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Abstract
We propose an algorithm for mmWave channel estimation in the presence of a non-negligible
carrier frequency offset (CFO) impairment. The algorithm exploits inherent sparsity of the
mmWave channel in the angle of departure (AoD) and arrival (AoA) domain, employs sparse
channel sensing protocol, and performs blind CFO compensation and estimation of channel
paths in the angular domain. The simulation tests show that the proposed algorithm con-
siderably outperforms the conventional orthogonal matching pursuit (OMP)-based mmWave
channel estimation algorithm under different CFO and signal-to-noise ratio (SNR) regimes.
Aside from the mmWave channel estimation problem, the algorithm is more generally ap-
plicable for greedy sparse recovery problems associated with estimating a sparse vector from
measurements impaired by frequency offset.
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ABSTRACT

We propose an algorithm for mmWave channel estimation in the
presence of a non-negligible carrier frequency offset (CFO) impair-
ment. The algorithm exploits inherent sparsity of the mmWave chan-
nel in the angle of departure (AoD) and arrival (AoA) domain, em-
ploys sparse channel sensing protocol, and performs blind CFO com-
pensation and estimation of channel paths in the angular domain.
The simulation tests show that the proposed algorithm considerably
outperforms the conventional orthogonal matching pursuit (OMP)-
based mmWave channel estimation algorithm under different CFO
and signal-to-noise ratio (SNR) regimes. Aside from the mmWave
channel estimation problem, the algorithm is more generally applica-
ble for greedy sparse recovery problems associated with estimating
a sparse vector from measurements impaired by frequency offset.

Index Terms— mmWave channel estimation, carrier frequency
offset (CFO), frequency synchronization, sparse recovery, OMP.

1. INTRODUCTION

The proliferation of wireless services and continuous increase in the
data throughput demand have sparked the interest and research in
communications over unlicensed millimeter-wave (mmWave) fre-
quency ranges [1]. The mmWave channel modeling and estimation
have received a considerable interest in the past few years. A variety
of reported channel measurements suggest that the mmWave chan-
nel is sparse in the angular domain, indicating that there are a few
dominant paths between transmitter and receiver [2].

In general, two types of approaches have been used for chan-
nel estimation, both relying on the sparse nature of the channel. In
a more traditional approach, the transmitter and receiver effectively
probe each possible channel path, i.e., each combination of the an-
gle of departure (AoD) and angle of arrival (AoA), and delineate
the paths that deliver most of the transmitted energy [1]. To reduce
the computational burden and time required to probe all AoD-AoA
pairs (note that each pair is probed separately and in serial), different
schemes have been proposed. A common approach in those schemes
is to sense the channel initially with wider probing angles, coarsely
detect sectors containing the dominant paths and then sense the sec-
tors with narrower probing angles until the dominant paths are pre-
cisely located in the angular domain. The currently existing IEEE
802.11ad and IEEE 802.15.3c standards operating over 60 GHz fre-
quency range employ this approach for channel estimation [3, 4]. A
particularly interesting solution with overlapping probing angles has
been proposed in [5].

The other mmWave channel estimation approach directly ex-
ploits the sparse nature of the channel in the angular domain. In
particular, it senses the channel by transmitting a certain number of
randomly precoded unit symbols and applying random combiners at

the receiver side, thereby sensing all AoD and AoA directions ran-
domly with low energy [6]. A sparse recovery algorithm, such as the
Orthogonal Matching Pursuit (OMP) [7], is then employed to esti-
mate the paths and their gains. The application of compressive sens-
ing/sparse recovery methods for general communication systems is
surveyed in [8].

This approach has shown benefits with respect to the traditional
angle probing approach in several aspects. First, it has been shown
that this approach requires a considerably smaller number of trans-
mitted pilots, thus reducing the duration of the training stage [9].
Second, the sparse channel sensing protocol is suitable for chan-
nel estimation in multi-user system, where multiple users perform
downlink channel estimation in parallel using the same randomly
precoded pilots transmitted from a base station [9]. Finally, a stan-
dard sparse recovery formulation, stemming from sparse channel
sensing protocol, enables the development of channel estimation al-
gorithms for mmWave channels exhibiting not only sparse, but also
spatially spread departures and arrivals [10, 11]. Despite advantages,
the outstanding issue of the sparse recovery-based mmWave chan-
nel estimation is its lack of robustness to carrier frequency offset
(CFO). Namely, the sensing protocol and the sparse recovery for-
mulation do not account for CFO. Consequently, the inability to es-
timate and compensate the CFO from channel measurements pre-
cludes the sparse recovery-based approach from practical usage [12].

Numerous methods have been proposed for CFO estimation and
compensation [13]. Of those, most contemporary algorithms have
been developed for Orthogonal Frequency Division Multiplexing
(OFDM) systems, e.g., [14, 15, 16]. However, to the extent of our
knowledge, the CFO issue has not been addressed in the context of
sparse recovery-based mmWave channel estimation. To bridge that
gap, we propose an algorithm which blindly compensates the CFO
and estimates the mmWave channel by directly exploiting the spar-
sity in the angular domain and random channel sensing protocol [6],
thereby preserving all above elaborated advantages of the sparse
recovery-based mmWave channel estimation. The performance of
the proposed algorithm is validated using Monte-Carlo simulations
and a significant performance improvement over the conventional
OMP-based mmWave channel estimation method is demonstrated.

2. CHANNEL AND SENSING MODELS

This section first presents received signal and channel model and
then details channel sensing protocol.

2.1. Model without CFO

The signal vector in the complex baseband representation, transmit-
ted at discrete time n, is denoted xn ∈ CNt×1, where Nt is the
number of transmit antennas. The received signal in the complex
baseband representation is denoted by yn ∈ CNr×1, where Nr is



the number of receive antennas. It is given by

yn = Hnxn + vn, (1)

where Hn ∈ CNr×Nt is a realization of channel matrix at discrete
time n and vn is circularly symmetric additive white Gaussian noise
(AWGN), vn ∼ CN (0, σ2I). As implied by the model (1), we
assume the communication system is narrowband. In addition, as
in most research works on mmWave channel estimation, we assume
time-invariant channel over some fixed time interval, whose one seg-
ment is devoted to channel estimation and the remaining segment to
communications.

A variety of field measurements [1, 2] have shown that mmWave
channel is sparse in the angular domain and this fact has been well
accepted in the research community. This essentially means that the
transmitted signal propagates over a small number of paths (direct
path and reflected and scattered paths) before reaching the receiver.
Each path is characterized with its own AoD and AoA. The channel
matrix is thus represented as

H = ArGAH
t . (2)

Above, Ar ∈ CNr×Gr and At ∈ CNt×Gt are, respectively, re-
ceiver and transmitter array manifold matrices, while Gr and Gt are
the number of discretization points of the receiver and transmitter
angular domains. The channel representation in the virtual angular
domain is G ∈ CGr×Gt .

Without loss of generality, we assume vertical line arrays and
use them in the simulations. Discretizing the AoA domain θr ∈
[−π/2, π/2] into Gr = Nr points, the i-th column in Ar , corre-
sponding to AoA θr,i, is given by

ai =
[

1 e−jπ sin θr,i . . . e−jπ(Nr−1) sin θr,i
]
, (3)

where i = 1, 2, . . . , Gr and we assume the antennas are separated
by half the wavelength corresponding to the carrier frequency, while
the angle is measured with respect to the line perpendicular to the
array such that θr = 90o corresponds to an arrival coming from
the array endfire, while θr = 0o corresponds to an arrival coming
from the broadside of the array. The array manifold vectors in At,
corresponding to AoDs θt,j , are obtained analogously.

Since the mmWave channel is sparse in the angular domain, the
representation G is a sparse matrix. A non-zero entry (i, j) in G
implies that a mmWave path between transmitter and receiver has
AoD θt,j , and AoA θr,i. The mmWave channel estimation problem
consists of estimating AoDs and AoAs of non-zero paths and the
corresponding coefficients. The following part describes a sparse
channel sensing strategy.

2.2. Channel Sensing

We assume that both transmitter and receiver employ a single radio
frequency (RF) chain. That means that only one stream of data sym-
bols is communicated between the transmitter and receiver. In the
considered sensing strategy, the transmitter applies precoding vector
pn ∈ CNt×1 onto the transmitted symbol sn at time n to exploit the
channel spatial degrees of freedom. Due to hardware related con-
straints, the precoding is, up to a constant magnitude, implemented
by performing phase shifting in each transmit antenna. Therefore,
the transmitted signal is

xn = pnsn, (4)

The receiver collects signals arriving from different directions
by applying a combining vector qn ∈ CNr×1. Similar to precoding

vectors, the combining vector is up to a constant magnitude realized
analogously with phase shifters in each receiver antenna. The signal
obtained after analog combining is

zn = qHn yn. (5)

The channel sensing strategy proposed in [6] is utilized here.
Intuitively, since the mmWave channel is sparse in the angular do-
main, each measurement needs to randomly and uniformly insonify
all channel directions. This is achieved by applying random precod-
ing and combining vectors whose entries are sampled uniformly at
random from the corresponding alphabets.

Assuming the applied precoding and combining vectors are pn
and qn, the observation at time n is from (1), (4) and (5) evaluated
as

zn = qHnHpnsn + qHn vn. (6)
The following steps are standard manipulations used in mmWave

channel estimation framework. Namely, using that vec{ABC} =(
CT ⊗A

)
vec{B}, where vec{X} vectorizes matrix X, and ⊗

denotes the Kroneker product [17, Theorem 13.26], the observation
zn in (6) is expressed as

zn =
(
pTn ⊗ qHn

)
vec{H}+ ṽn, (7)

where ṽn ∼ CN (0, σ2) because ‖qn‖ = 1 by assumption, and
sn = 1 without loss of generality. Using the representation of Hn

in (2), and applying the Kroneker property on vec{H} in (7) yields

zn =
(
pTn ⊗ qHn

)
(A∗t ⊗Ar) vec{G}+ ṽn. (8)

To simplify the observation model in (8), we denote bHn
∆
=(

pTn ⊗ qHn
)

(A∗t ⊗Ar) and g
∆
= vec{G} so that

zn = bHn g + ṽn. (9)

We note that there is one-to-one correspondence between the loca-
tions of non-zero entries in g and AoA and AoD of the existing
paths. Therefore, the goal is to recover the support of g and the
corresponding coefficients, based on the observations zn and known
bHn , n = 1, . . . ,K, where K is the training overhead.

Stacking up the measurements zn in a vector, the resulting ob-
servation vector z is expressed as

z = Bg + v, (10)

where v is a vector of noise samples ṽn and B is a measure-
ment/sensing matrix whose k-th row is bHn . Given that g is a long
and sparse vector, it can be recovered from (10) using a sparse re-
covery method. The OMP [7] is conventionally used in this setting.

As an aside remark, we note that generalization of the above
sensing protocol to the case where more RF chains are employed is
relatively straightforward. In addition, such a scenario essentially
yields more measurements, e.g., transmitting and receiving one pilot
symbol with random precoding and combining over 2 RF chains on
each channel end, yields two channel measurements.

3. PROPOSED ALGORITHM

3.1. Model with CFO

The lack of synchronization between the transmitter and receiver re-
sults in incorrect estimates of mmWave path locations and the cor-
responding coefficients. The sensing scheme described above does
not naturally take the CFO into account, let alone estimate it.
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In the presence of CFO, the received signal at discrete time n is
using (9) given by

yn = ej(n−1)2π∆fzn = ej(n−1)2π∆fbHn g + v′n, (11)

where n = 1, . . . ,K, ∆f is the normalized CFO, and v′n ∼
CN (0, σ2). The overall signal z is thus modeled in the vector form
as

z = FBg + v′, (12)

where F = diag{1, ej2π∆f , . . . , ej2π(K−1)∆f}.
Since model (12) better represents the reality, applying OMP or

some other sparse recovery method, tailored for model (10) results
in wrong channel estimates. The numerical examples demonstrate
that even relatively small CFO leads to considerable degradation in
channel estimation mean square error (MSE) performance. In the
following, we present an algorithm which jointly estimates the CFO
∆f and mmWave channel g. The proposed algorithm iteratively up-
dates the estimate of ∆f and recovers the support of g along with the
corresponding coefficients. To understand how the algorithm works,
we first consider a simpler problem where the support of g (i.e, the
indices of its non-zero entries) is known. In such a case, the problem
is to jointly estimate the CFO and channel coefficients.

3.2. Joint CFO and Channel Estimation

Assuming the support S of the channel vector g is known, the re-
ceived signal at time n is expressed as

yn = ej(n−1)2π∆faTn g̃ + v′n, (13)

where aTn and g̃ are obtained by taking the entries from bHn and g
corresponding to the support S. The vector-matrix representation of
the above model is given by

y = FAg̃ + v′, (14)

where the n-th row in A is aTn .
The autocorrelation of the received signal yn at lag m is given

by (15) (top of this page), where qn,m is the cumulative effect of all
noise-like terms, n = 1, . . . ,K −m, and

h =
[
|g̃|21 g̃1g̃

∗
2 . . . |g̃|22 . . . |g̃|2N

]T (16)

containsN entries solely depending on the magnitude of the channel
g̃ coefficients. Note that the vector cn,m is defined in a similar way.
The vector of the autocorrelations γn,m, n = 1, . . . ,K − m, is
using (15) expressed as

γm = ej2πm∆fCh + qm

= Cmh′m + qm, (17)

where the n-th row of Cm is cTn,m, h′m = ej2πm∆fh and qm is the
vector of noise-like samples qn,m.

The crux of the algorithm is in the observation that the phases
of N entries in h′m solely depend on the frequency offset ∆f . Thus,
the estimate of the CFO ∆f can be obtained from phase arguments
of the corresponding entries in the estimate of h′m.

The least-squares (LS) estimate of h′m is obtained from (17) and
given by

ĥ′m = (CH
mCm)−1Cmγm. (18)

Denoting with {I} the set of indices of entries in hm whose phase
is zero, the CFO is estimated as

∆f̂m =
1

2πm
arg

∑
j∈{I}

[ĥ′m]j , (19)

where [x]j denotes the jth entry in the vector x. The final estimate
of the CFO is given as an average over estimates ∆f̂m, obtained for
different lags m. Thus,

∆f̂ =
1

M

M∑
m=1

∆f̂m. (20)

The estimate of the unknown channel g̃ is finally obtained from (14)
by substituting ∆f̂ into F and using the LS,

ˆ̃g =
(
AHA

)−1

AHFHy. (21)

3.3. Iterative Method

Now we are ready to describe the iterative estimation of the CFO
∆f and sparse channel vector g.

The recovered support at the beginning of iteration p is Sp−1.
Its complement, i.e., the set of indices of zero entries in the current
estimate of the channel vector g, is denoted as Scp−1. All entries in
Scp−1 are separately considered to be included in the support during
iteration p. Note that S0 is an empty set in the first iteration.

The CFO and channel vector corresponding to the support
Ssp−1 = Sp−1 ∪ {s} are estimated using the procedure outlined in
Section 3.2, for each s ∈ Scp−1. The objective function correspond-
ing to Ssp−1 is the power of the residual signal resulting from the
LS fit (21). The index s′ which minimizes the objective function is
declared as new support element such that Sp = Sp−1 ∪ {s′} is the
recovered support fed back to the next iteration p+ 1.

The iterative procedure is terminated after a predefined number
of iterations or after a certain convergence criterion is met. Assum-
ing the procedure is terminated after P iterations, the recovered sup-
port is SP and the estimates of the CFO ∆f and channel vector g are
those corresponding to the index s′ which minimizes the objective
function in the last iteration.

4. NUMERICAL STUDY

The numerical study has been performed using Monte-Carlo simula-
tions. In the considered scenario, the number of transmit and receive
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Fig. 1: True and estimated channel magnitudes for the normalized
CFO of 1% and SNR of 10 dB.

antennas isNt = Nr = 16 and the mmWave channel has 5 paths. A
particular realization of the AoDs and AoAs and the corresponding
gains are uniformly at randomly generated from the corresponding
sets in each Monte-Carlo run. In addition, each entry in the precod-
ing and combining vectors is uniformly at random sampled from the
set {±1,±j}, meaning that the phase shifters in each antenna are
quantized with 4 levels. Finally, the AWGN is also random in each
run. Effectively, the reported estimation performance is averaged
over AoAs, AoDs, path gains, precoding and combining vectors, as
well as the additive noise.

The performance metric used for evaluation is the average nor-
malized channel estimation mean square error (NMSE), obtained
from averaging the NMSEs computed in each Monte-Carlo run. The
number of averaging terms M in (20) is 10 and kept constant in
all simulations. As an aside note, the algorithm’s performance can
be optimized with respect to M and, in fact, we have observed that
larger M is more suitable for smaller CFOs, while smaller M is
more suitable for larger CFOs.

As a benchmark, we simulate the performance of the conven-
tional OMP algorithm with the aim to study how the channel estima-
tion performance deteriorates with frequency offset. Since we are
primarily interested in the robustness of the channel estimation with
respect to the CFO, we assume the algorithms are supplied with the
correct number of iterations to be run (i.e, the channel paths). In ad-
dition, and for the same reason, all AoDs and AoAs are assumed to
be on the discrete Fourier transform (DFT) grid.

The true channel and its estimates obtained from the OMP and
proposed algorithm in one simulation run for K of 100, SNR of
10 dB and normalized CFO of 1% are shown in Fig. 1. Although
the OMP correctly identifies the index (i.e., AoD and AoA) of the
strongest path in this example (which is, in general, not necessarily
the case), it fails to correctly estimate the corresponding gain due to
the CFO and, consequently, the following iterations produce com-
pletely incorrect estimates. On the other hand, the proposed algo-
rithm correctly recovers the indices of all paths, with possibly small
errors in the gain estimates.

The NMSEs of the OMP and proposed algorithm for a fixed
normalized CFO of 1% and varying number of pilots K are shown
in Fig. 2. As can be seen, the proposed algorithm outperforms the
OMP. Note that a seemingly improved OMP performance as K de-
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creases from 100 (or 50) to 25 is because smaller number of pilots
cause smaller phase rotation in the received signal due to the CFO.

The NSMEs of the OMP and proposed algorithm for K = 100
and different SNRs are shown in Fig. 3. As can be seen, the NMSE
performance of the proposed algorithm is almost insensitive to the
considered range of CFO values and uniformly outperforms the
OMP. The only exception occurring when the CFO is not present
is due to the approximations made in the algorithm development.
Further investigation of this case is left as our future research.

5. CONCLUSION

We have proposed a sparse recovery-based algorithm which blindly
compensates frequency offset and estimates mmWave channel. The
proposed algorithm can also be used for greedy sparse recovery from
frequency offset impaired measurements. The algorithm’s perfor-
mance is validated using numerical simulations and uniform perfor-
mance over a broad range of CFOs has been demonstrated.
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