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Abstract
For audio source separation applications, it is common to apply a Wiener-like filtering to
a time-frequency (TF) representation of the data, such as the short-time Fourier transform
(STFT). This approach, which boils down to assigning the phase of the original mixture to
each component, is limited when sources overlap in the TF domain. In this paper, we propose
a more sophisticated version of this technique for improved phase recovery. First, we model
the sources by anisotropic Gaussian variables: this model accounts for the non-uniformity
of the phase, and then permits us to incorporate some prior information about the phase
that originates from a sinusoidal model. Then, we exploit the STFT consistency, which is
the relationship between STFT coefficients that is due to its redundancy. We derive a conju-
gate gradient algorithm for estimating the corresponding filter, called consistent anisotropic
Wiener. Experiments conducted on music pieces show that accounting for those two phase
properties outperforms each approach taken separately.
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ABSTRACT

For audio source separation applications, it is common to apply
a Wiener-like filtering to a time-frequency (TF) representation of
the data, such as the short-time Fourier transform (STFT). This ap-
proach, which boils down to assigning the phase of the original mix-
ture to each component, is limited when sources overlap in the TF
domain. In this paper, we propose a more sophisticated version of
this technique for improved phase recovery. First, we model the
sources by anisotropic Gaussian variables: this model accounts for
the non-uniformity of the phase, and then permits us to incorporate
some prior information about the phase that originates from a si-
nusoidal model. Then, we exploit the STFT consistency, which is
the relationship between STFT coefficients that is due to its redun-
dancy. We derive a conjugate gradient algorithm for estimating the
corresponding filter, called consistent anisotropic Wiener. Exper-
iments conducted on music pieces show that accounting for those
two phase properties outperforms each approach taken separately.

Index Terms— Wiener filtering, phase recovery, sinusoidal
modeling, STFT consistency, audio source separation.

1. INTRODUCTION

Audio source separation consists in extracting underlying compo-
nents called sources that add up to form an observable audio signal
called mixture. Many audio source separation techniques act in the
time-frequency (TF) domain, which reveals the particular structure
of these signals. Most techniques, such as nonnegative matrix fac-
torization (NMF) [1], are applied to nonnegative-valued represen-
tations (e.g. short-time Fourier transform (STFT) spectrograms),
because the structure of sound is more prominent in that domain.
They have shown promising for audio source separation [2, 3].

However, when it comes to resynthesizing time-domain signals,
obtaining the phase of the corresponding complex-valued STFT is
necessary [4, 5]. In the single-channel source separation frame-
work, a common practice consists in applying a Wiener-like filter-
ing [3], which boils down to assigning the phase of the mixture
to each extracted component. Such a filter, which is optimal in a
minimum mean square error (MMSE) sense, originates from the
underlying assumption that the phase is uniformly-distributed [6].
It has however been pointed out [7] that Wiener filtering fails to
provide good results when sources overlap in the TF domain, thus
highlighting the need for novel phase recovery techniques.

In this way, consistency-based approaches can be used for
phase recovery [8]. That is, a complex-valued matrix is iteratively

∗This work was partly supported by the Audiobrain project funded by
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computed in order to maximize its consistency, i.e., to bring it as
close as possible to the STFT of a time signal, as this property
is not guaranteed by phase retrieval methods in general. Some
recent works [9, 10, 11] attempted to combine Wiener filtering
and consistency-based techniques in a unified framework for audio
source separation. Consistent Wiener filtering [11] has been shown
to be the most promising candidate for this task.

Alternatively, phase recovery can be performed by using phase
models based on signal analysis. For instance, the widely used
model of mixtures of sinusoids [12] leads to explicit constraints for
phase reconstruction that are based on the relationships between ad-
jacent TF bins [13]. Such an approach has been exploited in the
phase vocoder algorithm [14] for time-stretching, speech enhance-
ment [15, 16], audio restoration [13] and source separation [17].
In [18], we introduced an anisotropic Gaussian (AG) model in
which the phase is no longer uniform, which permits us to incor-
porate some prior information about the phase that arises from a
sinusoidal model. We derived an MMSE estimator which general-
izes Wiener filtering to AG variables.

In this paper, we propose to combine those two approaches by
exploiting both a consistency constraint and some phase informa-
tion based on a signal model. We propose to address this issue by
extending the consistent Wiener filtering to the AG case. Our ap-
proach then consists in minimizing an objective cost function which
penalizes the reconstruction error in the AG model, to which is
added a regularization term which promotes consistency. This func-
tion is minimized by means of the preconditioned conjugate gradi-
ent algorithm. Experiments conducted on realistic music signals for
a vocals/accompaniment separation task show that exploiting those
two phase constraints within a unified framework outperforms both
approaches taken separately.

This paper is organized as follows. Section 2 presents the gener-
alized anisotropic Wiener filtering and details the estimation of the
sources under a consistency constraint. Section 3 experimentally
validates the potential of this method for an audio source separation
task. Finally, Section 4 draws some concluding remarks.

2. CONSISTENT ANISOTROPIC WIENER FILTERING

2.1. Anisotropic Gaussian model

Let X ∈ CF×T be the STFT of a single-channel audio signal. X is
the linear and instantaneous mixture of J sources Sj , such that for
all TF bin ft:

Xft =
∑
j

Sjft. (1)
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Since all TF bins are treated independently, we remove the indices f
and t in what follows for more clarity. We assume that each source
Sj follows a complex normal distribution: Sj ∼ N (mj , γj , cj),
where mj (resp. γj and cj) is the mean (resp. the variance and the
relation term) of Sj . The covariance matrix is defined as:

Γj =

(
γj cj
c̄j γj

)
, (2)

where z̄ denotes the complex conjugate of z. Many previous stud-
ies [3, 11, 19] model the sources as circular-symmetric (or isotropic)
variables [3] (i.e., such that mj = cj = 0), which boils down to as-
suming that the phase of each source is uniformly-distributed.

In this paper, we adopt a different standpoint, originally devel-
oped in [18]: we model the source signals by mixtures of sinusoids,
which leads to explicit relationships between the phases of adjacent
TF bins [13] and therefore to some prior phase estimate φj . We then
consider that the phases should be distributed around the values φj
with a concentration parameter κ ∈]0,+∞[. Thus, we propose to
structure the moments of the distribution as follows1:

mj = λ
√
vje

iφj , γj = (1− λ2)vj and cj = ρvje
i2φj , (3)

where λ =
I1(κ)

I0(κ)
, ρ =

I2(κ)

I0(κ)
− λ2, In is the modified Bessel

function of the first kind of order n and vj is an estimate of the
source power |Sj |2 obtained beforehand (e.g. after a preliminary
NMF [1]). The relation terms cj are non-zero in general, which
conveys the property of anisotropy of the corresponding Gaussian
distribution: this is why we refer to it as the anisotropic Gaussian
(AG) model.

The additive property of the Gaussian distribution family then
implies that X ∼ N (mX , γX , cX) = N (

∑
jmj ,

∑
j γj ,

∑
j cj),

and ΓX =
∑
j Γj .

2.2. MMSE estimation without constraint

We seek to obtain an estimator of the sources for performing
the separation task. We consider the posterior distribution of the
sources given the mixture. Due to the constraint (1), this conditional
distribution lies on a subspace of dimension J ′ = J−1 so we focus
on a subset of free variables. Without loss of generality, we consider
the first J ′ sources as free variables given the mixture and denote
them as S = [S1, ..., SJ′ ]T in each TF bin ft, where .T denotes
the transpose. It can be shown [20] that S|X follows a multivariate
complex normal distribution with mean vector µ = [µ1, ..., µJ′ ]T

such that:
µ
j

= mj + ΓjΓ
−1
X (X −mX), (4)

where x =
(
x x̄

)T . The posterior covariance matrix is:

Ξ =

Γ1 0 0

0
. . . 0

0 0 ΓJ′

−
 Γ1

...
ΓJ′

Γ−1
X

 Γ1

...
ΓJ′


T

. (5)

In particular, the posterior covariance matrix of each source is
Γ′j = Γj − ΓjΓ

−1
X Γj . Using the Woodbury identity, we obtain the

1The mathematical derivation of the moments can be obtained in [18].

precision matrix Λ defined as the inverse of the covariance matrix:

Λ = Ξ−1 =

Γ−1
1 0 0

0
. . . 0

0 0 Γ−1
J′

+

Γ−1
J . . . Γ−1

J

...
. . .

...
Γ−1
J . . . Γ−1

J

 . (6)

Therefore, the negative log-likelihood of the posterior distribution
− log p(S|X) is equal, up to an additive constant and to a positive
scale factor, to the following quadratic loss function:

Ψ(S) =
∑
ft

(Sft − µft)
HΛft(Sft − µft), (7)

where S = [S1, S̄1, ..., SJ′ , S̄J′ ]T (the notation µ is similar) and
.H denotes the conjugate transpose. Setting the gradient of Ψ in (7)
w.r.t. Sft to 0 leads to the MMSE solution: Sjft = µjft, ∀j, f, t.

2.3. Consistency constraint

When the STFT is computed using overlapping analysis windows
(which is usual in practice), it is a redundant TF representation
which implies that certain relationships must hold between its TF
coefficients. This results in the fact that not all matrices in CF×T
are the STFT of a time-domain signal. We will then say that a ma-
trix is consistent [21] if it is equal to the STFT of its inverse STFT,
or, in other words, if it belongs to Ker(F), where:

∀S ∈ CF×T , F(S) = S − STFT ◦ iSTFT(S). (8)

The Wiener filter output does not generally satisfy this constraint,
so that STFT◦ iSTFT(µ) no longer minimizes the loss function (7).

We focus on the case J = 2 (i.e., J ′ = 1). This corresponds
to many source separation applications where only 2 sources inter-
act, such as speech/noise or singing voice/musical accompaniment.
Moreover, the general case can be reduced to this special case by
considering in turn each source against all others. Since in this case
Sft reduces to S1ft, we shall remove the index j = 1 for clarity.
The cost function (7) then rewrites:

Ψ(S) =
∑
f,t

(Sft − µft)
HΛft(Sft − µft), (9)

where Λft = Γ−1
1ft + Γ−1

2ft = Γ′−1
ft . As in [11], we propose to pro-

mote consistency in the form of a soft penalty added to the cost (9),
which results in the following new objective function:

Ψδ(S) = Ψ(S) + 2δ||F(S)||2, (10)

where ||.|| denotes the Frobenius norm for matrices. The greater δ,
the more consistent the resulting source estimate will be.

We can find the complex spectrogram2 S minimizing Ψδ by set-
ting the gradient of Ψδ(S) to 0. The consistency term is identical to
that in [11], but the gradient of Ψ(S) is here slightly more involved.
To make its derivation easier to understand, it helps to consider the
whole complex spectrogram S as the equivalent vector ~S obtained
by concatenating the real and imaginary parts of all the frames of S.
The gradient of Ψ(S) can be derived with respect to the elements
of ~S, leading to an R-linear operator on ~S − ~µ, which can be refor-
mulated as an R-linear operator on S−µ. We eventually obtain the

2For convenience, we call ”complex spectrogram” any complex-valued
matrix, even if it is not the STFT of an actual signal.
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gradient of Ψ(S) w.r.t. Sft as:

∇SftΨ(S) = 4Ωft(Sft − µft), (11)

where
Ωft(y) =

1

|Γ′ft|
(γ′fty − c′ftȳ), ∀y ∈ C, (12)

and |Γ′ft| = γ′2ft−|c′ft|2. Altogether, setting the gradient of Ψδ(S)
to 0 leads to

(Ω + δF∗ ◦ F)S = Ωµ, (13)

where ∗ denotes the Hermitian adjoint and Ω is defined as the R-
linear operator that consists in independently applying Ωft to each
TF bin Yft of a complex spectrogram Y :

(ΩY )ft = Ωft(Yft), ∀Y ∈ CF×T .

SinceF is a projector, thenF◦F = F . Furthermore, if the analysis
and synthesis windows are equal up to a scaling factor (which is
generally the case in practice), then it can be shown [11] that F is
Hermitian, i.e., F∗ = F . Therefore, F∗ ◦ F = F , and the global
minimum verifies:

(Ω + δF)S = Ωµ. (14)

Drawing on [11], we propose to solve (14) with the preconditioned
conjugate gradient method [22], since the operator Ω + δF is ill-
conditioned. The preconditioner M is derived similarly to [11],
leading here at each TF bin to

(MY )ft = Ωft(Yft) + δ
FT − L
FT

Yft, (15)

where L is the time-signal length. Inverting M is slightly more
involved than in [11], where it amounted to a simple scalar multi-
plication, because Ωft(Yft) here involves both Yft and Ȳft as can
be seen in Eq. (12). A short calculation leads to

(M−1(Y ))ft =
1

ηft

{( γ′ft
|Γ′ft|

+ δ
FT − L
FT

)
Yft +

c′ft
|Γ′ft|

Ȳft

}
,

(16)

where ηft =

(
γ′ft
|Γ′ft|

+ δ
FT − L
FT

)2

−
|c′ft|2

|Γ′ft|2
.

The full procedure is summarized in Algorithm 1, and a MAT-
LAB implementation is available at [23].

3. EXPERIMENTAL EVALUATION

3.1. Dataset and protocol

We propose to experimentally assess the potential of the proposed
consistent anisotropic Wiener filtering procedure described in Algo-
rithm 1. We consider 100 music songs from the Demixing Secrets
Database (DSD100), a remastered version of the database used for
the SiSEC 2015 campaign [24]. The database is split into two sets
of 50 songs: a training set and a test set. Each song is made up
of J = 2 sources: the vocal track and the musical accompaniment
track (which may contain various instruments such as guitar, bass,
drums, piano...). The signals are sampled at Fs = 44100 Hz and
the STFT is computed with a 46 ms long Hann window and 75 %
overlap.

Two scenarios are considered: an Oracle scenario, in which the
powers v are assumed to be known (i.e., equal to the ground truth),
and an Informed scenario, in which the spectrograms are estimated
from the Oracle values by means of an NMF with Kullback-Leibler

Algorithm 1 Consistent anisotropic Wiener filtering. Note: matrix
operations are element-wise.

Inputs:
Posterior expectation µ ∈ CF×T ,
Anisotropy and consistency parameters κ ≥ 0 and δ ≥ 0,
Prior power v ∈ R2×F×T

+ and phase φ ∈ [0, 2π[2×F×T ,
Stopping criterion ε > 0.
Posterior moments
λ = I1(κ)/I0(κ), ρ = I2(κ)/I0(κ)− λ2.
γ1 = (1− λ2)v1, γ2 = (1− λ2)v2, γX = γ1 + γ2.
c1 = ρv1e

i2φ1 , c2 = ρv2e
i2φ2 , cX = c1 + c2.

γ′ = γ1 −
(
γX(γ2

1 + |c1|2)− 2γ1<(c1c̄X)
)
/(γ2

X − |cX |2),
c′ = c1 −

(
2γXγ1c1 − γ2

1cX − c21c̄X
)
/(γ2

X − |cX |2),
|Γ′| = γ′2 − |c′|2.
Preconditioned conjugate gradient
Ω as defined in Eq. (12) and M−1 as defined in Eq. (16),
S0 = µ,
R0 = −δF(S0),
P0 = M−1(R0),
ξnew = 〈R0, P0〉,
k = 0.
repeat
Qk = Ω(Pk) + δF(Pk),
αk = ξnew/〈Pk, Qk〉,
Sk+1 = Sk + αkPk,
Rk+1 = Rk − αkQk,
Zk+1 = M−1(Rk+1),
ξold = ξnew,
ξnew = 〈Rk+1, Zk+1〉,
βk = ξnew/ξold,
Pk+1 = Zk+1 + βkPk,
k = k + 1.

until α2
k−1||Pk−1||2 < ε||Sk||2

Output:
Sk ∈ CF×T .

divergence [2], which uses 100 iterations of multiplicative update
rules and a rank of factorization K = 50. Note that this is not a
fully blind scenario (it actually corresponds to the encoding stage in
an informed source separation framework [19]), but this will inform
us about the performance of the methods when the spectrograms
differ from the ground truth.

When Algorithm 1 is initialized with Wiener filtering (φ = ∠X
and κ = 0), we will refer to it as consistent Wiener filtering (CW).
When it is initialized with anisotropic Wiener filtering (AW [18]),
we will refer to it as consistent anisotropic Wiener filtering (CAW).
As in [11], the stopping criterion is chosen as ε = 10−6.

The source separation quality is measured with scale-invariant
versions [25] of the signal to distortion, interference and artifact
ratios (SDR, SIR and SAR) [26] expressed in dB.

A demonstration on an audio excerpt is available at [23].

3.2. Influence of the consistency weight

First, similarly as in [18], we study the impact of the anisotropy
parameter κ on the separation quality on the training set: the best
results in terms of SDR, SIR and SAR are obtained for κ = 1 (resp.
κ = 0.8) in the Oracle (resp. Informed) scenario.
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Scenario Method Accompaniment Singing voice Avg. number
SDR SIR SAR SDR SIR SAR of iterations

Oracle
Wiener [3] 16.7 27.2 17.2 12.1 26.7 12.3 -
CW [11] 18.4 29.5 18.8 13.9 30.3 14.0 30
AW [18] 17.5 27.9 17.9 13.0 28.0 13.1 -
CAW (proposed) 18.9 30.0 19.4 14.5 31.2 14.7 26

Informed
Wiener [3] 15.9 26.1 16.4 11.3 25.7 11.5 -
CW [11] 16.6 27.0 17.1 12.1 27.5 12.2 17
AW [18] 16.1 26.3 16.6 11.5 26.2 11.7 -
CAW (proposed) 16.8 27.1 17.3 12.2 27.8 12.4 16

Table 1: Average source separation performance for various methods on the DSD100 test dataset.
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Figure 1: Influence of the consistency parameter δ on the source
separation quality in Algorithm 1. The test is conducted in the Ora-
cle (left) and Informed (right) scenarios.

We then investigate here the influence of the consistency pa-
rameter δ on the separation quality. The results in terms of SDR
averaged over the 50 songs composing the training set are presented
in Fig. 1 (similar trends are observed for the SIR and SAR).

We observe that promoting consistency leads to improving the
separation quality over other approaches that do not account for this
property (which correspond to δ = 0), whether the magnitude val-
ues are known or estimated beforehand.

The optimal value of δ is dependent on the data, with a peak in
the SDR here at 10 in the Oracle scenario and 1 in the Informed sce-
nario. This corresponds to a trade-off between excessively promot-
ing the consistency and only accounting for the MMSE estimates.

3.3. Separation results

We now consider the 50 songs that form the test set, and set δ to
its learned optimal value. The results averaged over the dataset are
presented in Table. 1.

In the Oracle scenario, the proposed method outperforms all the
other approaches. While the AW technique leads to improving the
separation quality over the Wiener estimates, it performs slightly
worse than the CW filtering. The proposed CAW method over-
comes this limit, since it combines the potential of both AW and
CW approaches, and improves the criteria by approximately 0.5 dB
over the CW technique. In the Informed scenario, the improvement
is less significant (about 0.2 dB), which suggests that even if the
proposed phase retrieval method can improve the separation qual-
ity over the other techniques, its full potential is reached when the
power estimates are close to the ground truth.

Finally, the last column of Table 1 also indicates that CAW con-
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Figure 2: Separation quality (SDR in dB) over iterations.

verges in less iterations on average than CW. We then show in Fig. 2
the evolution over iterations of the SDR, averaged over the test set in
the Oracle scenario. For each excerpt, we run CW and CAW with-
out using the stopping criterion, for 60 iterations (by 60 iterations,
the algorithms had converged in all our experiments). We observe
that the initial AW filtering approximately leads to the same results
as 8 iterations of CW. Furthermore, 60 iterations of CW lead to a re-
sult (black solid line on the plot) that is similar to what is obtained
with only 14 iterations of CAW. This shows that this anisotropic
model, which accounts for a signal-based phase property, leads to
a faster procedure than a phase-unaware source model. Overall,
whether we look at the separation quality or the computational cost,
CAW shows some improvement over the state-of-the-art CW.

4. CONCLUSION

The consistent anisotropic Wiener filtering procedure introduced in
this paper is a promising approach for recovering the phase of the
components in a source separation framework, since it combines a
phase property that originates from signal modeling, and a consis-
tency constraint which accounts for the redundancy of the STFT.

Future work will focus on extending this procedure to the case
of more than 2 sources and to multichannel mixtures. In addition,
such a technique can be implemented in an online fashion through
a frame-by-frame processing, similarly as in some real-time imple-
mentations of the Griffin and Lim algorithm [27].
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