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Abstract

Unsupervised object modeling is important in robotics, especially for handling a large set
of objects. We present a method for unsupervised 3D object discovery, reconstruction, and
localization that exploits multiple instances of an identical object contained in a single RGB-D
image. The proposed method does not rely on segmentation, scene knowledge, or user input,
and thus is easily scalable. Our method aims to find recurrent patterns in a single RGB-D
image by utilizing appearance and geometry of the salient regions. We extract keypoints and
match them in pairs based on their descriptors. We then generate triplets of the keypoints
matching with each other using several geometric criteria to minimize false matches. The
relative poses of the matched triplets are computed and clustered to discover sets of triplet
pairs with similar relative poses. Triplets belonging to the same set are likely to belong to
the same object and are used to construct an initial object model. Detection of remaining
instances with the initial object model using RANSAC allows to further expand and refine
the model. The automatically generated object models are both compact and descriptive. We
show quantitative and qualitative results on RGB-D images with various objects including
some from the Amazon Picking Challenge. We also demonstrate the use of our method in an
object picking scenario with a robotic arm.
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Abstract

Unsupervised object modeling is important in robotics,
especially for handling a large set of objects. We present a
method for unsupervised 3D object discovery, reconstruc-
tion, and localization that exploits multiple instances of
an identical object contained in a single RGB-D image.
The proposed method does not rely on segmentation, scene
knowledge, or user input, and thus is easily scalable. Our
method aims to find recurrent patterns in a single RGB-D
image by utilizing appearance and geometry of the salient
regions. We extract keypoints and match them in pairs based
on their descriptors. We then generate triplets of the key-
points matching with each other using several geometric
criteria to minimize false matches. The relative poses of the
matched triplets are computed and clustered to discover sets
of triplet pairs with similar relative poses. Triplets belong-
ing to the same set are likely to belong to the same object
and are used to construct an initial object model. Detection
of remaining instances with the initial object model using
RANSAC allows to further expand and refine the model. The
automatically generated object models are both compact
and descriptive. We show quantitative and qualitative re-
sults on RGB-D images with various objects including some
from the Amazon Picking Challenge. We also demonstrate
the use of our method in an object picking scenario with a
robotic arm.

1. Introduction

Object model generation is crucial for robotic manipu-
lation. Typical object detection and localization methods
have a separate supervised stage where they learn and build
object models. However, the types of objects a robot needs

*Corresponding authors: {cansizoglu, taguchi}@merl.com

Figure 1: Given a single RGB-D image containing multiple in-
stances of the same object (top-left), our method automatically
discovers the object and localizes the multiple instances by group-
ing a set of features (top-right). A 3D model of the object is also
recovered by registering the features from the multiple instances
into a single coordinate system (bottom). The registered features
are denoted as red dots, overlaid on the colored 3D point cloud
of the scene. Note that some of the features appear on the miss-
ing face of this specific object instance, indicating that they are
recovered from some other object instances.

to interact with can expand and change rapidly, such as new
items arriving at a warehouse as seen in the scope of Ama-
zon Picking Challenge [1]. On the other hand, in many sit-
uations, objects appear in multiple copies. This paper ex-
ploits this fact and presents a method for discovering and
modeling an object from a single RGB-D frame in which
the object appears in multiple copies. The recurrent pat-
terns found in the single frame can be used to automatically
discover the object, and the various viewpoints of different
instances can provide valuable information for object model
generation.



Our only assumption is the existence of at least two in-
stances of an object in the single RGB-D image. We do
not use any prior knowledge about the number, shape, and
appearance of the object. Thus, the object can appear in a
cluttered scene or the image can contain multiple instances
of different objects. Our method performs on-the-fly ob-
ject model generation, while detecting and localizing the in-
stances of the reconstructed object in the given image. Thus,
it enables online robot manipulation using only a single-
shot image.

Our technique employs a sparse feature representation,
as shown in Figure 1. Therefore, the problem can be seen
as finding groups of features that correspond to different
instances of the object. To solve this grouping problem we
make use of the following information:

1. Appearance similarity: Pairs of features that come
from the same location of two instances should be sim-
ilar.

2. Geometric similarity: Two groups of features corre-
sponding to each other based on appearance similarity
should have the same in-group geometric distribution.
In other words, there exists a single transformation that
would transfer and align the positions of features in
one group to the positions of corresponding features in
the other group.

We employ the appearance and geometric constraints
jointly. Furthermore, we avoid the use of depth segmen-
tation and spatial closeness to decide whether features are
coming from the same instance, as the objects might be
touching with each other or occluding one another.

We look for recurrent patterns in the image using both
geometric and appearance similarity following the sparse
feature representation. First, we extract keypoints and
match them based on the descriptor similarity. We then find
triplets of keypoints matching with each other using several
geometric criteria, which are defined for pairs and triplets
of the matched keypoints and are invariant to the 6-degree-
of-freedom (6-DOF) transformations. Each of the matched
triplets provides a 6-DOF transformation, which is a candi-
date of the relative pose between two instances of the object,
but might be an outlier. Thus, in the second stage we clus-
ter the relative poses associated with each triplet match and
find clusters supported by many triplets. The matches that
appear in the same cluster are likely to belong to the same
pair of objects. Thus, in the third stage we generate an initial
model based on the clustering results. Lastly, the generated
model is used in a RANSAC framework in order to detect
additional instances among the remaining keypoints, which
can yield further expansion and enrichment of the generated
model. Once a model has been discovered, it can be used to
detect the corresponding object even if only one instance is
present.

1.1. Contributions

The main contributions of this paper are as follows:

e We present a method for unsupervised object discov-
ery and modeling from a single RGB-D image contain-
ing multiple instances of the same object.

e We propose an efficient grouping algorithm that gen-
erates a set of relative pose candidates using triplets of
keypoint matches and then clusters them to find each
instance of the object and their relative poses.

e We show experimental results using several objects
and demonstrate an application of our method to ob-
ject picking.

1.2. Related Work

Object discovery has been investigated using a variety of
approaches. Some are based on geometric and/or color seg-
mentation [25][16], which typically rely on strong assump-
tions of the scene or the objects (e.g., the objects are placed
on a table) and do not exploit multiple instances. Another
segmentation-based approach based on shape analysis using
compactness, symmetry, smoothness, and local and global
convexity of segments and their recurrence is proposed in
[19]. Since these methods suffer from over and under seg-
mentation, especially in scenes with a lot of clutter, they
are not suitable solutions to our problem. Other methods
gather information over time (thus they are not single-shot
approaches) [11][23] and some assume that objects will be
displaced or removed [18][24][4].

A closely related field is the detection of repetitive pat-
terns [20][26][29] in images. These methods, however, de-
pend on the organized appearance of the structure elements,
while in our case, object instances may appear in random
poses. Other related problems are co-segmentation [9] and
unsupervised detection of object categories [27].

Unsupervised detection of multiple instances of objects
in RGB images has been studied in [15][6][7][21]. These
methods also use geometric and appearance information,
which is then used for clustering or combinatorial optimiza-
tion. They operate either on matched points, or matched
pairs of points, while our method uses matched triplets.
Moreover, they use only RGB information and not depth,
and do not reconstruct a 3D model or estimate 6-DOF pose.
We compare our method with [6] in experiments.

Some object detection methods for robotics applications
have been proposed that take into account multiple object
instances. A sparse 3D object model created by using struc-
ture from motion, which requires multiple frames, is used in
[10]. This enables the detection and pose estimation of mul-
tiple object instances in an RGB image. Similarly, in [17], a
sparse 3D model is first manually created from multiple im-
ages, after which they detect the model using a stereo cam-
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Figure 2: Two surface points m; and their normals n; determine a
point pair feature.

era system. Note that these systems require one to build a
model first, while ours does not.

2. Method

The goal of this work is to discover, model, and localize
an object in a scene without any prior knowledge. The input
is a single RGB-D frame, including a color (or grayscale)
image and a depth map of the scene. We use sparse 3D fea-
ture points throughout our pipeline, and thus ignore pixels
that have invalid depth measurements.

Our method consists of four main steps. In the first step,
we extract keypoints and generate triplet matches based on
the descriptor similarity and several geometric criteria that
are invariant to the 6-DOF transformations. Second, we
cluster triplet matches based on their relative poses as we
expect to see geometric similarity among groups of fea-
tures. Third, we generate an initial model using the clus-
tering results. At the fourth step, the initial model is used
to detect additional object instances in the remaining set of
features that have been considered outliers in the clustering
step, which can further enhance the object model. Each of
the four steps is detailed in the following subsections.

2.1. Matching Triplets of Keypoints

In the first step, our goal is to generate triplets of key-
point matches, each of which provides a candidate of the
relative pose between two instances of the object. We use
SIFT [22] to detect and describe keypoints. This results in
a set of N keypoints that have valid depth measurements.
Every keypoint in this set is compared to all others to find
its most similar keypoint. The similarity measure used is
the Euclidean distance between the 128 dimensional feature
descriptors. We also threshold the Euclidean distance such
that we maintain M < N keypoint matches for the following
processes.

Based on appearance similarity, we expect that two in-
stances of an object have similar keypoints. However, the
single keypoint matches are not robust enough, include
many outliers, and do not provide the relative pose between
the two instances. Thus triplets of keypoint matches are

used to be robust to outliers and to obtain the relative pose
using three 3D point registration [28]. For each combina-
tion of three keypoint matches, we need to consider cases
where matches are reversed except for symmetric cases (we
thus keep 4 out of 8 candidates). This results in a total of
4 M) _ 2M(M-1)(M-2)
3 3

correct triplets based on the following geometric criteria in-
variant to the 6-DOF transformations:

possible triplets. We try to select

e Point pair feature similarity: Point pair features
[13][8][3] describe the relative position and orienta-
tion of points on the surface of an object (Figure 2).
For two points m; and my with normals n; and ny,
with d = my — m; the feature F is

F(ml ,mz) = (HdH’l(nl 7d)’ Z(l’lz,d), Z(l’l[ 7n2)>7

ey
where Z(a,b) € [0 ] denotes the angle between
two vectors. Let 1; and l, be keypoints matching
with m; and m, respectively. We compute the dif-
ference of point pair features between the matches
as F(m;,m;) — F(l;,1,) and apply distance and angle
thresholds to the calculated difference to filter out in-
correct correspondences.

e Sidedness: We check whether the third point of the
triplet falls on the same side of the line defined by
the other two points to avoid reflections [15]. For the
triplet P, let us denote the cross product of the edges d;
and d; as v; j(P) = d; x d;. We discard a triplet match
if any of the two corresponding v vectors are in oppo-
site directions, i.e., discard the triplet match between P

TR vi,j(P) vi,j(Q)
and Q, if 3i, j such that 2l + o ‘

[[vi( [[vis

<E.

e Minimum triangle edge length and maximum acute-
ness: To ensure the found corresponding triangles will
yield sufficiently accurate transformation estimations,
triangles generated with closely located keypoints are
removed. This is done using a minimum triangle edge
length and maximum angle acuteness threshold.

e Overlapping triangles: We omit the triplet match if
the two triangles are overlapping, as they would more
likely be coming from the same instance.

Since the point pair feature similarity can be computed for
pairs of keypoint matches, we first use this criterion for ef-
ficient pruning of incorrect pairs and then use the other cri-
teria for selecting correct triplets. Also, in order to get a
balanced distribution of keypoints among triplet matches, a
keypoint can appear at most L times in the generated triplet
matches. The thresholds and parameters used in this study
are given in Section 3.



2.2. Clustering

For each of the triplets obtained in the first step, a 6-DOF
pose that transforms the triangle to its corresponding trian-
gle is estimated. Let P = (p1,p2,p3) and O = (q1,q2,q3)
denote two matching triangles where p;,q; € R3 are 3D po-
sitions of the keypoints. The calculation of the pose results
in the transformation T} € SE(3) that consists of a rotation
matrix R € SO(3) and a translation vector t € R? such that
q; = Tp q(pi) = Rp; +t. These transformations are clus-
tered using the DBScan [14] algorithm to discover sets of
triplets with similar transformations. DBScan is a density
based clustering method, which only requires a single input
parameter for the maximum distance between two instances
that are allowed to be clustered together. During clustering,
we exploit sum of 3D point-to-point distances as the dis-
tance between two triplets. For symmetry, the distance is
computed bidirectionally. Thus, the distance between two
matching triplets (P,Q) and (A, B) based on the respective
transformations Ty q and Ty is

D((P,Q),(A,B)) = Z [ Tp.q(a;) —bil| + Z Tap(Pi) — qil-
)

The output of clustering can contain the same pair of in-
stances in two different clusters with associated poses as
inverse of each other. Hence, if such clusters are found, one
of them is inverted and the clusters are merged. The trans-
formation for each cluster is then recalculated considering
all sets of corresponding triplets in the cluster.

2.3. Initial Model Creation

The clustering procedure results in sets of points that be-
long to the same object instance and are matched to another
object instance. In other words, each cluster can be seen as
two sets of points, where one set can be aligned with the
other set using the transformation of the cluster. Some of
these sets may have keypoints in common with other sets.
Thus, the clustering result can be represented as a graph
where nodes correspond to sets of points and edges corre-
spond to the distance between sets based on the transfor-
mation of the cluster associating the two sets (Figure 3). If
two sets have points in common, then the transformation
between them is identity and the connecting edge is set to
have a small preset weight &.

The resulting graph can have multiple connected com-
ponents, since the scene can contain multiple instances of
various types of objects. In order to create a model for each
connected component, we first decide which node will be
the reference frame where all sets will be transformed to.
We pick the node representing the set of points with the
largest number of matches and common points as the ref-
erence. All other sets of points that are connected to it are
transformed to the reference frame by applying a series of

b

Figure 3: An overlay shows the graph representing clustered sets
of points (vertices) and their relations (edges). Note there are two
types of relations between sets of points: sets that are clustered
together because they contain similar triplets, and sets that are
connected because they have points in common. The edges rep-
resenting matched triangles have a label showing the distance (the
distance error obtained with the transformation between them).

transformations. The optimal series of transformations for
every set is found by searching for the shortest path to the
reference frame using Dijkstra’s algorithm [12].

The 3D object model consists of all points transformed
to this common reference frame, and associated with their
original keypoint descriptors. This process generates an
object model for each connected component in the graph,
hence it might yield multiple models, each containing
points from all sets connected to their reference set. For
each generated model, we apply a final bundle adjustment
to refine landmark locations and instance poses.

2.4. Additional Instance Detection

After creating a set of object models, every model is
compared to all others to verify whether they truly are dis-
tinct objects, or whether their correspondence was sim-
ply missed by the earlier steps (this is possible because
we enforce a unique match between keypoints in our first
step, instead of considering all possible matches). For each
model, we perform detection between the model and the
sets of points from the other connected components of the
graph. This is performed by a correspondence search via
descriptor similarity and a geometric verification by a 3-
point RANSAC registration.

We also try to detect any remaining instances that had
not been matched before. We use the remaining keypoints
that are not associated with any of the nodes in the graph
to avoid matching the model to the previously detected in-
stances. In the RANSAC registration, we sample three
scene points so that they are within the diameter of the



#1img (pair) #img (>2) #img (total)
Sez 54 29 83
Sq 57 0 57
M., 49 3 52
My 30 12 42
190 44 234

Table 1: The number of images containing only pairs of instances,
the number of images containing more than two instances, and the
total number of images, per scenario.

model.

In both cases, the RANSAC estimates an initial trans-
formation using the three points and counts the number of
inliers (the percentage of matched points that, when trans-
formed, are within a certain distance of their corresponding
points). RANSAC succeeds if the inlier ratio is larger than
a certain threshold. The transformation is then re-estimated
based on the inliers of the most successful attempt. In the
case of a successful RANSAC, the model is merged with
the other model or the points selected as inliers from the
remaining keypoints.

3. Experiments and Results

An ASUS Xtion Pro Live RGB-D camera was used to
acquire a dataset of 234 VGA (640 x 480) resolution color
and depth images. The depth image was converted to a 3D
point cloud and transformed to the RGB camera’s reference
frame. This means every valid measurement point has both
a 3D coordinate and a color value.

We classified the captured scenes into four different sce-
narios: scenes containing either a single or multiple object
types (denoted by S and M), and scenes with or without
clutter and occlusion (denoted by easy ., and difficult ).
Each scene contained two to nine instances per object type.
We used objects with various shapes and sizes and vary-
ing amounts of texture. The number of images per sce-
nario is given in Table 1. Qualitative and quantitative results
are given for the different scenarios. The dataset is avail-
able at ftp://ftp.merl.com/pub/cansizoglu/
ObjectDiscovery3DV2017.zip, and includes object
annotations.

Our method is compared to an RGB object discovery al-
gorithm [6] that uses feature matching with a novel pairwise
dissimilarity measure and hierarchical agglomerative clus-
tering to find pairwise matches between sets of points. The
dissimilarity measure they propose consists of a photomet-
ric and a geometric term. The photometric term is simply
the Euclidean distance between the points’ SIFT descriptor
vectors, which is also used in our method. The geometric
term is used to determine a pairwise dissimilarity between
two corresponding pairs. It uses the homography of the first

Figure 4: Robot arm used for object picking.

correspondence to transform the points of another and vice
versa. The final geometric term is the average of the trans-
formation errors. The total pairwise dissimilarity is a linear
combination of both terms. We used the source code avail-
able on the authors’ website with the default parameters, as
changing them did not improve the results.

The following parameters were used in these experi-
ments to eliminate incorrectly matched triplets: a Smm and
35 degrees threshold for the point pair feature difference.
Each edge of the triangle should be at least 10mm and at
most 125mm and each angle should exceed 10 degrees.
Maximum value of the distance between two samples in
clustering was set to 35mm, while we discarded clusters
with less than 14 samples. In detection, we used a RANSAC
inlier threshold of Smm. A RANSAC was recalled as suc-
cessful when there were at least 5 inliers and the inlier ra-
tio was more than 12.5%. The average running time was
809ms with a C++ implementation on a standard PC.

We also demonstrate the use of our algorithm in an ob-
ject picking scenario with a robotic arm, where multiple in-
stances of the same object are visible (Please see supple-
mentary video). We mounted an ASUS Xtion sensor on the
robot arm and picked up objects using a vacuum gripper as
seen in Figure 4.

3.1. Qualitative Results

Some results on the proposed dataset on the four differ-
ent scenarios are shown in Figure 5. For our method the im-
age is overlaid with the transformed object model (with one
color per object type). For the comparison method, clus-
ters of matching features are shown (each cluster having a



without clutter/occlusion with clutter/occlusion

single object

multiple objects

Figure 5: Some of the scenes from the proposed dataset from the four scenarios: single/multiple objects (top/bottom) and with/without
clutter and occlusion (left/right). Overlaid is a visualization of the results for our method (first and third columns) and the results for [6]
(second and fourth columns). The quantitative results are summarized in Table 2.
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a false positive, since these points should

have been a part of the first model.

Figure 6: A few remarkable results with additional comments.

different color). This figure contains only scenes with two
instances per object type to allow direct comparison to the
other method. The result of our method on a scene with
a larger number instances is shown in Figure | and more
examples are shown in the supplementary material.

Experiments on scenes with objects placed in an orga-
nized way gave the results seen in Figure 6a. Here, three
ducks were placed side by side and our algorithm ended
up with a model of two repetitive patterns representing two
neighboring ducks. This was expected as the clustering
stage selects the largest cluster to start building the initial
model. Note that the filter eliminating overlapping triangles
was turned off to create this example.

3.2. Quantitative Results

We report object discovery performance on the gener-
ated dataset in Table 2. Objects were counted as true posi-
tives if the discovered model was correct, and it was local-
ized correctly. We considered a detection correct when at
least 90% of the features were inside the annotated bound-
ing box. They were counted as a false negative if the object
was not detected. False positives occur when an incorrect
model is found, or when a model was found in an incorrect
place. Since [6] only discovers pairwise matches, we com-
pared the performance for the subset of scenes containing
only pairs of objects (two object instances per object type).
Our method has an F1-score of 0.966 on this subset, while
the comparison method only reaches 0.471. Our method
finds any number of instances and thus can be evaluated on
the entire dataset by counting the number of instances (not
pairs) found. For this evaluation our F1-score is 0.974.

Our method gives very few false positives resulting in a
high precision. A false positive example is shown in Fig-

ure 6b. There is a few false negatives in our method (e.g.,
the brushes in the scene in row 5, column 1 of Figure 5).
These false negatives are caused by the objects having rel-
atively few keypoints, and many of the keypoints being
matched incorrectly. These incorrect matches result from
the descriptor not being sufficiently invariant to large view-
point changes. The recall does not differ much for the sce-
narios with or without occlusion and clutter, but it is slightly
lower for the scenario with multiple object types.

An interesting result of the comparison method is that
they have the worst performance for the easiest scenario S,;
with only one object type without clutter or occlusion (e.g.,
the scenes in rows 1, 2 and 3, column 2 of Figure 5). In
this scenario, they have a large number of false positives.
As there are far fewer keypoints, it is more likely that false
matches accidentally form a cluster. If there is more clutter,
these false matches are more likely to be more random and
are less likely to cause false positive clusters.

4. Conclusion and Discussion

We presented a novel method for 3D discovery, model-
ing, and localization of multiple instances of an object us-
ing a single RGB-D image. Following a sparse feature rep-
resentation, we employ appearance similarity and geomet-
ric similarity to group features associated to the instances.
Our grouping algorithm is efficient as it considers triplet
matches and eliminates incorrect correspondences between
triplets based on various geometric constraints. The 6-DOF
poses calculated for each triplet match are clustered in order
to find matching object instances. The initial model gen-
erated using the clustering results can then be used to de-
tect remaining object instances in the scene. The proposed



Objects (our) Pairs (our) Pairs [6]

P R P R P R

Se; 10992 0971 | 1.000 1.000 0.338 0.329
Sq 1.000 0.965 | 1.000 0.965 0.621 0.506
M., | 1.000 0919 | 1.000 0.931 0.607 0.508
M; | 0989 0907 | 1.000 0925 0.629 0.429

Total | 0.995 0.938 | 1.000 0.949 0.504 0.441

F1 0.974 0.966 0.471

Table 2: Precision (P) and recall (R) for our method and [6] on the
different datasets. S/M indicates whether the dataset has a Single
(S) or Multiple (M) object models. The easy/difficult scenario is
indicated with .; or ;. We give results for P-R calculated on the
found object instances (first column) and for P-R calculated on
pairs of objects (second and third columns).

method provides descriptive and compact object models us-
ing only a single RGB-D image and is suitable for robotic
manipulation tasks. Another application of our framework
can be seen in [2], where we generate object proposals for a
deep-learning-based classification method. Since our tech-
nique outputs regions with recurrent patterns, we further
improve classification accuracy by considering joint prob-
ability of bounding boxes that refer to copies of the same
object.

The goal of this study is to detect and discover objects
from a single image that contains multiple object instances.
Therefore it differs from other methods that aim to detect
and track objects in a given sequence of frames such as ob-
ject SLAM techniques [5]. Based on a sparse feature rep-
resentation, the problem can be formulated as a challenging
search problem, where we search for subsets of features that
resemble each other in terms of appearance and geometry.
More specifically, all pairwise feature matches need to be
considered in this problem, as opposed to investigating fea-
ture matches only between frames in an object tracking sce-
nario given a sequence of frames. Moreover, the instances
can occur in various viewpoints in a single image making
the search problem more challenging, while a smooth mo-
tion is usually observed in a video-based tracking scenario.

Our algorithm finds the largest recurrent pattern in the
scene. This can be an important limitation especially in two
cases (i) when the objects are placed in an organized way
as in Figure 6a, and (ii) when there are pairs of instances
that have the same relative pose. The limitation in the first
case exists due to the fact that we avoided any assumptions
about the placement of the objects as opposed to existing
work on finding periodic patterns in a scene. This makes
our algorithm applicable to more general scenarios, i.e., oc-
clusion, random pose, etc. Once a cluster is detected it is
always possible to search for periodic patterns in order to
handle cases with organized objects. We can also solve this
problem by recursively calling the algorithm on the set of

points from each cluster. On the other hand, if an object has
repeated patterns on its surface, then following such a recur-
sive splitting strategy would result in models smaller than
the object. Consequently, such scenarios might be solved
with more prior knowledge such as the size of the object or
the number of object instances in the scene. The limitation
in the second case can be solved by some assumptions about
the placement of the objects. For example, a smoothness in
depth can be expected among the features of an instance.
Again, we avoided using any depth-based segmentation as
they are shown to perform poorly on various cases.

Keypoint detection and descriptor matching lie at the
core of the proposed technique as a way of measuring ap-
pearance similarity. Missing features in some instances due
to nonrobust keypoint detection and poor matching in large
viewpoint changes were among the problems we faced be-
cause of limitations of conventional feature detectors and
descriptors. As a result, the performance degraded espe-
cially when there are too many false matches that need to be
handled as observed in the case of cluttered scene or mul-
tiple object types in a single image. Therefore, improving
descriptors and descriptor matching is an important exten-
sion of this work.
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