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Abstract
Current methods for video description are based on encoder-decoder sentence generation us-
ing recurrent neural networks (RNNs). Recent work has demonstrated the advantages of
integrating temporal attention mechanisms into these models, in which the decoder network
predicts each word in the description by selectively giving more weight to encoded features
from specific time frames. Such methods typically use two different types of features: image
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tion model), combined by naive concatenation in the model input. Because different feature
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in addition to the image and motion features. To fuse these three modalities, we introduce a
multimodal attention model that can selectively utilize features from different modalities for
each word in the output description. Combining our new multimodal attention model with
standard temporal attention outperforms state-of-the-art methods on two standard datasets:
YouTube2Text and MSR-VTT.
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Abstract

Current methods for video description are based on
encoder-decoder sentence generation using recurrent neu-
ral networks (RNNs). Recent work has demonstrated the
advantages of integrating temporal attention mechanisms
into these models, in which the decoder network predicts
each word in the description by selectively giving more
weight to encoded features from specific time frames. Such
methods typically use two different types of features: im-
age features (from an object classification model), and mo-
tion features (from an action recognition model), combined
by naı̈ve concatenation in the model input. Because dif-
ferent feature modalities may carry task-relevant informa-
tion at different times, fusing them by naı̈ve concatena-
tion may limit the model’s ability to dynamically determine
the relevance of each type of feature to different parts of
the description. In this paper, we incorporate audio fea-
tures in addition to the image and motion features. To fuse
these three modalities, we introduce a multimodal atten-
tion model that can selectively utilize features from different
modalities for each word in the output description. Com-
bining our new multimodal attention model with standard
temporal attention outperforms state-of-the-art methods on
two standard datasets: YouTube2Text and MSR-VTT.

1. Introduction

Automatic video description, also known as video caption-
ing, refers to the automatic generation of a natural lan-
guage description, such as a sentence that summarizes an
input video. Video description has widespread applications
including video retrieval, automatic description of home
movies or online uploaded video clips, and video descrip-
tions for the visually impaired. Moreover, developing sys-
tems that can describe videos may help us to elucidate some
key components of general machine intelligence.
Recent work in video description has demonstrated the ad-
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vantages of integrating temporal attention mechanisms into
encoder-decoder neural networks, in which the decoder net-
work predicts each word in the description by selectively
giving more weight to encoded features from different times
in the video. Typically, two different types of features are
used: image features (learned from an object classification
task), and motion features (learned from an action recogni-
tion task). These are combined by naı̈ve concatenation in
the input to the video description model. Because differ-
ent feature modalities may carry task-relevant information
at different times, fusing them by naı̈ve concatenation may
limit the model’s ability to dynamically determine the rel-
evance of each type of feature to different parts of the de-
scription. In this paper, we expand the feature set to include
the audio modality, in addition to the image and motion fea-
tures.

In this work, we propose a new use of attention: to fuse in-
formation across different modalities. Here we use modality
loosely to refer to different types of features derived from
the video, such as appearance, motion, or depth, as well as
features from different sensors such as video and audio fea-
tures. Different modalities of input may be important for
selecting each word in the description. For example, the
description “A boy is standing on a hill” refers to objects
and their relations. In contrast, “A boy is jumping on a hill”
may rely on motion features to determine the action. “A boy
is listening to airplanes flying overhead” may require audio
features to recognize the airplanes, if they do not appear
in the video. Not only do the relevant modalities change
from sentence to sentence, but also from word to word, as
we move from action words that describe motion to nouns
that define object types. Attention to the appropriate modal-
ities, as a function of the context, may help with choosing
the right words for the video description. Often features
from different modalities can be complementary, in that ei-
ther can provide reliable cues at different times for some
aspect of a scene. Multimodal fusion is thus an important
longstanding strategy for robustness. However, optimally
combining information requires estimating the reliability of
each modality, which remains a challenging problem.
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A longstanding area of research addresses how to effec-
tively combine information from multiple modalities for
machine perception tasks [10]. Previous methods typically
used stream weights (e.g., [8]) or Bayesian adaptation ap-
proaches (e.g., [21]). As far as we know, our approach is the
first to fuse multimodal information using attention between
modalities in a neural network. Our method dynamically
adjusts the relative importance of each modality to generate
better descriptions. The benefits of attentional multimodal
fusion include: (1) the modalities that are most helpful to
discriminate each word in the description can dynamically
receive a stronger weight, and (2) the network can detect
interference (e.g., noise) and other sources of uncertainty in
each modality and dynamically down-weight the modalities
that are less certain. Not only does our proposed method
achieve these benefits, but it does so using a model that can
be discriminatively trained end-to-end.
In this work, we present results of video description on two
large datasets: YouTube2Text and the subset of MSR-VTT
that was still available at the time of the experiments. We
show that combining our new multimodal attention model
with temporal attention outperforms state-of-the-art meth-
ods, which are based on temporal attention alone.

2. Related Work
Sentence generation using an encoder-decoder architecture
was originally used for neural machine translation (NMT),
in which sentences in a source language are converted into
sentences in a target language [30, 5]. In this paradigm,
the encoder takes an input sentence in the source language
and maps it to a fixed-length feature vector in an embed-
ding space. The decoder uses this feature vector as input
to generate a sentence in the target language. However, the
fixed length of the feature vector limited performance, par-
ticularly on long input sentences, so [1] proposed to encode
the input sentence as a sequence of feature vectors. They
employed a recurrent neural network (RNN)-based soft at-
tention model that enables the decoder to pay attention to
features derived from specific words of the input sentence
when generating each output word. The encoder-decoder
based sequence to sequence framework has been applied not
only to machine translation but also to other application ar-
eas including speech recognition [2], image captioning [30],
and dialog management [19].
In image captioning, the input is a single image, and the
output is a natural-language description. Recent work on
RNN-based image captioning includes [20, 30]. To im-
prove performance, [33] added an attention mechanism, to
enable focusing on specific parts of the image when gener-
ating each word of the description. Encoder-decoder net-
works have also been applied to the task of video descrip-
tion [29]. In this task, the inputs to the encoder network
are video information features that may include static im-

age features extracted using convolutional neural networks
(CNNs), temporal dynamics of videos extracted using spa-
tiotemporal 3D CNNs [27], dense trajectories [31], optical
flow, and audio features [15]. From the encoder outputs,
the decoder network generates word sequences using recur-
rent neural networks (RNNs) with long short-term mem-
ory (LSTM) units [11] or gated recurrent units (GRUs) [4].
Such systems can be trained end-to-end using videos la-
beled with text descriptions.
One inherent problem in video description is that the se-
quence of video features and the sequence of words in the
description are not synchronized. In fact, the order in which
objects and actions appear over time in the video may be
different from their order in the sentence. When choosing
the right words to describe something, the features that di-
rectly correspond to that object or action are most relevant,
and other features may be a source of clutter. It may be
possible for an LSTM to learn to selectively encode dif-
ferent objects into its latent features and remember them
until they are retrieved. However, attention mechanisms
have been used to boost the network’s ability to retrieve
the relevant features from the corresponding parts of the in-
put, in applications such as machine translation [1], speech
recognition [2], image captioning [33], and dialog manage-
ment [14]. In recent work, these attention mechanisms have
been applied to video description [34, 35]. Whereas in im-
age captioning the attention is spatial (attending to specific
regions of the image), in video description the attention may
be temporal (attending to specific time frames of the video)
in addition to (or instead of) spatial.
We first described the proposed method in an arXiv pa-
per [12]. In this paper, we expand upon [4] by testing on an
additional dataset and precisely analyzing the significance
of the improvements due to our method. The approach we
describe here is not limited to the modalities of video and
audio. It could also be applied to other types of sources,
such as text for machine translation and summarization, or
to information from multiple sensors to predict user status
(e.g., driver confusion) [13]. In this work, we tested our at-
tentional multimodal fusion using MSR-VTT and precisely
analyzed significance of improvements.

2.1. Encoder-Decoder-Based Sentence Generator

One basic approach to video description is based on
sequence-to-sequence learning. The input sequence (image
sequence) is first encoded to a fixed-dimensional semantic
vector. Then the output sequence (word sequence) is gener-
ated from the semantic vector. In this case, both the encoder
and the decoder (sentence generator) are usually modeled as
Long Short-Term Memory (LSTM) networks.
Given a sequence of images, X = x1, x2, . . . , xL, each im-
age is first fed to a feature extractor, which can be a pre-
trained CNN for an image or video classification task such



as GoogLeNet [18], VGG-16 [24], or C3D [27]. The se-
quence of image features, X ′ = x′1, x

′
2, . . . , x

′
L, is obtained

by extracting the activation vector of a fully-connected layer
of the CNN for each input image.1 The sequence of feature
vectors is then fed to the LSTM encoder, and the hidden
state of the LSTM is given by

ht = LSTM(ht−1, x
′
t;λE), (1)

where LSTM(h, x;λ) represents an LSTM function of hid-
den and input vectors h and x, which is computed with pa-
rameters λ. In Eq. (1), λE denotes the encoder’s parame-
ters.
The decoder predicts the next word iteratively beginning
with the start-of-sentence token, <sos>, until it predicts the
end-of-sentence token, <eos>. Given decoder state si−1,
the decoder network λD infers the next word probability
distribution as

P (y|si−1) = softmax
(
W (λD)
s si−1 + b(λD)

s

)
, (2)

and generates the word yi that has the highest probability
according to

yi = argmax
y∈V

P (y|si−1), (3)

where V denotes the vocabulary. The decoder state is up-
dated using the LSTM network of the decoder as

si = LSTM(si−1, y
′
i;λD), (4)

where y′i is a word-embedding vector of ym, and the initial
state s0 is obtained from the final encoder state hL and y′0 =
Embed(<sos>).
In the training phase, Y = y1, . . . , yM is given as the ref-
erence. However, in the test phase, the best word sequence
needs to be found based on

Ŷ = argmax
Y ∈V ∗

P (Y |X)

= argmax
y1,...,yM∈V ∗

P (y1|s0)P (y2|s1) · · ·

P (yM |sM−1)P (<eos>|sM ). (5)

Accordingly, we use a beam search in the test phase to keep
multiple states and hypotheses with the highest cumulative
probabilities at eachmth step, and select the best hypothesis
from those having reached the end-of-sentence token.

2.2. Attention-Based Sentence Generator

Another approach to video description is an attention-based
sequence generator [6], which enables the network to em-
phasize features from specific times or spatial regions de-
pending on the current context, enabling the next word to be

1In the case of C3D, multiple images are fed to the network at once to
capture dynamic features in the video.
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Figure 1. An encoder-decoder based sentence generator with tem-
poral attention mechanism.

predicted more accurately. Compared to the basic approach
described in Section 2.1, the attention-based generator can
exploit input features selectively according to the input and
output contexts. The efficacy of attention models has been
shown in many tasks such as machine translation [1].
Figure 1 shows an example of the attention-based sentence
generator from video, which has a temporal attention mech-
anism over the input image sequence.
The input sequence of feature vectors is obtained using one
or more feature extractors. Generally, attention-based gen-
erators employ an encoder based on a bidirectional LSTM
(BLSTM) or Gated Recurrent Units (GRU) to further con-
vert the feature vector sequence so that each vector con-
tains its contextual information. In video description tasks,
however, CNN-based features are often used directly, or one
more feed-forward layer is added to reduce the dimension-
ality.
If we use an BLSTM encoder following the feature extrac-
tion, then the activation vectors (i.e., encoder states) are ob-
tained as

ht =

[
h
(f)
t

h
(b)
t

]
, (6)

where h(f)t and h(b)t are the forward and backward hidden
activation vectors:

h
(f)
t = LSTM(h

(f)
t−1, x

′
t;λ

(f)
E ) (7)

h
(b)
t = LSTM(h

(b)
t+1, x

′
t;λ

(b)
E ). (8)

If we use a feed-forward layer, then the activation vector is
calculated as

ht = tanh(Wpx
′
t + bp), (9)

where Wp is a weight matrix and bp is a bias vector. If we
use the CNN features directly, then we assume ht = x′t.
The attention mechanism is realized by using attention
weights to the hidden activation vectors throughout the in-



put sequence. These weights enable the network to empha-
size features from those time steps that are most important
for predicting the next output word.
Let αi,t be an attention weight between the ith output word
and the tth input feature vector. For the ith output, the vec-
tor representing the relevant content of the input sequence
is obtained as a weighted sum of hidden unit activation vec-
tors:

ci =

L∑
t=1

αi,tht. (10)

The decoder network is an Attention-based Recurrent Se-
quence Generator (ARSG) [1][6] that generates an output
label sequence with content vectors ci. The network also
has an LSTM decoder network, where the decoder state can
be updated in the same way as Equation (4).
Then, the output label probability is computed as

P (y|si−1, ci) = softmax
(
W (λD)
s si−1 +W (λD)

c ci + b(λD)
s

)
,

(11)
and word yi is generated according to

yi = argmax
y∈V

P (y|si−1, ci). (12)

In contrast to Equations (2) and (3) of the basic encoder-
decoder, the probability distribution is conditioned on the
content vector ci, which emphasizes specific features that
are most relant to predicting each subsequent word. One
more feed-forward layer can be inserted before the softmax
layer. In this case, the probabilities are computed as fol-
lows:

gi = tanh
(
W (λD)
s si−1 +W (λD)

c ci + b(λD)
s

)
, (13)

and

P (y|si−1, ci) = softmax(W (λD)
g gi + b(λD)

g ). (14)

The attention weights are computed in the same manner as
in [1]:

αi,t =
exp(ei,t)∑L
τ=1 exp(ei,τ )

(15)

and
ei,t = wᵀ

A tanh(WAsi−1 + VAht + bA), (16)

whereWA and VA are matrices, wA and bA are vectors, and
ei,t is a scalar.

3. Attention-Based Multimodal Fusion
We propose an attention model to handle fusion of multi-
ple modalities, where each modality has its own sequence
of feature vectors. For video description, multimodal in-
puts such as image features, motion features, and audio fea-
tures are available. Furthermore, combinations of multiple
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Figure 2. Naı̈ve Fusion of multimodal features.
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Figure 3. Our Attentional Fusion of multimodal features.

features from different feature extraction methods are often
effective to improve the accuracy of descriptions.
In [35], content vectors from VGG-16 (image features) and
C3D (spatiotemporal motion features) are combined into
one vector, which is used to predict the next word. This
is performed in the fusion layer, in which the following ac-
tivation vector is computed instead of Eq. (13):

gi = tanh
(
W (λD)
s si−1 + di + b(λD)

s

)
, (17)

where
di =W

(λD)
c1 c1,i +W

(λD)
c2 c2,i, (18)

and c1,i and c2,i are two feature vectors obtained using
different feature extractors and/or different input modal-
ities. Figure 2 illustrates this approach, which we call
Naı̈ve Fusion, in which multimodal feature vectors are com-
bined using one projection matrix Wc1 for the first modal-
ity (input sequence x11, . . . , x1L), and a different projec-
tion matrix Wc2 for the second modality (input sequence
x′21, . . . , x2L′ ).
However, these feature vectors are combined in the sen-
tence generation step with projection matrices Wc1 and



Wc2, which do not depend on time. Consequently, for each
modality (or each feature type), all of the feature vectors
from that modality are given the same weight during fusion,
independent of the decoder state. Note that Naı̈ve Fusion is
a type of late fusion, because the inherent difference in sam-
pling rate of the three feature streams precludes early fusion
(concatenation of input features). The Naı̈ve Fusion archi-
tecture lacks the ability to exploit multiple types of features
effectively, because it does not allow the relative weights of
each modality (of each feature type) to change based on the
context of each word in the sentence.
Our proposed method extends the attention mechanism to
multimodal fusion. We call it attentional fusion, or mul-
timodal attention. In our model, based on the current de-
coder state, the decoder network can selectively attend to
specific modalities of input (or specific feature types) to
predict the next word. Let K be the number of modalities,
i.e., the number of sequences of input feature vectors. Our
attention-based feature fusion is performed using

gi = tanh

(
W (λD)
s si−1 +

K∑
k=1

βk,idk,i + b(λD)
s

)
, (19)

where
dk,i =W

(λD)
ck ck,i + b

(λD)
ck . (20)

The multimodal attention weights βk,i are obtained in a
similar way to the temporal attention mechanism:

βk,i =
exp(vk,i)∑K
κ=1 exp(vκ,i)

, (21)

where

vk,i = wᵀ
B tanh(WBsi−1 + VBkck,i + bBk), (22)

where WB and VBk are matrices, wB and bBk are vectors,
and vk,i is a scalar.
Figure 3 shows the architecture of our sentence generator,
including the multimodal attention mechanism. Unlike in
the Naı̈ve multimodal fusion method shown in Figure 2, in
our method (shown in Figure 3) the multimodal attention
weights can change according to the decoder state and the
feature vectors. This enables the decoder network to attend
to a different set of features and/or modalities when predict-
ing each subsequent word in the description.

4. Experiments
4.1. Datasets

We evaluated our proposed feature fusion using the
YouTube2Text [9] and MSR-VTT [32] video datasets.
YouTube2Text has 1,970 video clips with multiple natural
language descriptions. There are 80,839 sentences in total,
with about 41 annotated sentences per clip. Each sentence

on average contains about 8 words. The words contained in
all the sentences constitute a vocabulary of 13,010 unique
lexical entries. The dataset is open-domain and covers a
wide range of topics including sports, animals, and music.
Following [38], we split the dataset into a training set of
1,200 video clips, a validation set of 100 clips, and a test set
consisting of the remaining 670 clips.
MSR-VTT [32] consists of 10,000 web video clips with
41.2 hours and 200,000 clip-sentence pairs in total, cover-
ing a comprehensive list of 20 categories and a wide variety
of video content. Each clip was annotated with about 20
natural sentences. The dataset is split into training, valida-
tion, and testing sets of 65%, 5%, 30%, corresponding to
6,513, 497, and 2,990 clips respectively. However, because
the video clips are hosted on YouTube, some of the MSR-
VTT videos have been removed due to content or copy-
right issues. At the time we downloaded the videos (Febru-
ary 2017), approximately 12% were unavailable. Thus, we
trained and tested our approach using just the subset of
the MSR-VTT dataset that were available, which consist of
5,763, 419, and 2,616 clips for train, validation, and test
respectively.

4.2. Video Processing

The image data are extracted from each video clip at
24 frames per second and rescaled to 224×224-pixel im-
ages. For extracting image features, we use a VGG-16
network [24] that was pretrained on the ImageNet dataset
[17]. The hidden activation vectors of fully connected layer
fc7 are used for the image features, which produces a se-
quence of 4096-dimensional feature vectors. To model
motion and short-term spatiotemporal activity, we use the
pretrained C3D [27] (which was trained on the Sports-1M
dataset [16]). The C3D network reads sequential frames
in the video and outputs a fixed-length feature vector ev-
ery 16 frames. We extracted activation vectors from fully-
connected layer fc6-1.

4.3. Audio Processing

Unlike previous methods that use the YouTube2Text dataset
[34, 22, 35], we additionally incorporate audio features.
Since the packaged YouTube2Text dataset does not include
the audio from the YouTube videos, we extracted the audio
data via the original video URLs. Although some of the
videos were no longer available on YouTube, we were able
to collect audio data for 1,649 video clips, which is 84%
of the dataset. The 44 kHz-sampled audio data are down-
sampled to 16 kHz, and mel-frequency cepstral coefficients
(MFCCs) are extracted from each 50 ms time window with
25 ms shift. The sequence of 13-dimensional MFCC fea-
tures are then concatenated into one vector for every group
of 20 consecutive frames, resulting in a sequence of 260-
dimensional vectors. The MFCC features are normalized so



Table 1. Evaluation results on the YouTube2Text test set. The top three rows of the upper table present results of previous state-of-the-art
methods for YouTube2Text, which use only only visual features and only temporal attention. The rest of the tables show results from our
own implementations. Naı̈ve Fusion indicates the conventional approach using temporal attention only (see Figure 2). Attentional Fusion
is our proposed Modal-attention approach (see Figure 3). The symbol (V) denotes methods that only use the visual modalities (image
features and spatiotemporal features). The symbol (AV) denotes our methods that use all three modalities (audio features as well as the two
types of video features. Our baseline method “Naı̈ve Fusion (V)” is very similar to the approach of [35]. In the second table, we evaluate
our methods on the subset of the YouTube2Text videos whose audio is not obscured by overdubbed music.

YouTube2Text Full Dataset
Modalities (feature types) Evaluation metric

Method Attention Image Spatiotemporal Audio BLEU4 METEOR CIDEr
LSTM-E [22] VGG-16 C3D 0.453 0.310 –

TA [34] Temporal GoogLeNet 3D CNN 0.419 0.296 0.517
h-RNN [35] Temporal VGG-16 C3D 0.499 0.326 0.658

Naı̈ve Fusion (V) Temporal VGG-16 C3D 0.515 0.313 0.659
Naı̈ve Fusion (AV) Temporal VGG-16 C3D MFCC 0.506 0.309 0.637

Attentional Fusion (V) Temporal & Multimodal VGG-16 C3D 0.524 0.320 0.688
Attentional Fusion (AV) Temporal & Multimodal VGG-16 C3D MFCC 0.539 0.322 0.674

YouTube2Text Subset without Overdubbed Music
Naı̈ve Fusion (V) Temporal VGG-16 C3D 0.527 0.333 0.695

Naı̈ve Fusion (AV) Temporal VGG-16 C3D MFCC 0.534 0.331 0.695
Attentional Fusion (V) Temporal & Multimodal VGG-16 C3D 0.549 0.342 0.704

Attentional Fusion (AV) Temporal & Multimodal VGG-16 C3D MFCC 0.568 0.343 0.724

Table 2. Evaluation results on MSR-VTT Subset. Approximately 12% of the MSR-VTT videos have been removed from YouTube, so we
train and test on the remaining Subset of MSR-VTT videos that we were able to download. We cannot directly compare with the results
in [32], because they used the full MSR-VTT dataset. Our Naı̈ve Fusion (V) baseline method is extremely similar to the method of [32],
so it may be viewed as our implementation of their method using the available subset of the MSR-VTT dataset.

MSR-VTT Subset
Modalities (feature types) Evaluation metric

Fusion method Attention Image Spatiotemporal Audio BLEU4 METEOR CIDEr
Naı̈ve Fusion (V) Temporal VGG-16 C3D 0.379 0.242 0.379

Naı̈ve Fusion (AV) Temporal VGG-16 C3D MFCC 0.376 0.240 0.332
Attentional Fusion (V) Temporal & Multimodal VGG-16 C3D 0.394 0.257 0.404

Attentional Fusion (AV) Temporal & Multimodal VGG-16 C3D MFCC 0.397 0.255 0.400

that the mean and variance vectors are 0 and 1 in the train-
ing set. The validation and test sets are also adjusted using
the original mean and variance vectors from the training set.
Unlike for the image features, we apply a BLSTM encoder
network for MFCC features, which is trained jointly with
the decoder network. If audio data are not available for a
video clip, then we feed in a sequence of dummy MFCC
features, which is simply a sequence of zero vectors.

4.4. Experimental Setup

The similarity between ground truth (human-generated)
and automatic video description results is evaluated using
two metrics that were motivated by machine translation,
BLEU [23] and METEOR [7], as well as a newly proposed
metric for image description, CIDEr [28]. We used the pub-
licly available evaluation script prepared for the image cap-
tioning challenge [3]. Each video in YouTube2Text has
multiple “ground-truth” descriptions, but some “ground-

truth” answers are incorrect. Since BLEU and METEOR
scores for a video do not consider frequency of words in
the ground truth, they can be strongly affected by one in-
correct ground-truth description. METEOR is even more
susceptible, since it also accepts paraphrases of incorrect
ground-truth words. In contrast, CIDEr is a voting-based
metric that is robust to errors in ground truth.

The caption generation model, i.e. the decoder network,
is trained to minimize the cross entropy criterion using the
training set. Image features are fed to the decoder network
through one projection layer of 512 units, while audio fea-
tures, i.e. MFCCs, are fed to the BLSTM encoder followed
by the decoder network. The encoder network has one pro-
jection layer of 512 units and bidirectional LSTM layers of
512 cells. The decoder network has one LSTM layer with
512 cells. Each word is embedded to a 256-dimensional
vector when it is fed to the LSTM layer. We compared the
AdaDelta optimizer [36] and RMSprop [25] to update the



Table 3. Sample video description results on YouTube2Text. The first row of descriptions were generated by a unimodal system with only
image features (VGG-16) and temporal attention. The other model names are the same as in Table 1.

Sample Image
Unimodal (VGG-16) a monkey is running a man is slicing a potato a woman is riding a horse a man is singing

Naı̈ve Fusion (V) a dog is playing a woman is cutting an onion a girl is riding a horse a man is singing
Naı̈ve Fusion (AV) a monkey is running a woman is peeling an onion a girl is riding a horse a man is playing a guitar

Attentional Fusion (V) a monkey is pulling a dogs tail a man is slicing a potato a man is riding a horse a man is playing a guitar
Attentional Fusion (AV) a monkey is playing a woman is peeling an onion a girl is riding a horse a man is playing a violin

Discussion
Attentional Fusion (V) (i.e.,
Multimodal attention on vi-
sual features) worked best.

Our inclusion of audio fea-
tures enabled the “peeling”
action to be identified.

Attentional fusion is best.
Audio hurts performance
due to overdubbed music.

Both audio features and
multimodal attention are
needed to identify ”violin”.

parameters, which is widely used for optimizing attention
models. In this video description task, we used L2 regular-
ization for all experimental conditions and compared RM-
Sprop and AdaDelta. RMSprop outperformed AdadDelta
for all experimental conditions, so we reporte the results
using RMSprop in Tables 1 and 2. The LSTM and attention
models were implemented using Chainer [26].

5. Results and Discussion

Tables 1 and 2 show the evaluation results on the
YouTube2Text and MSR-VTT Subset datasets. On each
dataset, we compare the performance of our multimodal at-
tention model (Attentional Fusion), which integrates tem-
poral and multimodal attention mechanisms, to a naı̈ve ad-
ditive multimodal fusion (Naı̈ve Fusion). We test versions
of our system that use only visual (image and spatiotempo-
ral) features “(V)”, and versions that additionally use au-
dio features “(AV)”. Our baseline system is the “Naı̈ve
Fusion (V)” method that uses only temporal attention and
only visual features (no audio). This baseline is extremely
similar to the methods used in [35] and [32], which are the
current state-of-the-art methods on the two datasets.
The results demonstrate the effectiveness of our proposed
model. In Table 1, the proposed methods outperform the
previously published results in all but one evaluation metric
of one previous method. In both Tables 1 and 2, our pro-
posed methods outperform the “Naı̈ve Fusion (V)” base-
line, which is our implementation of the state-of-the-art
methods [35] and [32]. Furthermore, our proposed Atten-
tional Fusion model outperforms the corresponding Naı̈ve
Fusion model, both with audio features (AV) and without
audio features (V), on both datasets. These results clearly
demonstrate the benefits of our proposed multimodal atten-
tion model. Table 3 shows generated descriptions for four
example videos from the YouTube2Text data set. These and
more examples, including the original videos with sound,
are in the supplementary material.

5.1. Significance of Improvements

To understand performance improvements via the metrics,
we measured the relative improvement in performance, de-
fined as P =

(
Proposed − Baseline

)
/Baseline, where

Proposed is the score for Attentional Fusion (AV), and
Baseline refers to Naı̈ve Fusion (AV). The relative improve-
ments P for all metrics on the YouTube2Text Full Dataset
and MSR-VTT Subset are shown in part (A) of Table 4. The
use of relative scores highlights the significance of the im-
provements due to Attentional Fusion. In addition, to estab-
lish an upper bound related to human performance, we eval-
uated inter-rater reliability of the human captions in leave-
one-out fashion: we compared each reference sentence for
each video to the remaining set of reference sentences for
that video, using all three metrics. The mean of these “Hu-
man” scores are shown in part (B) of Table 4. Our scores are
quite close to this inter-rater reliability upper bound. Fur-
thermore, our model scores significantly close the gap be-
tween the baseline and this ”Human” upper bound. We can
quantify the gap in terms of the relative reduction, R, de-
fined as R = (Proposed− Baseline)/(Human− Baseline).
The relative gap reduction, R, for all metrics is shown in
part (C) of Table 4. These scores indicate that our model
makes significant progress from the baseline toward human-
level performance. Note that for BLEU4 on the MSR-VTT
Subset, both the baseline and our system are “super-human”
by this standard, so there is no gap to close. Nevertheless,
our model still outperforms the “Naı̈ve Fusion” baseline.

5.2. Impact of Audio Features

In some experiments, including audio features (AV) im-
proves performance over the corresponding visual-only (V)
case, but in other cases it does not. Including audio fea-
tures can degrade performance for some video clips because
some YouTube videos include unrelated noise that was not
in the original scene, such as overdubbed music that was
added to the video in post-production. Attentional Fusion



Table 4. Significance of Improvement by Attentional Fusion (AV)
in terms of (A) Relative Improvement, P , compared to the Naı̈ve
Fusion (AV) baseline, (B) Mean of the “Human” Scores, and
(C) Relative Gap Reduction, R, compared to the “Human” Scores.

Data set BLEU4 METEOR CIDEr
(A) Relative Improvement in Performance, P

YouTube2Text Full Dataset 6.5% 4.2% 5.8%
MSR-VTT Subset 5.6% 6.3% 20.5%

(B) Mean of the “Human” Scores
YouTube2Text Full Dataset 0.56 0.42 1.19

MSR-VTT Subset 0.34 0.30 0.50
(C) Relative Gap Reduction to Human, R

YouTube2Text Full Dataset 63% 11% 7%
MSR-VTT Subset NA 27% 40%

mitigated the degradation by the audio feature. On the other
hand, the audio feature contributed to the performance for
both Naı̈ve and Attentional fusion models.
We found the negative impact of audio features on some
evaluation metrics—i.e., cases in which (AV) methods per-
form worse than their (V) counterparts in Tables 1 and 2.
We hypothesized that this degradation due to audio fea-
tures was due to overdubbed sound that was not present in
the original scene. To test this hypothesis, we performed
an experiment in which we manually removed all of the
YouTube2Text videos in which overdubbed music obscured
the sound that was captured during filming. The subsec-
tion of Table 1 titled “YouTube2Text Subset without Over-
dubbed Music” shows the results for the remaining subset of
YouTube2Text (380 videos). The results show that whereas
the Naı̈ve fusion baseline did not make good use of the au-
dio features in these videos, our proposed Attentional Fu-
sion method does, yielding a significant score improvement
over the baseline for all metrics.

5.3. Impact of Multimodal Attention

A particular advantage of the proposed multimodal atten-
tion is that we can easily inspect the attention distribu-
tions over modalities produced by the network for each
word. Table 5 shows the average attention weights used
for each modality when generating various words, sorted
in descending order by weight. The image features, which
were trained for object classification (VGG-16 ImageNet),
are strongly selected for the words that describe generic ob-
ject types. The motion features (C3D), which were trained
to identify different sports scenes, appear to be selected
when describing objects and scenes that tend to be in mo-
tion, such as sports and vehicles. The audio features, which
were not pretrained (MFCC), overall have smaller weights
and were less strongly selected. Nevertheless, the words
with the strongest audio weights appear to be action verbs
associated with sound, such as talking, singing, and driving.
Thus the overall pattern of weights is consistent with our hy-
pothesis about the role of attention to different modalities in
selecting different types of words.

Table 5. A list of words with strong average attention weights for
each modality, obtained on the the MSR-VTT Subset using our
“Attentional Fusion (AV)” multimodal attention method.

Image Motion Audio
(VGG-16) (C3D) (MFCC)

bowl 0.9701 track 0.9887 talking 0.3435
pan 0.9426 motorcycle 0.9564 shown 0.3072
recipe 0.9209 baseball 0.9378 playing 0.2599
piece 0.9136 football 0.9275 singing 0.2465
paper 0.9098 horse 0.9212 driving 0.2284
kitchen 0.8827 soccer 0.9099 working 0.2004
toy 0.8758 basketball 0.9096 walking 0.1999
folding 0.8423 tennis 0.8958 riding 0.1900
makeup 0.8326 player 0.8720 showing 0.1836
guitar 0.7723 two 0.8345 dancing 0.1832
applying 0.7691 video 0.8237 wrestling 0.1735
food 0.7547 men 0.8198 running 0.1689
making 0.7470 running 0.7680 applying 0.1664
cooking 0.7464 wrestling 0.7462 cooking 0.1646
working 0.6837 people 0.7374 making 0.1636
showing 0.6229 stroller 0.7314 characters 0.1245
computer 0.5837 game 0.7293 folding 0.1079
band 0.5791 group 0.7205 program 0.0886
cartoon 0.5728 riding 0.7133 character 0.0747
character 0.5298 girl 0.6779 something 0.0696
cat 0.5287 man 0.6761 makeup 0.0590
characters 0.4826 walking 0.6759 game 0.0525
car 0.4757 dancing 0.6703 player 0.0518
song 0.4522 stage 0.6346 tennis 0.0367
person 0.4274 table 0.6315 food 0.0313
something 0.4179 driving 0.6127 two 0.0141
woman 0.4070 dog 0.6114 men 0.0119
program 0.4025 woman 0.5905 people 0.0118
dog 0.3876 person 0.5702 stage 0.0110
table 0.3651 song 0.5463 cartoon 0.0091

6. Conclusion
We proposed a new modality-dependent attention mecha-
nism, which we call multimodal attention, for video de-
scription based on encoder-decoder sentence generation us-
ing recurrent neural networks (RNNs). In this approach,
the attention model selectively attends not just to specific
times, but to specific modalities of input such as image fea-
tures, spatiotemporal motion features, and audio features.
In addition, Attentional Fusion enables us to analyze the at-
tention weights for each word to examine how each modal-
ity contributes to each word. We evaluated our method on
the YouTube2Text and MSR-VTT datasets, achieving re-
sults that are competitive with current state-of-the-art meth-
ods that employ temporal attention models. More impor-
tantly, we demonstrate that our model incorporating multi-
modal attention as well as temporal attention outperforms
the state-of-the-art baseline models that use temporal atten-
tion alone. The attention mechanism also provides a means
for introspection in the model, in the sense that the weights
across modalities that are used in generating each word can
be used to explore what features are useful in various con-
texts. Examination of these attention weights confirms that
the focus of attention on the appropriate modality is well
aligned to the semantics of the words.
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