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Abstract
Recently we proposed a novel multichannel end-to-end speech recognition architecture that
integrates the components of multichannel speech enhancement and speech recognition into
a single neural-network-based architecture and demonstrated its fundamental utility for au-
tomatic speech recognition (ASR). However, the behavior of the proposed integrated system
remains insufficiently clarified. An open question is whether the speech enhancement com-
ponent really gains speech enhancement (noise suppression) ability, because it is optimized
based on end-to-end ASR objectives instead of speech enhancement objectives. In this paper,
we solve this question by conducting systematic evaluation experiments using the CHiME-4
corpus. We first show that the integrated end-to-end architecture successfully obtains ad-
equate speech enhancement ability that is superior to that of a conventional alternative (a
delay-and-sum beamformer) by observing two signal-level measures: the signal-todistortion
ratio and the perceptual evaluation of speech quality. Our findings suggest that to further
increase the performances of an integrated system, we must boost the power of the latter-
stage speech recognition component. However, an insufficient amount of multichannel noisy
speech data is available. Based on these situations, we next investigate the effect of using a
large amount of single-channel clean speech data, e.g., the WSJ corpus, for additional train-
ing of the speech recognition component. We also show that our approach with clean speech
significantly improves the total performance of multichannel end-to-end architecture in the
multichannel noisy ASR tasks.
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ABSTRACT

Recently we proposed a novel multichannel end-to-end speech
recognition architecture that integrates the components of multi-
channel speech enhancement and speech recognition into a single
neural-network-based architecture and demonstrated its fundamen-
tal utility for automatic speech recognition (ASR). However, the
behavior of the proposed integrated system remains insufficiently
clarified. An open question is whether the speech enhancement com-
ponent really gains speech enhancement (noise suppression) ability,
because it is optimized based on end-to-end ASR objectives instead
of speech enhancement objectives. In this paper, we solve this
question by conducting systematic evaluation experiments using the
CHiME-4 corpus. We first show that the integrated end-to-end ar-
chitecture successfully obtains adequate speech enhancement ability
that is superior to that of a conventional alternative (a delay-and-sum
beamformer) by observing two signal-level measures: the signal-to-
distortion ratio and the perceptual evaluation of speech quality. Our
findings suggest that to further increase the performances of an in-
tegrated system, we must boost the power of the latter-stage speech
recognition component. However, an insufficient amount of multi-
channel noisy speech data is available. Based on these situations, we
next investigate the effect of using a large amount of single-channel
clean speech data, e.g., the WSJ corpus, for additional training of
the speech recognition component. We also show that our approach
with clean speech significantly improves the total performance of
multichannel end-to-end architecture in the multichannel noisy ASR
tasks.

Index Terms— Multichannel end-to-end automatic speech
recognition, neural beamformer, encoder-decoder network

1. INTRODUCTION

Motivated by the recent rise of Deep Neural Network (DNN) tech-
nologies, the hybrid Automatic Speech Recognition (ASR) system
architecture that combines DNN and the Hidden Markov Model
(HMM) has attracted great research interest [1]. Usually in this
approach, DNN and HMM are separately developed and simply
combined. However, such a simple combination does not neces-
sarily lead to the best performances, and it raises a question about
if there can be other types of approaches, e.g., a tightly-coupled
combination and the integrated design of the overall system. To
challenge this question, an alternative to using DNN-HMM hy-
brid architecture, i.e., an end-to-end development scheme for ASR
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systems, was proposed whose feasibility was studied in tasks of
recognizing clean speech inputs [2, 3].

In reality, speech inputs for ASR systems are generally contam-
inated by background noise and reverberation. Therefore, emerg-
ing end-to-end design schemes are obviously expected to run well
for noisy speech inputs. In this light, we proposed a novel end-to-
end development scheme that encompasses the entire ASR system,
i.e., its components of multichannel speech enhancement and recog-
nition, which directly transforms continuous speech inputs to text
character sequence outputs. This is realized by integrating a neural-
network-based multichannel speech enhancement technique, which
we refer to as neural beamformer [4, 5], (for the enhancement com-
ponent) and an attention-based encoder-decoder framework [2] (for
the recognition component). For clarity, we refer to our scheme as
the Multichannel End-to-End (M-E2E) ASR framework [6].

To evaluate our M-E2E framework, we experimentally com-
pared it with a combination of the preceding end-to-end framework,
which assumes single-channel speech inputs and does not include
speech enhancement functions within the framework, and the delay-
and-sum beamformer speech enhancement method, i.e., BeamformIt
[7], in the widely adopted multichannel noisy speech benchmark
tasks of CHiME-4 [8] and AMI [9]. For simplicity, we refer to
the competitor as the End-to-End framework attached by Beam-
formIt (E2E-BIt). Experimental results showed that our M-E2E
approach outperforms E2E-BIt in terms of such ASR-oriented mea-
sures as the Character Error Rate (CER). However, the behavior or
the characteristics of M-E2E-based ASR systems have not yet been
sufficiently clarified. An important open question remains whether
the M-E2E framework realizes speech enhancement functions inside
fully neural-network-based ASR systems. In addition, the achieved
recognition accuracies of M-E2E-based systems are still lower than
the conventional DNN-HMM hybrid systems. Therefore, in this
paper we elaborate the behavior of the ASR systems developed by
the M-E2E framework and also aim at improving their recogni-
tion performances. The concrete research issues in the paper are
summarized as follows:

1. So far, integrated training based on the M-E2E framework
for fully neural-network-based ASR systems has only been
conducted using ASR-oriented training criterion. Because
the criterion has no direct link with speech enhancement,
it remains unknown whether the trained ASR system really
gained speech enhancement ability in its front-end multichan-
nel speech enhancement component (neural beamformer).
This question is also re-expressed as whether the M-E2E-
based training actually extracts speech components (or their
corresponding representation) from noisy speech inputs or
simply converts the inputs into something useful for ASR.
To answer these questions, we analyze the inner speech rep-
resentation produced by the M-E2E-based systems using



the signal-level criterion, i.e., the Signal-to-Distortion Ratio
(SDR) and Perceptual Evaluation of Speech Quality (PESQ),
which are commonly used for speech enhancement quality
assessment.

2. If the M-E2E framework implements speech enhancement
(noise suppression) inside fully neural-network-based sys-
tems, are the resulting enhanced speech signals clean enough
to achieve the same level of ASR-oriented performances (in
terms of Word Error Rate (WER)) as DNN-HMM hybrid
systems?

3. Compared to the training of the DNN-based acoustic models
in the DNN-HMM hybrid framework, M-E2E-based training
essentially requires more training data, because M-E2E train-
ing must also learn regularities in language. However, the
amount of data in the existing multichannel noisy ASR cor-
pora, e.g., CHiME-4, is often much smaller than such single-
channel clean speech datasets as the WSJ corpus [10]. In ad-
dition, it is essentially difficult in the end-to-end development
framework to use a large amount of text data, which is avail-
able nowadays and critically important for gaining effective
language models in the DNN-HMM hybrid framework: The
end-to-end framework basically requires speech inputs. Con-
sidering this practical restriction, we study how to solve the
insufficiency of the training speech data to improve the de-
coding quality of fully neural-network-based systems in the
multichannel noisy ASR tasks.

2. MULTICHANNEL END-TO-END ASR

2.1. Overview

Figure 1 illustrates an overview of the ASR system architecture
based on our M-E2E ASR framework. The system consists of
a mask-based neural beamformer and an attention-based encoder-
decoder network. Given multichannel noisy speech inputs {Xc}Cc=1,
where C is the number of channels and Xc is the c-th channel in-
put that consists of a short-time Fourier transform (STFT) feature
sequence, the system first filters and integrates the multichannel in-
puts into a single-channel (hopefully noise-suppressed) input in the
mask-based neural beamformer stage, converts the filtered input to
a sequence of logarithmic Mel-scale filterbank (LMF) outputs Ô in
the feature extraction stage, and transforms (decodes) the sequence
of LFM features to such class labels Y as the sequence of charac-
ters by the estimation of the a posteriori probabilities in the final,
attention-based encoder-decoder stage.

We represent the entire procedure of the M-E2E-based system
in the following functional forms:

X̂ = Enhance({Xc}Cc=1), (1)

Ô = Feature(X̂), (2)

P (Y |Ô) = E2E ASR(Ô). (3)

Here, Enhance(·), which is a speech enhancement function realized
by the mask-based neural beamformer, converts multichannel STFT
feature inputs {Xc}Cc=1 to a sequence of single-channel enhanced
STFT features X̂ . Feature(·) is a feature extraction function, which
bridges the speech enhancement and ASR components. In this pa-
per, we adopt the normalized LMF function for Feature(·), which
converts X̂ to Ô. Subsequently, E2E ASR(·), which is an end-to-
end ASR function realized by the attention-based encoder-decoder,
estimates the a posteriori probabilities for output labels Y .

All of the above steps are represented as differentiable graphs.
We train/optimize them only using the training sample pairs, each of

Fig. 1. Overview of multichannel end-to-end ASR system archi-
tecture: Mask-based neural beamformer works as a speech en-
hancement module and the attention-based encoder-decoder network
works as an ASR module. Feature extraction function bridges these
two modules.

which consists of multichannel noisy speech samples and its corre-
sponding class labels, to satisfy such ASR-oriented criteria as CER
as much as possible.

2.2. Mask-based neural beamformer

The left side of Fig. 1 outlines our adopted mask-based neural beam-
former.

The mask-based neural beamformer technique is based on lin-
ear filtering in the time-frequency domain. Let xt,f,c(∈ C) and
gf,c(∈ C) be the STFT coefficients of the c-th channel noisy sig-
nal at time-frequency bin (t, f) and its corresponding beamforming
filter coefficients, respectively. Then enhanced STFT coefficients
x̂t,f (∈ C) are obtained as follows:

x̂t,f = g†fxt,f , (4)

where xt,f = {xt,f,c}Cc=1(∈ CC) is the spatial vector that repre-
sents the signals obtained from all the microphones for each time-
frequency bin (t, f), gf = {gf,c}Cc=1(∈ CC) is the time-invariant
beamforming filter coefficients for all of the C channels, and † rep-
resents the conjugate transpose.

Filter coefficients gf in Eq. (4) are computed based on the fol-
lowing Minimum Variance Distortionless Response (MVDR) for-
malization [11]:

gf =
(ΦN

f )
−1

ΦS
f

Tr((ΦN
f )
−1ΦS

f )
u, (5)

where ΦS
f (∈ CC×C) and ΦN

f (∈ CC×C) are the cross-channel
power spectral density (PSD) matrices (also known as spatial covari-
ance matrices) for speech and noise signals, respectively, u(∈ RC)
is a vector representing a selected reference microphone, and Tr(·)
represents the matrix trace operation.

Let mS
t,f (∈ [0, 1]) and mN

t,f (∈ [0, 1]) be the time-frequency
masks for the speech and noise signals, respectively. Based on pre-



vious work [12], the PSD matrices are robustly estimated as the ex-
pected value with respect to the time-frequency masks as follows:

ΦS
f =

1∑T
t=1 m

S
t,f

T∑
t=1

mS
t,fxt,fx†t,f , (6)

ΦN
f =

1∑T
t=1 m

N
t,f

T∑
t=1

mN
t,fxt,fx†t,f . (7)

The time-frequency masks, mS
t,f ,m

N
t,f , are estimated with Bidi-

rectional Long Short-Term Memory (BLSTM)-based recurrent net-
works. Reference microphone vector u is estimated with our pro-
posed attention-based reference estimation mechanism. The details
of the estimation procedures are described in our previous study [6].
The entire beamforming procedures described in this subsection cor-
responds to Enhance(·) in Eq. (1).

2.3. Attention-based encoder-decoder network

The right-side of Fig. 1 illustrates an overview of the attention-based
encoder-decoder network, which consists of two Recurrent Neural
Networks (RNNs), one for the encoder and another for the decoder,
both of which are connected by an attention mechanism.

Given feature sequence O = {ot ∈ RDO |t = 1, · · · , T}, where
ot is a DO-dimensional (LMF) feature vector at input time step t
and T is the input sequence length, the network estimates the a pos-
teriori probabilities for output label sequence Y = {yn ∈ V|n =
1, · · · , N}, where yn is a label symbol (e.g., character) at output
time step n, N is the output sequence length, and V is a set of labels
as follows:

P (Y |O) =
∏
n

P (yn|O, y1:n−1), (8)

H = Encoder(O), (9)
cn = Attention(an−1, sn, H), (10)

P (yn|O, y1:n−1) = Decoder(cn, sn−1, y1:n−1), (11)

where y1:n−1 is a label sequence that consists of y1 through yn−1.
Eqs. (8)-(11) correspond to E2E ASR(·) in Eq. (3).

For input sequence O, the encoder RNN in Eq. (9) first trans-
forms it to the L-length feature sequence H = {hl ∈ RDH |l =
1, · · · , L}, where hl is a DH-dimensional state vector of the en-
coder’s top layer at subsampled time step l. Next the attention
mechanism in Eq. (10) integrates all encoder outputs H into a
DH-dimensional context vector cn ∈ RDH using L-dimensional
attention weight vector an ∈ [0, 1]L that represents a soft alignment
of the encoder outputs at output time step n. Then the decoder
RNN in Eq. (11) updates hidden state sn, estimates the a posteriori
probability for output label yn at output time step n, and further
estimates the a posteriori probabilities for output sequence Y , based
on the RNN recursiveness.

3. EXPERIMENTS

3.1. Outline of analyses

3.1.1. Evaluation in signal-to-distortion ratio and perceptual eval-
uation of speech quality

To evaluate the speech enhancement quality of the outputs of the
beamformer modules, we adopted two criteria: 1) a signal-to-
distortion ratio (SDR) [13] and 2) a perceptual evaluation of speech
quality (PESQ) [14].

The SDR criterion is a quantitative measure representing the ra-
tio between the target signal components and such distortion compo-
nents as interference, noise, and artifact errors, which is commonly
used in the literature of speech separation and enhancement. On the
other hand, the PESQ criterion is a quantitative measure that consid-
ers human perception characteristics, which is commonly used as an
industry standard for speech quality assessments in telecommunica-
tions. In both criteria, a higher score indicates that its corresponding
estimated signal obtained higher quality.

The score calculation for these two criteria needs a pair of esti-
mated enhanced speech signals and its corresponding clean speech
signals. Therefore, we used the development set of the simulation
data in the CHiME-4 corpus for this evaluation. We utilized the BSS
EVAL toolbox1 and Loizou’s toolbox2 for calculating the SDR and
PESQ scores, respectively.

3.1.2. Evaluation of word error rates decoded with DNN-HMM hy-
brid system

In addition to the above evaluation using signal-level criteria, we
evaluated the speech enhancement quality by inputting the enhanced
speech signals to the conventional DNN-HMM hybrid system.
Through the evaluation here, we investigate whether the enhanced
speech signal obtained by our M-E2E framework is effective not
only for the end-to-end framework but also for the conventional
DNN-HMM hybrid framework.

We summarize the evaluation procedures as follows:

1. Extract the beamformer module from our M-E2E-based sys-
tem, which was already trained with end-to-end ASR objec-
tives.

2. Using the extracted module, obtain an enhanced speech signal
for each utterance in the development and evaluation datasets
of the CHiME-4 corpus.

3. Using the enhanced signals, compute the WER scores using
CHiME-4’s official baseline DNN-HMM hybrid system, pro-
vided in the CHiME-4 corpus [8].

Although we evaluated WER using the DNN-HMM hybrid system,
the above front-end, mask-based neural beamformer was developed
within our M-E2E framework.

3.1.3. Effects of increasing data for training neural recognition
module

In addition to the above two evaluation scopes, we evaluated the ef-
fects of increasing the training data to improve the discriminative
power of the attention-based encoder-decoder recognition module
in the M-E2E framework. The decoder network in the recogni-
tion module plays a language model role in the DNN-HMM hybrid
framework. However, in the CHiME-4 setup, the training data for
the decoder network might be insufficient to gain language regular-
ity, which is generally obtained using a large amount of text data.
The size of CHiME-4 in terms of the amount of text data is obvi-
ously smaller than that in standard cases.

In this experiment, we take a practical approach that uses such
large-scale clean speech datasets as the WSJ corpus to increase the
amount of training data for the decoder network: although the size
of the noisy speech dataset is often limited, many large-scale clean

1http://bass-db.gforge.inria.fr/bss_eval/bss_
eval.zip

2http://ecs.utdallas.edu/loizou/speech/
composite.zip



Table 1. Network configurations of end-to-end ASR system.

Model Layer Units Type Activation

Encoder L1 - L4 320 BLSTM + Projection tanh
Decoder L1 320 LSTM tanh

L2 48 Linear softmax
Beamformer L1 - L3 320 BLSTM + Projection tanh

L4 514 Linear sigmoid

Table 2. Training and decoding conditions for end-to-end ASR sys-
tem.

Parameter initialization Uniform distribution ( [-0.1, 0.1] )
Optimization technique AdaDelta [15] + gradient clipping [16]

Training objective Joint CTC-attention loss [17]
Training epoch 15
Beam size [18] 20

Length penalty [2] 0.3

speech datasets are available. Our experiment will clarify the effec-
tiveness of an expedient but realistic way for improving the end-to-
end ASR system development in the multichannel noisy ASR tasks.

3.2. Data corpora and representation

We conducted experiments with two corpora: 1) CHiME-4, a mul-
tichannel noisy ASR corpus whose training data length is 18 hours,
and 2) WSJ, a single-channel clean ASR corpus whose training data
length is 81 hours.

CHiME-4 consists of speech data recorded using a tablet device
with 6-channel microphones in the following four environments: 1)
in a cafe, 2) at a street junction, 3) on public transportation, and
4) in a pedestrian area. The data were grouped in two subsets: real
data, which were actually recorded in one of the above environments,
and simulated data, which were synthesized by adding recorded en-
vironment sounds (noise signals) to clean speech data that enabled
enhancement evaluation using the clean speech as a reference. The
whole data were also grouped in three subsets: 1) a training set (3
hours for real data and 15 hours for simulation data), 2) a develop-
ment set (2.9 hours for real data and 2.9 hours for simulation data),
and 3) an evaluation set (2.2 hours for real data and 2.2 hours for
simulation data). The training set was used to train systems to be
evaluated, the development set was used to set the hyper-parameters
in training and determined the final status of the trained systems, and
the evaluation set was used to test the trained systems independently
from the training/development sets.

Among the 6-channel microphone outputs, we used 5-channel
outputs (C = 5) recorded by the microphones on the front of tablet.

Using the Fourier transform, we converted the signal of each
channel to a sequence of 257-dimensional STFT features (F = 257)
and input the converted sequences for all of the channels to the mask-
based neural beamformer.

In the feature extraction stage between the front-end neural
beamformer and the back-end attention-based encoder-decoder, we
adopted 40-dimensional LFM outputs (DO = 40).

3.3. Enhanced signals and ASR systems for comparison

To evaluate the characteristics of the outputs of the mask-based neu-
ral beamformer in our M-E2E-based system, we prepared (for com-
parison) the five following types of signals: 1) NOISY, 2) BEAM-

FORMIT, 3) MULTI END2END, 4) ERDOGAN’s MVDR, and 5)
HEYMANN’s GEV. NOISY is the single-channel noisy signal from
’isolated 1ch track’ in CHiME-4. BEAMFORMIT is an enhanced
signal with BeamformIt [7], which is a well-known weighted delay-
and-sum beamformer. MULTI END2END is a signal enhanced by
our own neural beamformer in the M-E2E ASR system. ERDO-
GAN’s MVDR and HEYMANN’s GEV are signals enhanced by
two types of state-of-the-art neural beamformers [4, 5]. ERDO-
GAN’s MVDR and HEYMANN’s GEV are known for their high
ASR performances achieved with the conventional DNN-HMM hy-
brid system in the recent CHiME-4 challenge. To obtain enhanced
signals for HEYMANN’s GEV, we used the software tools provided
at their GitHub repository3.

There were several differences in the beamforming formaliza-
tion and network configurations among the three neural beamform-
ers, especially beamformers that generate the ERDOGAN’s M-
VDR and HEYMANN’s GEV signals used the parallel data of clean
and noisy speech for training; our beamformer in MULTI END2END
only used noisy data and their transcripts. More specifically, the
mask estimation networks in ERDOGAN’s MVDR and HEY-
MANN’s GEV were optimized to estimate the ideal binary masks
that are defined with parallel data of clean and noisy speech, while
the mask estimation network in MULTI END2END was optimized
under the end-to-end ASR criterion using pairs of noisy speech and
transcribed labels. Because we pursued a pure end-to-end setup,
we did not use the parallel data of clean and noisy speech to train
our M-E2E ASR system. The details of the neural beamformers for
ERDOGANs MVDR and HEYMANNs GEV were described in the
literature [4, 5], respectively.

For comparison purposes, we also prepared two kinds of ASR
systems: a purely neural-network-based end-to-end ASR system and
a conventional DNN-HMM hybrid system. We summarize the fun-
damental specifications and conditions of the M-E2E-based system
in Tables 1 and 2. The M-E2E-based system was trained with the
conventional multi-condition training strategy [8]. Note that the net-
work configurations described in Table 1 were used for generating
the signals in MULTI END2END. On the other hand, we adopted
the official baseline DNN-HMM hybrid ASR system that was in-
cluded in the ChiME-4 corpus. The system was optimized using
sequence-discriminative training with 5-th channel noisy speech data
and it applied the language model re-scoring technique. The detail
descriptions of the system are shown in a Kaldi recipe4.

3.4. Results

3.4.1. Evaluation in signal-to-distortion ratio and perceptual eval-
uation of speech quality

To evaluate the speech enhancement quality obtained with the M-
E2E-based system, we summarize the SDR and PESQ scores for
the simulation data in the CHiME-4 development set in Figs. 2 and
3, respectively. Because the SDR and PESQ scores are computed
for each utterance, we overlaid the standard deviation value (thin
line) on the mean value (blue bar) in the figures. The results in
both of the scores show that our M-E2E development framework
achieved reasonable speech enhancement and its enhancement qual-
ity is competitive to or better than the cases of BEAMFORMIT and
HEYMANN’s GEV, suggesting that the neural beamformer devel-
oped in our M-E2E framework successfully learns speech enhance-
ment (noise suppression) ability, although it was optimized under the

3https://github.com/fgnt/nn-gev
4https://github.com/kaldi-asr/kaldi/tree/master/

egs/chime4/s5_6ch Kaldi is a popular open-source toolkit for
conducting ASR experiments [19].



Fig. 2. Signal-to-distortion ratio (SDR) for simulation data in devel-
opment set. Each bar indicates the mean in terms of utterances; a
thin line indicates the standard deviation.

Fig. 3. Perceptual Evaluation of Speech Quality (PESQ) for simula-
tion data in development set.

end-to-end ASR-oriented criterion.

3.4.2. Evaluation with DNN-HMM hybrid framework

To compare the discriminative power of the M-E2E-based enhanced
speech signal itself, we performed ASR experiments by applying
the baseline DNN-HMM hybrid system to the five prepared signals,
NOISY through HEYMANN’s GEV, in the CHiME-4 corpus. Ta-
ble 3 shows the WERs for the five cases. “Input signal” denotes the
type of signal input to the DNN-HMM hybrid system, “Parallel use”
indicates whether clean speech was used to train the beamformer,
and “Dev-simu,” “Dev-real,” “Eval-simu,” and “Eval-real” denote
the WER scores of the development sets of the simulated and real
speech data, the evaluation sets of simulated and real speech data,
respectively.

The results show that the input signal enhanced by our M-
E2E framework (in MULTI END2END) achieved lower WER val-
ues than the signal enhanced by the BeamformIt enhancement (in
BEAMFORMIT) as well as the original noisy speech (in NOISY).
These results suggest that the neural beamformer in our M-E2E
framework produced more suitable enhanced speech inputs at least
for the DNN-HMM hybrid system than the standard beamformer,
BeamformIt. On the other hand, the results of the M-E2E framework
remain lower than those of the state-of-the-art neural beamformers
in ERDOGAN’s MVDR and HEYMANN’s GEV. The main reason
is probably that both competitors utilize clean and noisy speech
data in parallel for speech enhancement. Another possible reason is
that the competitors adopted such sophisticated tuning techniques
as dropout [20] and batch normalization [21] in their beamformer

Table 3. Word error rates [%] obtained with DNN-HMM hybrid
system.

Input signal Parallel
use

Dev-
simu

Dev-
real

Eval-
simu

Eval-
real

NOISY N/A 13.0 11.6 20.8 23.7
BEAMFORMIT No 6.8 5.8 10.9 11.5

MULTI END2END No 5.2 5.5 7.1 10.1
ERDOGAN’s MVDR Yes 4.0 4.5 4.1 8.0
HEYMANN’s GEV Yes 5.3 5.0 6.7 7.3

training, while the M-E2E-based training for its beamformer did not
use any of them.

3.4.3. Effects of increasing training data for end-to-end ASR frame-
work

To analyze the effects of increasing the amount of training data, we
compared the five cases, i.e., NOISY through HEYMANN’s GEV,
in terms of CER, and summarized the CER scores obtained just us-
ing the CHiME-4 data and those obtained with the CHiME-4 data
plus the WSJ clean speech data in Tables 4 and 5, respectively. In
the testing stage for this purpose, we input one of the signals in the
five cases (e.g., the original noisy speech or the signals enhanced
by the M-E2E framework) to the attention-based encoder-decoder
ASR system, which is not the DNN-HMM hybrid but it has a fully
neural architecture. In addition, we only re-trained the back-end,
attention-based encoder-decoder recognition module but did not re-
train the front-end, mask-based neural beamformer in our M-E2E
development framework when adding the WSJ speech data: The
added speech data are single-channel clean data and therefore we
cannot train the mask-based beamformer in principle.

A comparison of the two tables clearly shows that using addi-
tional data improved the recognition performances in all of the cases,
even though the additional data were single-channel clean speech
signals. From the results, we also found that our M-E2E-based
ASR systems outperformed the E2E-BIt-based ASR systems, i.e.,
the combination of the neural recognition module and the Beamfor-
mIt, in all of the conditions in the tables. This clearly demonstrates
the rationality and effectiveness of our M-E2E development frame-
work.

Surprisingly, the accuracies in HEYMANN’s GEV were very
low. A possible reason of this was that the signals produced by the
generalized eigenvalue (GEV)-based beamformer produced a mis-
match with the back-end neural recognition module because of the
additional speech distortions caused by the GEV procedure.

4. CONCLUSION

We conducted the following two experimental analyses to investi-
gate whether the speech enhancement component in our M-E2E de-
velopment framework really learned a speech enhancement (noise
suppression) capability: 1) evaluation of the speech enhancement
quality in terms of two signal-level measures, i.e., SDR and PESQ,
2) evaluation of the speech enhancement performance in terms of the
ASR-level measure, i.e., WER, in recognition experiments using the
DNN-HMM hybrid system. The experimental results showed that
our proposed M-E2E framework successfully achieved a speech en-
hancement (noise suppression) capability, although it was optimized
based on the end-to-end ASR-oriented objective for generating cor-
rect label sequences.

In addition to the above experiment, we evaluated the effects
of increasing the training data for back-end, encoder-decoder net-



Table 4. Character error rates [%] obtained with end-to-end ASR
system over CHiME-4 corpus.

Input signal Parallel
use

Dev
simu

Dev
real

Eval
simu

Eval
real

NOISY × 25.0 24.5 34.7 35.8
BEAMFORMIT No 21.5 19.3 31.2 28.2

MULTI END2END No 15.3 18.2 23.7 26.8
ERDOGAN’s MVDR Yes 16.2 18.2 24.3 26.7
HEYMANN’s GEV Yes 61.5 65.3 56.8 65.5

Table 5. Character error rates [%] obtained with end-to-end ASR
system over CHiME-4 and WSJ corpora.

Input signal Parallel
use

Dev
simu

Dev
real

Eval
simu

Eval
real

NOISY × 19.4 19.0 28.7 29.6
BEAMFORMIT No 17.4 15.3 28.1 24.2

MULTI END2END No 11.8 13.7 20.5 21.5
ERDOGAN’s MVDR Yes 10.5 11.9 18.0 19.2
HEYMANN’s GEV Yes 35.3 35.7 37.4 42.8

works without increasing the training data for the front-end, neu-
ral beamformer. The experimental result showed that even increas-
ing the single-channel clean training data is effective to improve the
recognition performance of the M-E2E development framework in
the multichannel noisy ASR tasks.

The above findings also suggest that the M-E2E development
framework probably already achieved reasonable beamformers, and
such back-end recognition modules as attention-based encoder-
decoder networks must be further improved to boost the discrim-
inative power of the total end-to-end ASR system. To meet this
requirement, developing training algorithms to optimize decoder
networks only with text data (without speech signal data) is an
important future subject.

In this work, we selected the multichannel speech enhancement
front-end for our end-to-end ASR framework, because the perfor-
mance of multichannel speech enhancement was shown to be ba-
sically better than that of the single-channel technique [22]. How-
ever, when considering such resource-constrained devices as mobile
phones, we also find the importance of studying the single-channel
enhancement front-end in the end-to-end ASR context.
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