ|Y

J(X;Z)

s.t. D(PY,Z) ≤ δ,
(5)

where PZ|X(z|x) =
∑
y∈Y PZ|Y (z|y)PY |X(y|x). Note that this optimization is equivalent to that of (4), with the Markov

chain X → Y → Z imposed as an additional constraint.
3) Inference: In this case, PX,Y is general but W = X , capturing the situation when the mechanism only has direct access to

the sensitive information, but the useful information, such as a hidden state, is not directly observable and needs to be inferred
indirectly by processing the sensitive information. For this case, the privacy-utility optimization problem of (1) reduces to

πINF(δ) := inf
PZ|X

J(X;Z)

s.t. D(PY,Z) ≤ δ,
(6)

where PZ|Y (z|y) =
∑
x∈X PZ|X(z|x)PX|Y (x|y). Note that this optimization is equivalent to that of (4), with the Markov

chain Y → X → Z imposed as an additional constraint.

III. CONVEXITY AND RATE-DISTORTION CONNECTIONS

Here we discuss how under certain combinations of data constraints and privacy and utility measures, the tradeoff optimization
of (1) specializes to various rate-distortion and privacy-utility problems encountered in the literature. We also indicate when
the general tradeoff optimization of (1) becomes convex for particular privacy and utility measures.

Recall that the distributions PZ|X and PZ|Y are linear functions of the optimization variable PZ|W as shown by (2) and (3),
while PX,Y,W and its marginals are fixed. Thus, the convexity properties of the general problem (and in the three scenarios

3This and all other statements involving conditional distributions are defined only for symbols in the support of the conditioned random variables.
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given by (4), (5), and (6)) will follow from the convexity properties of the privacy and distortion measures as functions of PZ|X
and PZ|Y , respectively. For example, with mutual information as the privacy measure I(X;Z), the objective of the tradeoff
optimization problem is a convex functional of PZ|X . Any distortion measure that is a convex functional of PZ|Y results in a
convex constraint. For example, any expected distortion utility measure D(PY,Z) = E[d(Y, Z)] is a linear (and hence convex)
functional of PZ|Y .

The privacy-utility tradeoff problem as considered by [2], [9] assumes the output perturbation constraint (see (5)), while using
expected distortion D(PY,Z) = E[d(Y, Z)] as the utility measure, and mutual information I(X;Z) as the privacy measure.
Additionally, [9] also considers maximum information leakage, maxz∈Z [H(X)−H(X|Z = z)], as an alternative privacy
measure. As noted by [9], the optimization problem for the full data scenario (see (4)) can be recast as an optimization with the
output perturbation constraint, by redefining the useful data as Y ′ := (X,Y ) and the distortion function as d′(Y ′, Z) := d(Y, Z).
This approach allows one to solve the optimization problem for the full data scenario using an equivalent optimization problem
appearing in the output perturbation scenario. However, the distinction between these two scenarios should not be overlooked,
as the output perturbation scenario represents a fundamentally different problem where the sensitive data is not available, which
in general results in a strictly smaller privacy-utility tradeoff region (see Theorem 3).

The inference scenario given by (6) with mutual information as the privacy measure and expected distortion D(PY,Z) =
E[d(Y, Z)] as the utility measure is equivalent to an indirect rate-distortion problem [16]. As shown by Witsenhausen
in [16], indirect rate-distortion problems can be converted to direct ones with the modified distortion measure d′(x, z) :=
E[d(Y, Z)|X = x, Z = z] =

∑
y∈Y d(y, z)PY |X(y|x) since Y → X → Z forms a Markov chain.

When the utility measure is conditional entropy, i.e., D(PY,Z) = H(Y |Z), the distortion constraint can be equivalently
written as I(Y ;Z) ≥ δ′, where δ′ := H(Y ) − δ, thus the utility objective is to maximize the mutual information I(Y ;Z).
Combining this with mutual information as the privacy measure results in the optimization problem of choosing Z to minimize
I(X;Z) subject to a lower bound on I(Y ;Z). This problem in the inference scenario, where the additional Markov chain
constraint Y → X → Z is imposed, is equivalent to the Information Bottleneck problem considered in [17], which also provides
a generalization of the Blahut-Arimoto algorithm [18] to perform this optimization. For the output perturbation scenario, where
instead the Markov chain constraint X → Y → Z is imposed, this problem is called the Privacy Funnel and was proposed
by [19]. In all three scenarios, the optimization problems are non-convex as the feasible regions are non-convex, and specifically
are complements of convex regions.

IV. PRIVACY MEASURES AND PROPERTIES

We allow general statistical measures of privacy-leakage that can be arbitrary functionals of the joint distribution between
the sensitive data X and the release Z. However, in order for some of our later results in Section V to hold, the privacy
measure must posses certain natural, desirable properties described in this section. In particular, generalized analogies of the
data processing inequality are important. We will also discuss several privacy measures encountered in the literature and whether
they satisfy these properties.

We will generally assume the following two properties, which hold for all of the specific privacy measures discussed in this
paper.

In this section, we focus on privacy measures in more detail and generality. We discuss certain key desirable properties
that any measure of privacy should satisfy within the context of privacy-preserving data release. In particular, generalized
analogies of the data processing inequality are important. Specifically, we uncover and highlight a new, subtler aspect of the
data processing inequality for general non-symmetric privacy measures, which we term as the linkage inequality, and discuss
its operational relevance and implications. We show that certain well-known privacy measures such as maximal information
and differential privacy are not guaranteed to satisfy the linkage inequality. Our results pertaining to the fundamental hierarchy
of privacy-utility tradeoffs in Sec. V hold for general privacy measures that satisfy the properties described in this section.

We allow general statistical measures of privacy-leakage that can be arbitrary functionals of the joint distribution between
the sensitive data X and the release Z. However, we require that the privacy measure satisfy the following two basic properties
which hold for all of the specific privacy measures discussed in this paper.
• Perfect privacy is independence: J(X;Z) ≥ 0 with equality if and only if X and Z are independent.
• Privacy invariance: J(X1;Z1) = J(X2;Z2) if PX1,Z1 and PX2,Z2 are isomorphically equivalent distributions.
The following property establishes that a privacy measure captures the notion that privacy cannot be worsened, i.e., privacy-

leakage cannot be increased, by independent post-processing of the released data. This well-known concept is considered a
fundamental, axiomatic requirement for any reasonable privacy measure [13].

Definition 1. (Post-processing inequality) A privacy measure J satisfies the post-processing inequality if and only if for any
A→ B → C that form a Markov chain, we have that J(A;B) ≥ J(A;C).

For symmetric privacy measures where J(X;Z) = J(Z;X) (i.e., privacy-leakage remains unchanged when swapping the
roles of the release and sensitive data), the next property is equivalent to the post-processing inequality. However, for asymmetric
privacy measures, this property is a distinct concept.
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Definition 2. (Linkage inequality) A privacy measure J satisfies the linkage inequality if and only if for any A → B → C
that form a Markov chain, we have that J(B;C) ≥ J(A;C).

The linkage inequality captures the notion that if there were primary and secondary sensitive data and the release was
independently generated from only the primary sensitive data, then the privacy-leakage for the secondary sensitive data is
bounded by the privacy-leakage for the primary sensitive data. Intuitively, this concept corresponds to the privacy-leakage of
the secondary sensitive data occurring via and being limited by the privacy-leakage of the primary sensitive data. Pragmatically,
this property allows for convenient bounds when making privacy guarantees, especially when there may be unforeseen secondary
sensitive data correlated to the primary sensitive data considered.

Note that satisfying both inequalities of Definitions 1 and 2 would imply the property of privacy invariance assumed earlier,
but the reverse is not necessarily true. Of course, when mutual information is the privacy measure, both of these inequalities
are immediate as they are equivalent to the data processing inequality.

In the rest of this section, we discuss the post-processing and linkage inequalities in the context of a number of commonly
encountered privacy measures.

A. Maximal Information Leakage

The maximal information leakage measure, introduced in [9], is defined as follows

I∗(X;Z) := H(X)−min
z∈Z

H(X|Z = z), (7)

This is an example of an asymmetric privacy measure that aims to capture the worst-case information leakage over the possible
releases. Interestingly, while the post-processing inequality holds for this measure, the linkage inequality does not. The proof
of this proposition is given in Appendix A-A.

Proposition 1. The maximal information leakage measure I∗(X;Z) satisfies the post-processing inequality, but does not satisfy
the linkage inequality.

Note that swapping the roles of X and Z to define J(X;Z) = I∗(Z;X) would yield a measure that satisfies the linkage
inequality, but not the post-processing inequality.

B. Maximal Leakage via Sibson Mutual Information

Another privacy measure similarly called maximal leakage is equivalent to Sibson mutual information of order infinity [20],
which is given by

I∞(X;Z) := log
∑
z∈Z

max
x:PX(x)>0

PZ|X(z|x).

Demonstrating its operational significance as a privacy measure, [12] showed that

I∞(X;Z) = sup
U→X→Z→Û

log
Pr(Û = U)

maxu PU (u)
,

which implies that exp(I∞(X;Z)) bounds the multiplicative advantage gained from observing Z for guessing any (potentially
random) function of X . This operational bound holds even for generalizations allowing multiple or approximate guesses (see
details in [12]). Maximal leakage is asymmetric and satisfies the post-processing and linkage inequalities [12].

C. Information Privacy

The information privacy (IP) measure was introduced in [9]. The following definition differs from the one given in [9], but
is equivalent to it (see Corrolary 1),

IP (X;Z) := max
x,z:PX(x),PZ(z)>0

∣∣∣∣ln PX,Z(x, z)

PX(x)PZ(z)

∣∣∣∣ , (8)

where we adopt the convention that | ln 0| = ∞, denoting that IP leakage is unbounded when there exist x and z such that
PX(x), PZ(z) > 0 and PX,Z(x, z) = 0. This quantity can be equivalently viewed as a bound on the absolute log-ratio of the
sensitive data prior distribution and the posterior distribution given the release, since

PX,Z(x, z)

PX(x)PZ(z)
=
PX|Z(x|z)
PX(x)

.

With respect to the definition of information privacy in [9], a data release mechanism PZ|X provides ε-information privacy if
IP (X;Z) = ε.

Lemma 1. The information privacy measure IP (X;Z) satisfies both the post-processing and linkage inequalities.
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Lemma 1 leads to the following corollary which implies that expanding the domain of maximization in (8), from singleton
events {x} and {z} to events A ⊂ X and B ⊂ Z , does not increase the maximum value.

Corollary 1. The information privacy measure is equivalently given by

IP (X;Z) = max
A⊆X ,B⊆Z:

Pr(X∈A),Pr(Z∈B)>0

∣∣∣∣ln Pr(X ∈ A, Z ∈ B)

Pr(X ∈ A) Pr(Z ∈ B)

∣∣∣∣ .
The proofs of Lemma 1 and Corollary 1 are presented in Appendices A-B and A-C respectively.

D. Differential Privacy

The differential privacy (DP) measure was introduced by [8] and has been extensively studied in the context of privacy-
preserving querying of databases. For ease of exposition, within this subsection we will model a database as a length-n binary
sequence, i.e., in the domain X = {0, 1}n, and assume a discrete release alphabet Z . However, the concepts and discussion
readily generalize.

Definition 3. A release mechanism PZ|X with domain X = {0, 1}n and range Z is ε-differentially private if for all B ⊆ Z
and x1, x2 ∈ X such that dH(x1, x2) ≤ 1, where dH denotes Hamming distance, we have

Pr(Z ∈ B|X = x1) ≤ eε · Pr(Z ∈ B|X = x2).

Implicitly, if there exist x1, x2 ∈ X with dH(x1, x2) = 1 and z ∈ Z such that PZ|X(z|x1) > 0, but PZ|X(z|x2) = 0, then
the release mechanism PZ|X is not differentially private for any ε. The differential privacy measure DP (X;Z) is defined as
the smallest value of ε for which PZ|X is ε-differentially private, which is expressed in the following lemma whose proof is
presented in Appendix A-D.

Lemma 2. The differential privacy measure is given by

DP (X;Z) = max
x1,x2∈X ,z∈Z:
dH(x1,x2)=1

∣∣∣∣ln PZ|X(z|x1)

PZ|X(z|x2)

∣∣∣∣ ,
where we adopt the conventions that | ln(c/0)| = | ln 0| =∞ and | ln(0/0)| = 0.

It is well-known that DP (X;Z) satisfies the post-processing inequality [13]. However, we demonstrate via an example that
DP (X;Z) does not satisfy the linkage inequality. This has important philosophical implications on the use of differential
privacy which we then discuss.

Proposition 2. The differential privacy measure DP (X;Z) does not satisfy the linkage inequality.

The proof of Proposition 2 (see Appendix A-E) constructs a simple example with databases A,B ∈ {0, 1}2, where B :=
(B1, B2) is a deterministic function of the database A := (A1, A2), given by B1 = B2 = A1 ∨ A2. This example could be
interpreted as a toy model for the spread of a contagious disease between two close relatives, where A denotes the infection
status of each person at an earlier time and B at a later time, while simply depicting inevitable disease transmission. The proof
then constructs an example mechanism PC|B that when applied to B (such that A → B → C forms a Markov chain), we
have DP (A;C) > DP (B;C) showing violation of the linkage inequality.

More generally, the consequences of not satisfying the linkage inequality can impact situations where a dataset has been
vertically partitioned over two tables A and B (each containing different attributes of the same population), or when a table A
is preprocessed to produce table B. A differentially private release mechanism PC|B applied to the table B may not guarantee
the same level of privacy with respect to the potentially sensitive data in table A. Since the effective release mechanism (overall
channel) from A to C is given by PC|A(c|a) =

∑
b∈B PC|B(c|b)PB|A(b|a), correlation across data tuples (as introduced by

PB|A) may cause PC|A to be less differentially private than PC|B . This realization is related to broader observations on the
impact of data correlation on differential privacy guarantees and susceptibility to inference attacks (see [21], [22] and references
therein).

V. HIERARCHY OF PRIVACY-UTILITY TRADEOFFS UNDER DATA CONSTRAINTS

In this section we establish a fundamental hierarchy for data-release mechanisms in terms of their privacy-utility tradeoff
regions. In particular, we prove that the tradeoff region given only sensitive data is contained within the tradeoff region given
only useful data.

For a given (fixed) distribution PX,Y between the sensitive and private data, we can study how the optimal privacy-utility
tradeoff changes across the aforementioned three different cases of W . This is of practical interest, since the restrictions on
W in the inference and output perturbation scenarios might be considered not just when these situations inherently arise in
the given application, but also for simplifying mechanism design and optimization.
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Since the optimization problems of (5) and (6) are equivalent to (4) with an additional Markov chain constraint, we
immediately have that πFD(δ) ≤ πOP(δ) and πFD(δ) ≤ πINF(δ) for any δ. This implies that the achievable privacy-utility
regions of both the inference scenario and output perturbation scenario are contained within the achievable privacy-utility
region of the full data scenario, which intuitively follows since in the full data scenario only more input data available. The
next theorem establishes the general relationship between the inference and output perturbation tradeoff regions.

Theorem 1. (Output Perturbation better than Inference) For any data model PX,Y , distortion measure D(PY,Z), and
privacy measure J(X;Z) that satisfies the linkage inequality, the achievable privacy-utility region for the output perturbation
scenario (when W = Y ) contains the achievable privacy-utility region for the inference scenario (when W = X), that is,
πOP(δ) ≤ πINF(δ) for any δ.

The proof of Theorem 1 is presented in Appendix C.
Combining the preceding theorem with the earlier observations, we have that πFD(δ) ≤ πOP(δ) ≤ πINF(δ) for any δ. Thus,

in general, full data offers a better privacy-utility tradeoff than output perturbation, which in turn offers a better privacy-utility
tradeoff than inference.

The next theorem establishes that for a certain class of joint distributions PX,Y , the full data and output perturbation scenarios
have the same optimal privacy-utility tradeoff. Thus, for this class of PX,Y , the full data mechanism design can be simplified
to the design of an output perturbation mechanism, which can ignore the sensitive data X without degrading the privacy-
utility performance. Specifically, this class is characterized by those joint distributions PX,Y for which common information
C(X;Y ) = I(X;Y ). Some of the key properties of common information that are needed for proving Theorems 2 and 3 are
summarized in Appendix B.

Theorem 2. (Sufficient Conditions for the Optimality of Output Perturbation) For any distortion measure D(PY,Z), any
privacy measure J(X;Z) that satisfies the linkage inequality, and any data model PX,Y where C(X;Y ) = I(X;Y ), the
achievable privacy-utility region for the output perturbation scenario (when W = Y ) is the same as the achievable privacy-
utility region for the full data scenario (when W = (X,Y )), that is, πOP(δ) = πFD(δ) for any distortion measure and any
δ.

The proof of Theorem 2 is presented in Appendix D.
Theorem 2 establishes that C(X;Y ) = I(X;Y ) is a sufficient condition on PX,Y such that, for any general distortion

measure, full data mechanisms cannot provide better privacy-utility tradeoffs than the output perturbation mechanisms. Our
next theorem gives the converse result, establishing that for data models where C(X;Y ) 6= I(X;Y ), output perturbation
mechanisms are generally suboptimal, that is, there exists a distortion measure such that the full data mechanisms provide a
strictly better privacy-utility tradeoff.

Theorem 3. (Necessary Conditions for the Optimality of Output Perturbation) For any data model PX,Y where C(X;Y ) 6=
I(X;Y ), there exists a distortion measure D(PY,Z) such that the achievable privacy-utility region for the output perturbation
scenario (when W = Y ) is strictly smaller than the achievable privacy-utility region for the full data scenario (when W =
(X,Y )), that is, there exists δ ≥ 0 such that πOP(δ) > πFD(δ).

The proof of Theorem 3 is presented in Appendix E.

VI. ANALYTICAL PRIVACY-UTILITY TRADEOFF EXAMPLES

In this section, we consider an example data model PX,Y and analytically derive the optimal privacy-utility tradeoffs under
the full data, output perturbation, and inference scenarios. For this example, we use mutual information as the privacy measure
and probability of error as the distortion measure, i.e., J(X;Z) = I(X;Z) and D(PY,Z) = Pr(Y 6= Z), where Z is the
released data. Our particular toy data model assumes that the sensitive data X and useful data Y are discrete random variables
on the same finite set X = Y = {0, . . . ,m− 1}, with the joint distribution

PX,Y (x, y) =

{
1−p
m , if x = y,
p

m(m−1) , otherwise,
(9)

where the distribution parameters p ∈ [0, 1] and m ∈ Z with m ≥ 2. We will call the joint distribution in (9) the symmetric
pair and use the notation (X,Y ) ∼ SP (m, p).

The symmetric pair distribution can be viewed as a generalization of the binary symmetric source to an m-ary alphabet.
The parameter p is analogous to the cross-over probability and equal to Pr(X 6= Y ). Note that both X and Y are marginally
uniform and that the joint distribution could be equivalently defined via the channel

Y = X +N mod m,
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where N ∈ {0, . . . ,m− 1} is independent additive noise with the distribution

PN (n) =

{
1− p, if n = 0
p

m−1 , otherwise.
(10)

The mutual information of the symmetric pair distribution, which we denote as a function rm(p) of the distribution parameters
m and p, is given by the next lemma and used extensively in the tradeoff results and proofs.

Lemma 3. (Mutual Information of Symmetric Pair) If (X,Y ) ∼ SP (m, p), then

I(X;Y ) = logm− p log(m− 1)− h2(p) =: rm(p),

where h2(p) := −p log p− (1− p) log(1− p) is the binary entropy function.

Proof. We have that

I(X;Y ) = H(Y )−H(Y |X)

= H(Y )−H(N)

= logm+ (1− p) log(1− p) + p log
p

m− 1
= logm− p log(m− 1)− h2(p),

where N is independent noise given by (10).

For our example data model, the next three theorems provide the analytically derived optimal privacy-utility tradeoffs under
the full data, output perturbation, and inference scenarios. Note that for any distortion constraint δ ≥ 1− 1

m , we can immediately
achieve perfect privacy, i.e., πFD(δ) = πINF(δ) = πOP(δ) = 0, via the mechanism that trivially releases Z that is independent
of (X,Y ) and uniform over Y , which obtains distortion Pr(Y 6= Z) = 1− 1

m ≤ δ and perfect privacy I(X;Z) = 0.

Theorem 4. (Full Data Privacy-Utility Tradeoff for the Symmetric Pair Distribution) With mutual information as the privacy
measure, J(X;Z) = I(X;Z), and probability of error as the distortion measure, D(PY,Z) = Pr(Y 6= Z), if the data model
is (X,Y ) ∼ SP (m, p), then the optimal privacy-utility tradeoff for the full data scenario in (4) is given by

πFD(δ) =


rm(p+ δ), if δ ≤ 1− 1

m − p,
rm(p− δ), if δ ≤ p− (1− 1

m ),

0, otherwise.
(11)

For p ≤ 1− 1
m , the optimal mechanism PZ|X,Y is defined by

Z :=

{
Y +N mod m, if X = Y,

Y, otherwise,
(12)

where N ∈ {0, . . . ,m− 1} is independent of (X,Y ) with the distribution

PN (n) =

{
1− t

1−p , if n = 0
t

(1−p)(m−1) , otherwise,

where t := min(1− 1
m − p, δ).

The proof of Theorem 4 is presented in Appendix G.
Observe that in the case of p ≤ 1 − 1

m , the optimal mechanism given by (12) illustrates that given Y only one bit of
additional information about X is needed (namely, whether or not X = Y ) in order obtain the optimal privacy-utility tradeoff
for the full data scenario.

Theorem 5. (Output Perturbation Privacy-Utility Tradeoff for the Symmetric Pair Distribution) With mutual information
as the privacy measure, J(X;Z) = I(X;Z), and probability of error as the distortion measure, D(PY,Z) = Pr(Y 6= Z), if
the data model is (X,Y ) ∼ SP (m, p), then the optimal privacy-utility tradeoff for the output perturbation scenario in (5) is
given by

πOP(δ) =

{
rm

(
p+ δ

(
1− pm

m−1

))
, if δ < 1− 1

m ,

0, otherwise.
(13)
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Fig. 2. Optimal privacy-utility tradeoff curves under the inference (INF), output perturbation (OP), and full data (FD) scenarios, for the symmetric pair data
model with alphabet size m = 10 and cross-over probability p = 0.4.

The optimal mechanism is given by Z := Y + N mod m, where N ∈ {0, . . . ,m − 1} is independent of (X,Y ) with the
distribution

PN (n) =

{
1− t, if n = 0
t

m−1 , otherwise,
(14)

where t := min(δ, 1− 1
m ).

The proof of Theorem 5 is presented in Appendix H.
For the output perturbation scenario, the optimal mechanism given in Theorem 5 simply adds noise (see (14)) that results

in a probability of error Pr(Y 6= Z) equal to the distortion budget δ (when it is less than 1− 1
m ). Note that this mechanism

does not depend on the parameter p, and hence tolerates some statistical uncertainty regarding (X,Y ).

Theorem 6. (Inference Privacy-Utility Tradeoff for the Symmetric Pair Distribution) With mutual information as the privacy
measure, J(X;Z) = I(X;Z), and probability of error as the distortion measure, D(PY,Z) = Pr(Y 6= Z), if the data model
is (X,Y ) ∼ SP (m, p), then the optimal privacy-utility tradeoff for the inference scenario in (6) is given by

πINF(δ) =


rm(t), if δ < 1− 1

m and p /∈ (δ, h),

∞, if δ < 1− 1
m and p ∈ (δ, h),

0, if δ ≥ 1− 1
m ,

(15)

where h := (m− 1)(1− δ) and

t :=
δ − p

1− pm
m−1

.

Remark 1. (Tradeoff Plots) In Figure 2, we plot the optimal privacy-utility tradeoff curves under the full data, output
perturbation, and inference scenarios, for the symmetric pair data model with alphabet size m = 10 and cross-over parameter
p = 0.4.

VII. CONCLUSION

In this paper, we formulated the privacy-utility tradeoff problem where the data release mechanism has limited access to
the entire data composed of useful and sensitive parts. Based on this information theoretic formulation, we compared the
privacy-utility tradeoff regions attained by full data, output perturbation, and inference mechanisms, which have access to the
entire data, only useful data, and only sensitive data, respectively.

We first observed that the full data mechanism provides the best privacy-utility tradeoff and then showed that the output
perturbation mechanism provides a better privacy-utility tradeoff than the inference mechanism. We showed that if the common
and mutual information between useful and sensitive data are identical, then the full data mechanism simplifies to the output
perturbation mechanism. Conversely, we showed that if the common information is not equal to mutual information, then the
tradeoff region achieved by full data mechanism is strictly larger than the one achieved by the output perturbation mechanism.
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Throughout the paper, we allowed for a general distortion measure, and a general privacy measure that satisfies certain
conditions that any reasonable measure of privacy should satisfy. In particular, the measure does not have to be symmetric and
need not satisfy both the inequalities that are usually implied by the data processing inequality for a symmetric measure. In
this context, the linkage inequality was identified as the key property that is required for our main results to hold. It was shown
that the Sibson mutual information of order infinity and the information privacy measures satisfy both the post-processing and
linkage inequalities, but the maximal information leakage and differential privacy measures can violate the linkage inequality.
The philosophical implications of this for differential privacy were also highlighted through a carefully constructed analytical
example.
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APPENDIX A
PROOFS OF SECTION IV RESULTS

A. Proof of Proposition 1

For X → Z1 → Z2 that form a Markov chain, we have that

min
z1

H(X|Z1 = z1) = min
z1,z2

H(X|Z1 = z1, Z2 = z2)

≤ min
z2

H(X|Z1, Z2 = z2)

≤ min
z2

H(X|Z2 = z2),

and thus, I∗(X;Z1) ≥ I∗(X;Z2), establishing the post-processing inequality.
Violation of the linkage inequality is shown by considering the counter-example where X2 is ternary with PX2

(0) = 1/2
and PX2(1) = PX2(2) = 1/4, X1 is binary with X1 = 0 if and only if X2 = 0, and the release Z = X1. For this example,
X2 → X1 → Z is a Markov chain, I∗(X1;Z) = H(X1) = 1, and I∗(X2;Z) = H(X2) = 1.5, since H(X1|Z = 0) =
H(X2|Z = 0) = 0. Hence, I∗(X2;Z) > I∗(X1;Z) and the linkage inequality does not hold.
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B. Proof of Lemma 1

Due to symmetry, it suffices to show only the post-processing inequality. For X → Z1 → Z2 that form a Markov chain, we
have that

IP (X;Z2) = max
x,z2

∣∣∣∣ln PX|Z2
(x|z2)

PX(x)

∣∣∣∣
= max

x,z2

∣∣∣∣∣ln∑
z1

PX|Z1
(x|z1)PZ1|Z2

(z1|z2)

PX(x)

∣∣∣∣∣
= max

x,z2

∣∣∣∣lnEZ1

[
PX|Z1

(x|Z1)

PX(x)

∣∣∣∣Z2 = z2

]∣∣∣∣
≤ max

x,z1

∣∣∣∣ln PX|Z1
(x|z1)

PX(x)

∣∣∣∣ = IP (X;Z1),

where each maximization is over the supports of the respective marginal distributions, and the inequality follows since the
absolute-log of the expectation is bounded by the maximum of the absolute-log over the support.

C. Proof of Corollary 1

From (8) it follows that

IP (X;Z) ≤ max
A⊆X ,B⊆Z:

Pr(X∈A),Pr(Z∈B)>0

∣∣∣∣ln Pr(X ∈ A, Z ∈ B)

Pr(X ∈ A) Pr(Z ∈ B)

∣∣∣∣ .
To demonstrate the reverse inequality, we first observe that

max
A⊆X ,B⊆Z:

Pr(X∈A),Pr(Z∈B)>0

∣∣∣∣ln Pr(X ∈ A, Z ∈ B)

Pr(X ∈ A) Pr(Z ∈ B)

∣∣∣∣ =

max
A⊆X ,B⊆Z:

Pr(X∈A),Pr(Z∈B)>0

IP (1(X ∈ A); 1(Z ∈ B)).

Next note that 1(X ∈ A) → X → Z → 1(Z ∈ B) forms a Markov chain for any choice of A ⊆ X ,B ⊆ Z such that
Pr(X ∈ A),Pr(Z ∈ B) > 0. From Lemma 1 it follows that IP (1(X ∈ A); 1(Z ∈ B)) cannot be larger than IP (X;Z)
(post-processing and linkage inequalities) for any valid choice of A,B. Thus,

max
A⊆X ,B⊆Z:

Pr(X∈A),Pr(Z∈B)>0

IP (1(X ∈ A); 1(Z ∈ B)) ≤ IP (X;Z)

and the result follows.

D. Proof of Lemma 2

From the definition its follows that a release mechanism is ε-differentially private if, and only if, for all x1, x2 ∈ X with
dH(x1, x2) = 1, and all B ⊆ Z , ∣∣∣∣ln Pr(Z ∈ B|x1)

Pr(Z ∈ B|x2)

∣∣∣∣ ≤ ε
Thus if a release mechanism is ε-differentially private, then

DP (X;Z) := max
x1,x2∈X ,B⊆Z:
dH(x1,x2)=1

∣∣∣∣ln Pr(Z ∈ B|x1)

Pr(Z ∈ B|x2)

∣∣∣∣ ≤ ε. (16)

Since
Pr(Z ∈ B|X = x1)

Pr(Z ∈ B|X = x2)
=

∑
z∈B PZ|X(z|x1)∑
z∈B PZ|X(z|x2)

≤ max
z∈B

PZ|X(z|x1)

PZ|X(z|x2)
,

it follows that reducing the scope of maximization in (16) from subsets B ⊆ Z to singletons z ∈ Z will not decrease the
maximum value, i.e.,
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Fig. 3. An example which demonstrates that DP can violate the linkage inequality. Here, A and B are databases taking values in {0, 1}2 and C ∈ {0, 1}
is the data release. The colored edges indicate databases that differ in exactly one element. By construction, A → B → C forms a Markov chain and yet
DP (A;C) > DP (B;C).

E. Proof of Proposition 2

We will construct A→ B → C such that DP (A;C) > DP (B;C). Let databases A,B ∈ {0, 1}2 and the release C ∈ {0, 1}.
The database B := (B1, B2) is a deterministic function of the database A := (A1, A2). Specifically, B1 = B2 = A1 ∨ A2.
The release C is produced by the mechanism PC|B , given by

PC|B(1|b) =


q, if b = (0, 0),

s, if b = (1, 1),

r, otherwise,

with 0 < q < r < s < 1. The construction of (A,B,C) is summarized in Fig. 3 where the solid circles indicate databases and
the colored edges join databases that are at Hamming distance one from each other. Since 0 < q < r < s < 1,

1 < max

(
s

r
,
r

q

)
<
s

q

If we define t̄ := (1− t) for convenience, then 0 < s̄ < r̄ < q̄ < 1 so that

1 < max
( r̄
s̄
,
q̄

r̄

)
<
q̄

s̄
.

Thus,

0 = ln 1 < DP (B;C) = max

(
ln
s

r
, ln

r

q
, ln

q̄

r̄
, ln

r̄

s̄

)
< max

(
ln
s

q
, ln

q̄

s̄

)
= DP (A;C).

APPENDIX B
PROPERTIES OF COMMON INFORMATION

The graphical representation of PX,Y is the bipartite graph with an edge between x ∈ X and y ∈ Y if and only if
PX,Y (x, y) > 0. The common part U of two random variables (X,Y ) is defined as the (unique) label of the connected
component of the graphical representation of PX,Y in which (X,Y ) falls. Note that U is a deterministic function of X alone
and also a deterministic function of Y alone.

The Gács-Körner common information of two random variables (X,Y ) is given by entropy of the common part, that is,
C(X;Y ) := H(U), and has the operational significance of being the maximum number of common bits per symbol that can be
independently extracted from X and Y [15]. In general, C(X;Y ) ≤ I(X;Y ), with equality if and only if X → U → Y forms
a Markov chain [23]. Since our results are only concerned with whether C(X;Y ) = I(X;Y ), our theorem statements are
unchanged if we use instead the Wyner notion of common information (see [14]), since it is also equal to mutual information
if and only if X → U → Y forms a Markov chain [23].

We give the following lemma which aids our proof of Theorem 3 in Appendix E.

Lemma 4. If C(X;Y ) 6= I(X;Y ), then there exist x0, x1 ∈ X and y0, y1 ∈ Y , such that y0 6= y1, PX,Y (x0, y0) > 0,
PX,Y (x0, y1) > 0, and PX|Y (x1|y0) 6= PX|Y (x1|y1).
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Proof. We will prove this lemma by showing the contrapositive, that is, if there does not exist x0, x1 ∈ X and y0, y1 ∈ Y
satisfying the conditions stated in the lemma, then C(X;Y ) = I(X;Y ). First, note that if for all x0 ∈ X and y0, y1 ∈ Y ,
either y0 = y1, PX,Y (x0, y0) = 0, or PX,Y (x0, y1) = 0, then Y is a deterministic function of X , which would result in
C(X;Y ) = I(X;Y ). Thus, we are left with showing that for all x0 ∈ X and y0, y1 ∈ Y , with y0 6= y1, PX,Y (x0, y0) > 0,
and PX,Y (x0, y1) > 0, if we also have that for all x1 ∈ X , PX|Y (x1|y0) = PX|Y (x1|y1), then C(X;Y ) = I(X;Y ). This
follows since these conditions would imply that for the common part U of (X,Y ), X → U → Y forms a Markov chain.

APPENDIX C
PROOF OF THEOREM 1

It is sufficient to show that for any mechanism PZ|X that is a feasible solution in the inference optimization of (6), there is
a corresponding mechanism PZ′|Y for the output perturbation optimization of (5) that achieves the same distortion and only
lesser or equal privacy-leakage.

Let PZ|X be a mechanism in the feasible region of the inference optimization problem of (6). Define the corresponding
mechanism for the output perturbation optimization of (5) by

PZ′|Y (z|y) :=
∑
x∈X

PZ|X(z|x)PX|Y (x|y).

Let (X,Y, Z, Z ′) ∼ PX,Y PZ|XPZ′|Y . Note that by construction, (Y, Z) and (Y,Z ′) have the same distribution PY PZ′|Y . Thus,
both mechanisms achieve the same distortion D(PY PZ′|Y ) and J(Y ;Z) = J(Y ;Z ′). Further, by construction, Y → X → Z
and X → Y → Z ′ form Markov chains. Thus, by the linkage inequality,

J(X;Z ′) ≤ J(Y ;Z ′) = J(Y ;Z) ≤ J(X;Z),

showing that the output perturbation mechanism has only lesser or equal privacy-leakage.

APPENDIX D
PROOF OF THEOREM 2

Since πFD(δ) ≤ πOP(δ) is immediate, we only need to show that πOP(δ) ≤ πFD(δ). It is sufficient to show that for any
mechanism PZ|X,Y that is a feasible solution in the full data optimization of (4), there is a corresponding mechanism PZ′|Y
for the output perturbation optimization of (5) that achieves the same distortion and only lesser or equal privacy-leakage.

Let PZ|X,Y be a mechanism in the feasible region of the full data optimization problem of (4). Define the corresponding
mechanism for the output perturbation optimization of (5) by

PZ′|Y (z|y) :=
∑
x∈X

PZ|X,Y (z|x, y)PX|Y (x|y).

Let (X,Y, Z, Z ′) ∼ PX,Y PZ|X,Y PZ′|Y , and let U be the common part of (X,Y ), where, by construction, U is a deterministic
function of either X alone or Y alone. Since C(X;Y ) = I(X;Y ), we have that X → U → Y forms a Markov chain, i.e.,
I(X;Y |U) = 0. By construction, X → Y → Z ′ also forms a Markov chain, and hence I(X;Z ′|U, Y ) = I(X;Z ′|Y ) = 0,
since U is deterministic function of Y . Given these two Markov chains, we have

0 = I(X;Y |U) + I(X;Z ′|U, Y )

= I(X;Y,Z ′|U)

= I(X;Z ′|U) + I(X;Y |U,Z ′)
≥ I(X;Z ′|U),

and hence I(X;Z ′|U) = 0, i.e., X → U → Z ′ also forms a Markov chain. Continuing, we can show the desired privacy-leakage
inequality as follows

J(X;Z ′) ≤ J(X,U ;Z ′)

≤ J(U ;Z ′)

= J(U ;Z)

≤ J(X,U ;Z)

≤ J(X;Z),

where the equality holds since by construction PY,Z = PY,Z′ (and hence PU,Z = PU,Z′ ), and the four inequalities follow,
respectively, by applying the linkage inequality to the following Markov chains:
• X → (X,U)→ Z ′, since X is a function of (X,U).
• (X,U)→ U → Z ′, since U is a function of X , and since X → U → Z ′ forms a Markov chain as shown above.
• U → (X,U)→ Z, since U is a function of (X,U).
• (X,U)→ X → Z, since (X,U) is a function of X .
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APPENDIX E
PROOF OF THEOREM 3

We will show the following result, which is key to the proof.

Lemma 5. If C(X;Y ) 6= I(X;Y ) then there exist random variables Z and Z ′ with PY,Z = PY,Z′ , such that X → Y → Z ′

forms a Markov chain, I(X;Z) = 0, and I(X;Z ′) > 0.

The proof of Theorem 3 then follows by defining the distortion measure D(PY,Z) to equal 1 for the particular choice
of PY,Z′ in Lemma 5 and to equal 2 otherwise, and choosing δ = 1. This choice for the distortion measure and distortion
level restricts the feasible output perturbation mechanism to only PZ′|Y , which by Lemma 5 results in πOP (δ) > 0 since
J(X;Z ′) > 0 (since I(X;Z ′) > 0). However, the proof of Lemma 5 (see below) also ensures the existence of Z produced
by a full data mechanism PZ|X,Y that results in πFD(δ) = 0 since I(X;Z) = 0.

Using the symbols (x0, x1, y0, y1) shown to exist by Lemma 4, we can prove Lemma 5 by constructing a binary Z with
alphabet Z = {0, 1} as follows. Choose any s ∈ (0, 1) and any t ∈

(
0,min{s′/PY |X(y1|x0), s/PY |X(y0|x0)}

)
, where

s′ := (1− s). Define Z with (X,Y, Z) ∼ PX,Y PZ|X,Y , where

PZ|X,Y (0|x, y) :=


s+ tPY |X(y1|x0), if (x, y) = (x0, y0),

s− tPY |X(y0|x0), if (x, y) = (x0, y1),

s, otherwise.

The choice of s and t ensures that PZ|X,Y (0|x, y) ∈ (0, 1) for all (x, y) ∈ X × Y . This construction of PZ|X,Y makes Z
independent of X , since for all x ∈ X in the support of PX ,

PZ|X(0|x) =
∑
y∈Y

PZ|X,Y (0|x, y)PY |X(y|x) = s.

With the above construction, we have

PZ|Y (0|y) =
∑
x∈X

PZ|X,Y (0|x, y)PX|Y (x|y)

=


s+ tPY |X(y1|x0)PX|Y (x0|y0), if y = y0,

s− tPY |X(y0|x0)PX|Y (x0|y1), if y = y1,

s, otherwise.

Next, we construct binary Z ′ such that X → Y → Z ′ forms a Markov chain, with (X,Y, Z ′) ∼ PX,Y PZ′|Y , where we set
PZ′|Y := PZ|Y . Then, consider

PZ′|X(0|x) =
∑
y∈Y

PZ′|Y (0|y)PY |X(y|x)

=
∑
y∈Y

PZ|Y (0|y)PY |X(y|x)

= s+ tPY |X(y1|x0)PX|Y (x0|y0)PY |X(y0|x)

− tPY |X(y0|x0)PX|Y (x0|y1)PY |X(y1|x)

= s+ tPX(x0)PY |X(y0|x0)PY |X(y1|x0)

× [PX|Y (x|y0)− PX|Y (x|y1)]/PX(x).

Finally, we show that PZ′|X(0|x) is not constant for all x ∈ X in the support of PX , which implies that Z ′ is not independent
of X , i.e., I(X;Z ′) > 0. This can be proved by contradiction, by supposing that PZ′|X(0|x) is constant for all x ∈ X in the
support of PX . Then, for all x ∈ X ,

PX|Y (x|y0)− PX|Y (x|y1) = cPX(x),

for some constant c. By summing over all x ∈ X , we have that c = 0. This would imply that PX|Y (x|y0) = PX|Y (x|y1) for
all x ∈ X , contradicting the existence of x1 ∈ X given by Lemma 4 for the choice of y0 and y1.

APPENDIX F
SOME USEFUL LEMMAS

In this section, we provide a set of lemmas that we use to prove the results presented in Section VI.
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Lemma 6. Let X,Y , and Z be discrete random variables, with X,Y ∈ {0, . . . ,m− 1}. If (X,Y ) ∼ SP (m, p), then

Pr(Y 6= Z)− Pr(X 6= Z)

=
p

m(m− 1)

∑
x,y

x 6=y

[
PZ|X,Y (x|x, y)− PZ|X,Y (y|x, y)

]
Proof. We can expand Pr(Y 6= Z) as

Pr(Y 6= Z) = 1− Pr(Y = Z)

= 1−
∑
x,y

PX,Y (x, y)PZ|X,Y (y|x, y)

= 1−
∑
x

PX,Y (x, x)PZ|X,Y (x|x, x)

−
∑
x6=y

PX,Y (x, y)PZ|X,Y (y|x, y)

= 1− 1− p
m

∑
x

PZ|X,Y (x|x, x)

− p

m(m− 1)

∑
x 6=y

PZ|X,Y (y|x, y).

Similarly, we have that

P (X 6= Z) = 1− 1− p
m

∑
x

PZ|X,Y (x|x, x)

− p

m(m− 1)

∑
x 6=y

PZ|X,Y (x|x, y).

Subtracting these two expansions yields the lemma.

Lemma 7. Let X,Y , and Z be discrete random variables, with X,Y ∈ {0, . . . ,m − 1}. If (X,Y ) ∼ SP (m, p) and Y →
X → Z forms a Markov chain, then

Pr(Y 6= Z) = p+ Pr(X 6= Z)

(
1− pm

m− 1

)
.

Proof. We have that

Pr(Y 6= Z)− Pr(X 6= Z)

(a)
=

p

m(m− 1)

∑
x,y

x 6=y

PZ|X,Y (x|x, y)− PZ|X,Y (y|x, y)

(b)
=

p

m(m− 1)

∑
x,y

x 6=y

PZ|X(x|x)− PZ|X(y|x)

(c)
=

p

(m− 1)

∑
x,y

x 6=y

PX,Z(x, x)− PX,Z(x, y)

=
p

(m− 1)
((m− 1) Pr(X = Z)− P (X 6= Z))

= p− Pr(X 6= Z)

(
p+

p

m− 1

)
,

where (a) follows from Lemma 6, (b) since Y → X → Z forms a Markov chain, and (c) since X is uniform over {0, . . . ,m−1}.
Rearranging terms yields the lemma.

Lemma 8. Let X be uniformly distributed on {0, . . . ,m− 1} and define

f(ε) := inf
PZ|X

I(X;Z)

s.t. Pr(X 6= Z) ≤ ε,
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and

g(ε) :=

{
rm(ε), if ε ≤ 1− 1

m

0, otherwise,

for ε ∈ [0,∞). Then, f(ε) = g(ε) for any ε ∈ [0,∞), with the mechanism PZ|X solving the optimization problem given by

PZ|X(z|x) =

{
1− t, if z = x
t

m−1 , otherwise,
(17)

where t := min(1− 1
m , ε) and z ∈ {0, . . . ,m− 1}.

Proof. We immediately have that f(ε) = g(ε) = 0 for any ε > 1− 1
m , since for Z independent of X and uniformly distributed

over {0, . . . ,m − 1}, which is consistent with (17), we have that Pr(X 6= Z) = 1 − 1
m and I(X;Z) = 0. Thus, for the rest

of the proof, we assume that ε ≤ 1− 1
m .

We first show that f(ε) ≥ g(ε), using a lower bound on I(X;Z),

I(X;Z) = logm−H(X|Z)

≥ rm(Pr(X 6= Z)), (18)

which follows from Fano’s inequality and definition of rm from Lemma 3. Thus, for ε ≤ 1− 1
m ,

f(ε) ≥ inf
PZ|X

rm(Pr(X 6= Z)) s.t. Pr(X 6= Z) ≤ ε

= rm(ε) =: g(ε),

since rm(ε) is strictly decreasing over [0, 1− 1
m ].

We next show that f(ε) ≤ g(ε) for PZ|X given by (17). Note that (X,Z) ∼ SP (m, t), and hence the conditional probability
PZ|X is in the feasible region of the optimization problem since Pr(X 6= Z) = t = ε. Consequently, we have f(ε) ≤
I(X;Z) = rm(t) = g(ε), where the first equality follows from Lemma 3 and the second since t = ε ≤ 1− 1

m .

Lemma 9. Let X be uniformly distributed on {0, . . . ,m− 1} and define

f∗(ε) := inf
PZ|X

I(X;Z)

s.t. Pr(X 6= Z) ≥ ε,

and

g∗(ε) :=

{
rm(ε), if ε ≥ 1− 1

m

0, otherwise,

for ε ∈ [0, 1]. Then, f∗(ε) = g∗(ε) for any ε ∈ [0, 1], with the mechanism PZ|X solving the optimization problem given by (17)
with t := max(1− 1

m , ε).

Proof. We immediately have that f∗(ε) = g∗(ε) = 0 for any ε < 1 − 1
m , since for Z independent of X and uniformly

distributed over {0, . . . ,m− 1}, which is consistent with (17) with t := max(1− 1
m , ε), we have that Pr(X 6= Z) = 1− 1

m
and I(X;Z) = 0. Thus, for the rest of the proof, we assume that ε ≥ 1− 1

m .
We first show that f∗(ε) ≥ g∗(ε), applying the lower bound of (18) to yield

f∗(ε) ≥ inf
PZ|X

rm(Pr(X 6= Z)) s.t. Pr(X 6= Z) ≥ ε

= rm(ε) =: g∗(ε),

which follows since rm(ε) is strictly increasing over [1− 1
m , 1].

We next show that f∗(ε) ≤ g∗(ε) for PZ|X given by (17) with t := max(1 − 1
m , ε). Note that (X,Z) ∼ SP (m, t), and

hence the conditional probability PZ|X is in the feasible region of the optimization problem since Pr(X 6= Z) = t = ε.
Consequently, we have f(ε) ≤ I(X;Z) = rm(t) = g(ε), where the first equality follows from Lemma 3 and the second since
t = ε ≥ 1− 1

m .
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APPENDIX G
PROOF OF THEOREM 4

For convenience, we define

gFD(δ) :=


rm(p+ δ), if δ ≤ 1− 1

m − p,
rm(p− δ), if δ ≤ p− (1− 1

m ),

0, otherwise.

which is equal to the right-hand side of (11). Since, for δ ≥ 1 − 1
m , we immediately have gFD(δ) = πFD(δ) = 0, we will

assume that δ < 1− 1
m for the rest of this proof.

We divide the proof into two cases: (i) p ≤ 1− 1
m and (ii) p > 1− 1

m .

Case 1: p ≤ 1− 1
m

We first show that πFD(δ) ≥ gFD(δ). Due to Lemma 6, we have that Pr(Y 6= Z) ≤ δ implies that

Pr(X 6= Z) ≤ δ

+
p

m(m− 1)

∑
x,y

x 6=y

[
PZ|X,Y (y|x, y)− PZ|X,Y (x|x, y)

]
,

≤ δ +
p

m(m− 1)

∑
x,y

x6=y

1

≤ δ + p,

Thus, for any mechanism PZ|X,Y with Pr(Y 6= Z) ≤ δ, we have that Pr(X 6= Z) ≤ δ + p. Then, we bound πFD(δ) via

πFD(δ) ≥ inf
PZ|X,Y

I(X;Z) s.t. Pr(X 6= Z) ≤ δ + p

= inf
PZ|X

I(X;Z) s.t. Pr(X 6= Z) ≤ δ + p

= gFD(δ),

where the last equality follows from Lemma 8.
We next show that πFD(δ) ≤ gFD(δ) via the mechanism given by (12), which is feasible since

Pr(Y 6= Z) = Pr(Y 6= Z|X = Y ) Pr(X = Y )

= Pr(N 6= 0|X = Y )(1− p)
= t ≤ δ.

Hence, we have that πFD(δ) ≤ I(X;Z). For all x 6= z, we have that

PX,Z(x, z) =
∑
y

PZ|X,Y (z|x, y)PX,Y (x, y)

= PZ|X,Y (z|x, x)PX,Y (x, x)

+
∑
y 6=x

PZ|X,Y (z|x, y)PX,Y (x, y)

=
t

(1− p)(m− 1)

1− p
m

+ PX,Y (x, z)

=
t

(m− 1)m
+

p

(m− 1)m

=
t+ p

(m− 1)m
,

which shows that (X,Z) ∼ SP (m, t + p). Thus, by Lemma 3, I(X;Z) = rm(t + p). Noting that rm(1− 1
m ) = 0, we have

rm(t+ p) = gFD(δ) for p ≤ 1− 1
m . Hence, πFD(δ) ≤ gFD(δ).

Case 2: p > 1− 1
m
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We first show that πFD(δ) ≥ gFD(δ). Given Pr(Y 6= Z) ≤ δ, we have that

Pr(X 6= Z) + δ ≥ Pr(X 6= Z) + Pr(Y 6= Z)

≥ Pr({X 6= Z} ∪ {Y 6= Z})
= 1− Pr(X = Y = Z)

≥ 1− Pr(X = Y )

= p.

Thus, for any mechanism PZ|X,Y that satisfies Pr(Y 6= Z) ≤ δ, we also have that Pr(X 6= Z) ≥ p− δ. Then, we can bound
πFD(δ) via

πFD(δ) ≥ inf
PZ|X,Y

I(X;Z) s.t. Pr(X 6= Z) ≥ p− δ

= inf
PZ|X

I(X;Z) s.t. Pr(X 6= Z) ≥ p− δ

= gFD(δ),

where the last equality follows from Lemma 9.
We next show πFD(δ) ≤ gFD(δ), by considering the mechanism defined by

Z :=

{
Y, if θ′ = 1,

X, otherwise,

where θ′ is a binary random variable that is independent of (X,Y ), with Pr(θ′ = 1) = t′/p, where we define t′ := max(p−
δ, 1− 1

m ) for convenience. Since

Pr(Y 6= Z) = Pr(Y 6= Z|θ′ = 0)Pθ′(0)

= Pr(Y 6= X|θ′ = 0)Pθ′(0)

= Pr(Y 6= X)Pθ′(0)

= p− t′

≤ δ,

we have that this mechanism is feasible. Hence, we have πFD(δ) ≤ I(X;Z). For all x 6= z, we have that

PX,Z(x, z) =
∑
y

PZ|X,Y (z|x, y)PX,Y (x, y)

= PZ|X,Y (z|x, x)PX,Y (x, x)

+
∑
y 6=x

PZ|X,Y (z|x, y)PX,Y (x, y)

= 0 + PZ|X,Y (z|x, z)PX,Y (x, z) + 0

=
t′

p

p

(m− 1)m

=
t′

(m− 1)m
,

which shows that (X,Z) ∼ SP (m, t′). Thus, by Lemma 3, I(X;Z) = rm(t′). Noting that rm(1 − 1
m ) = 0, we have

rm(t′) = gFD(δ) for all p ≥ 1− 1
m . Hence, πFD(δ) ≤ gFD(δ).

APPENDIX H
PROOF OF THEOREM 5

For convenience, we define

gOP(δ) :=

{
rm

(
p+ δ

(
1− pm

m−1

))
, if δ < 1− 1

m ,

0, otherwise.

which is equal to the right-hand side of (13). Since, for δ ≥ 1 − 1
m , we immediately have gOP(δ) = πOP(δ) = 0, we will

assume that δ < 1− 1
m for the rest of this proof.
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We first show that πOP(δ) ≥ gOP(δ). Since X → Y → Z forms a Markov chain for any output perturbation mechanism, we
have from Lemma 7 that

Pr(X 6= Z) = p+ Pr(Y 6= Z)

(
1− pm

m− 1

)
.

Let δ′ := p+ δ
(

1− pm
m−1

)
. Note that when p ≤ 1− 1

m , the term
(

1− pm
m−1

)
≥ 0. Hence, the constraint Pr(Y 6= Z) ≤ δ is

equivalent to Pr(X 6= Z) ≤ δ′, and δ′ < 1− 1
m since δ < 1− 1

m . Thus, for p ≤ 1− 1
m , we can bound πOP(δ) via

πOP(δ) = inf
PZ|Y

I(X;Z) s.t. Pr(X 6= Z) ≤ δ′

≥ inf
PZ|X

I(X;Z) s.t. Pr(X 6= Z) ≤ δ′

= gOP(δ),

where the inequality is due to the removal of the Markov chain constraint and the final equality follows from Lemma 8. The
case when p > 1 − 1

m follows similarly, except now the term
(

1− pm
m−1

)
< 0, hence the constraint Pr(Y 6= Z) ≤ δ is

equivalent to Pr(X 6= Z) ≥ δ′, and δ′ > 1− 1
m . Thus, for p > 1− 1

m , we can bound πOP(δ) via

πOP(δ) = inf
PZ|Y

I(X;Z) s.t. Pr(X 6= Z) ≥ δ′

≥ inf
PZ|X

I(X;Z) s.t. Pr(X 6= Z) ≥ δ′

= gOP(δ),

where the inequality is due to the removal of the Markov chain constraint and the final equality follows from Lemma 9.
We next show that πOP(δ) ≤ gOP(δ), via the mechanism given by Z := Y +N mod m, where N is independent of (X,Y ),

and distributed according to (14). This mechanism is feasible since Pr(Y 6= Z) = t := min(δ, 1 − 1
m ) ≤ δ. Hence, we have

πOP(δ) ≤ I(X;Z). For all x 6= z, we have that

PX,Z(x, z) =
∑
y

PZ|Y (z|y)PX,Y (x, y)

= PZ|Y (z|z)PX,Y (x, z) +
∑
y 6=z

PZ|Y (z|y)PX,Y (x, y)

= (1− t)PX,Y (x, z)

+
t

(m− 1)

PX,Y (x, x) +
∑

y/∈{x,z}

PX,Y (x, y)


=

(1− t)p
(m− 1)m

+
t

(m− 1)

(
(1− p)
m

+
p(m− 2)

(m− 1)m

)

=
p+ t

(
1− pm

m−1

)
(m− 1)m

=:
δ′′

(m− 1)m

which shows that (X,Z) ∼ SP (m, δ′′). Thus, by Lemma 3, I(X;Z) = rm(δ′′). Noting that rm(1 − 1
m ) = 0, we have

rm(δ′′) = gOP(δ). Hence, πOP(δ) ≤ gOP(δ).

APPENDIX I
PROOF OF THEOREM 6

For convenience, we define

gINF(δ) :=


rm(t), if δ < 1− 1

m and p /∈ (δ, h),

∞, if δ < 1− 1
m and p ∈ (δ, h),

0, if δ ≥ 1− 1
m ,

which is equal to the right-hand side of (15), where h := (m− 1)(1− δ) and

t :=
δ − p

1− pm
m−1

.
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Since, for δ ≥ 1− 1
m , we immediately have gINF(δ) = πINF(δ) = 0, we will assume that δ < 1− 1

m for the rest of this proof.
Note that with this assumption, we have h > 1− 1

m .
Since Y → X → Z forms a Markov chain for any inference mechanism, we have from Lemma 7 that

Pr(Y 6= Z) = p+ Pr(X 6= Z)

(
1− pm

m− 1

)
.

Note that if p = 1 − 1
m , then Pr(Y 6= Z) = 1 − 1

m > δ, and the optimization is infeasible, hence gINF(δ) = πINF(δ) = ∞.
Thus, we will consider the two remaining cases: (i) p < 1− 1

m and (ii) p > 1− 1
m .

Case 1: p < 1− 1
m

In this case, we have that the constraint Pr(Y 6= Z) ≤ δ is equivalent to

Pr(X 6= Z) ≤ δ − p
1− mp

m−1
=: t,

due to Lemma 7. For p > δ, the optimization problem is infeasible since t < 0, and hence gINF(δ) = πINF(δ) =∞. Otherwise,
for p ≤ δ, we have that 0 ≤ t ≤ 1− 1

m , and by Lemma 8, we have that gINF(δ) = πINF(δ) = rm(t).
Case 2: p > 1− 1

m

In this case, we have that the constraint Pr(Y 6= Z) ≤ δ is equivalent to

Pr(X 6= Z) ≥ δ − p
1− pm

m−1
=: t,

due to Lemma 7 and since the denominator is negative. For p < h, the optimization problem is infeasible since t > 1,
and hence gINF(δ) = πINF(δ) = ∞. Otherwise, for p ≥ h, we have that 1 − 1

m ≤ t ≤ 1, and by Lemma 9, we have that
gINF(δ) = πINF(δ) = rm(t).
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