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Abstract
While the performance of automatic speech recognition systems has recently approached
human levels in some tasks, the application is still limited to specific domains. This is
because system development relies on extensive supervised training and expert tuning in
the target domain. To solve this problem, systems must become more self-sufficient, having
the ability to learn directly from speech and adapt to new tasks. One open question in
this area is how to learn a pronunciation dictionary containing the appropriate vocabulary.
Humans can recognize words, even ones they have never heard before, by reading text and
understanding the context in which a word is used. However, this ability is missing in current
speech recognition systems. In this work, we propose a new framework that automatically
expands an initial pronunciation dictionary using independently sampled acoustic and textual
data. While the task is very challenging and in its initial stage, we demonstrate that a model
based on Bayesian learning of Dirichlet processes can acquire word pronunciations from phone
transcripts and text of the WSJ data set.
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Abstract
While the performance of automatic speech recognition systems
has recently approached human levels in some tasks, the appli-
cation is still limited to specific domains. This is because sys-
tem development relies on extensive supervised training and ex-
pert tuning in the target domain. To solve this problem, systems
must become more self-sufficient, having the ability to learn di-
rectly from speech and adapt to new tasks. One open question
in this area is how to learn a pronunciation dictionary contain-
ing the appropriate vocabulary. Humans can recognize words,
even ones they have never heard before, by reading text and un-
derstanding the context in which a word is used. However, this
ability is missing in current speech recognition systems. In this
work, we propose a new framework that automatically expands
an initial pronunciation dictionary using independently sampled
acoustic and textual data. While the task is very challenging
and in its initial stage, we demonstrate that a model based on
Bayesian learning of Dirichlet processes can acquire word pro-
nunciations from phone transcripts and text of the WSJ data set.

1. Introduction
Even in highly tuned automatic speech recognition (ASR) sys-
tems that achieve human-level accuracy, their performance is
heavily dependent on supervised learning. To support a new
task domain or new words, labeled speech data and pronunci-
ations of new words must be prepared. This often limits the
usability of the system to the initially prepared domain. In con-
trast, humans can constantly learn from both speech and text
data, even if they are not paired, recognizing new words in
speech with unknown pronunciations by understanding the con-
text in which the word is used. If the same ability to expand this
pronunciation dictionary could be achieved in speech recogni-
tion systems without requiring labeled data, it would contribute
not only to reducing maintenance cost but also allow for more
natural communication between machines and humans when
applied to interactive systems such as home robots.

In general, a word pronunciation dictionary plays two roles
in a speech recognition system. One is to define word units,
and the other is to define a mapping from pronunciation to
spelling. Some recent end-to-end ASR frameworks avoid the
necessity for both of these functions by performing character
recognition [1]. However, many applications including infor-
mation retrieval and spoken dialog systems still require word
units, and we therefore focus on approaches that define these
units. We propose a Bayesian semi-supervised framework for
learning pronunciation dictionaries that can learn word pronun-
ciations from disjoint phonemic transcripts and text of a lan-

guage. The assumption is that a partial pronunciation dictionary
is available; pronunciations are given for some words but miss-
ing for others. This makes it possible to learn additional dic-
tionary entries that are compatible with the manually prepared
word units, phone set, and spelling.

2. Related work
Methods to automatically obtain word pronunciations are clas-
sified into two groups according to whether a mapping from
pronunciation to spelling is provided or not: without-spell-
mapping methods and with-spell-mapping methods.

In the without-spell-mapping methods, usually a word is di-
rectly represented by a phone sequence. Representative meth-
ods in this paradigm are based on out of vocabulary (OOV) de-
tection [2, 3] and phone recognition, where speech input is first
decoded by a phone recognizer and a speech segment detected
as an OOV is labeled by the decoded phone sequence. By com-
bining this with a word decoder, it is expected that a word is
output if it is included in the vocabulary of the decoder and oth-
erwise a phone sequence is output [4]. To improve the perfor-
mance, several extensions have been proposed such as including
frequent phone sequences in the phone recognizer as word frag-
ments [5]. Another approach is based on segmenting a phone
sequences in a completely unsupervised manner by making a
hierarchical Bayesian model [6, 7, 8, 9], which originates from
the unsupervised word segmentation in text [10, 11]. The train-
ing is performed only using a phone sequence or a phone lattice,
without using text, making it possible to learn spoken languages
without a writing system.

While representing a new word by its pronunciation is use-
ful for some applications, obtaining a corresponding spelling
is often important. To address the problem, Parada et al.
proposed a method that assigns a spelling to an OOV word
based on heuristics on context information and web search [12].
Another approach is grapheme to phoneme (G2P) conver-
sion [13, 14, 15, 16], where a G2P converter is applied to a
new word to estimate its pronunciation. While G2P is math-
ematically well-formulated and is easy to use, a limitation is
that it is not accurate for words for which the pronunciation is
hard to infer from the spelling. This is the case for English
acronyms, or for ideograms such as Chinese or Japanese char-
acters, which have a weak correlation between characters and
pronunciations. To handle the mapping at a word level in a sta-
tistical framework, learning methods using pronunciation mix-
ture models have been proposed [17, 18, 19]. These methods
model a word pronunciation by a finite categorical distribution
of possible pronunciations. The parameters of the distributions



Table 1: Description of the nodes in the Bayesian model shown in Figure 1.

Node Description
Pronunciation dictionary (∆) Probabilistic pronunciation dictionary
Language model (Θ) Hierarchical Bayesian language model
Word sequence (w) Word sequence of an utterance
Segmented phone sequence (ψ) Phone sequence of an utterance with word boundaries
Phone sequence (φ) Phone sequence of an utterance without a word boundary

Language model (Θ)

Word sequence (w)
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Figure 1: Proposed Bayesian model to train a pronunciation
dictionary from disjoint phonemic transcripts and text.

are estimated by the EM algorithm [20], or a posterior distribu-
tion is inferred using Bayesian methods. However, a disadvan-
tage is that these are supervised methods that require parallel
speech and text data, which is hard to come by.

3. Proposed method
To perform semi-supervised learning of word pronunciations
from unaligned phone and word utterances utilizing a partial
pronunciation dictionary, phonetic and linguistic knowledge
must be combined. We do so by creating a single Bayesian
model integrating a pronunciation dictionary and a language
model. Compared to the hierarchical Bayesian model of the
unsupervised without-spell-mapping approach, a pronunciation
dictionary is introduced to support the mapping from pronunci-
ation to spelling. Likewise, compared to the supervised meth-
ods using the pronunciation mixture model, a language model
is integrated to use distributional information of words.

3.1. Integrated Bayesian model

Figure 1 shows the structure of the proposed Bayesian model
for semi-supervised pronunciation dictionary learning. Within
the Bayesian model, each node has an internal structure. The
definitions of the nodes are summarized in Table 1.

The three nodes “Word sequence (w)”, “Segmented phone
sequence (ψ)”, and “Phone sequence (φ)” represent an utter-
ance given as a word sequence, a word segmented phone se-
quence, and a phone sequence with no word segmentation, re-
spectively. For example, “the sale of the hotels” is a word se-
quence, “DH AH </w> S EY L </w> AH V </w> DH AH
</w> HH OW T EH L Z </w>” is a word segmented phone
sequence where </w> represents a word boundary, and “DH
AH S EY L AH V DH AH HH OW T EH L Z” is a phone
sequence.

The node “Language model (Θ)” is a hierarchical Bayesian
language model [21], and the node “Pronunciation dictionary
(∆)” is a pronunciation dictionary. A word sequence is gen-
erated from the language model, and a word segmented phone
sequence is generated from the word sequence and the pronun-
ciation dictionary. The node represented by a filled small cir-
cle represents a simple deterministic rule to convert the word
segmented phone sequence to the phone sequence. Each ut-

terance is assumed to be independent given the language model
and the pronunciation dictionary. Unlike the unsupervised word
and LM learning [6, 7, 8, 9], the hierarchical language model is
based on words represented by a character sequence rather than
a phone sequence, which allows for the use of text data for the
training.

3.2. Probabilistic model of the pronunciation dictionary

A pronunciation dictionary is a set of pairs of a word w (e.g.
“hello”) and its pronunciation ρ (e.g. “HH AH L OW”) for
words in a vocabulary. Sometimes, a pronunciation dictionary
is designed so that a word can have multiple pronunciations
with optional probability weights that represent their relative
frequency [22]. From probabilistic modeling point of view, this
is equivalent to considering a finite mixture model of pronun-
ciations for each word where a mixture component is the pro-
nunciation and a mixture weight is its probability. In [17], the
mixture weights are trainable parameters, and are estimated by
the EM algorithm as a categorical distribution. For the Bayesian
approach, a Dirichlet distribution is used in [19] to give a prior
probability for the mixture weights.

To potentially allow any pronunciation for a word, we ex-
tend the finite pronunciation mixture model to an infinite mix-
ture model. To give a prior probability to the infinite distri-
bution pw(ρ) of the word pronunciations, we use the Dirichlet
process [23, 24]

Gw ∼ DP (α,G0) (i.i.d. w ∈ V ) , (1)
pw(ρ) = Gw,

where G0 is a base distribution, and α (> 0) is a concentration
parameter. A draw from the base distribution G0 is a pronun-
ciation ρ. The pronunciation dictionary ∆ is defined as a set of
word pronunciation models Gw as shown in Equation (2), and
the prior probability of ∆ is the joint probability of the infinite
mixture models Gw.

∆ = {Gw}{w∈V } . (2)

The predictive distribution of the pronunciations based on
the pronunciation dictionary is obtained by applying the Chi-
nese restaurant process (CRP) [25] at each word. Let us as-
sume that a set of utterances U are observed in which a word
w has appeared c(w) times. Let’s also assume that a pro-
nunciation ρ of the word w has appeared cw(ρ) times where∑
ρ cw(ρ) = c(w). Then, the predictive distribution of the pro-

nunciation ρ for the word w is given by Equation (3).

p(ρ|w,U) =
cw(ρ)

α+c(w)
+

α

α+c(w)
G0(ρ). (3)

The fact that a word usually has only a few (often only one) pro-
nunciations is represented by choosing α close to 0, assigning a
large prior probability mass 1

1+α
to the first pronunciation.



3.3. Gibbs sampling for learning and evaluation

For inference on the Bayesian model, we use Gibbs sam-
pling [26, 27] starting with an initial assignment, then repeat-
edly randomly picking an utterance and updating the values of
its hidden variables by drawing a sample from their joint poste-
riors given values of the rest of the variables.

Let φn,ψn,wn be the phone sequence, word segmented
phone sequence, and word sequence of the selected utterance
respectively. Similarly, let Φ\n,Ψ\n,W\n be the sets of phone
sequences, word segmented phone sequences, and word se-
quences of the remaining utterances. As shown in the left plate
of Figure 1, given a word-segmented text the word sequence
wn is an observed variable and the word segmented phone se-
quence ψn and the phone sequence φn are hidden. Similarly,
when an utterance is given as a phone level transcript, the phone
sequence φn is observed and the other two variables ψn and
wn are hidden.

The joint posterior of any combination of the hidden nodes
of a selected utterance is obtained from a joint posterior of the
three variables:

p(φn,ψn,wn|Φ\n,Ψ\n,W\n)

=
∫
p(φn,ψn,wn,Θ,∆|Φ\n,Ψ\n,W\n)dΘd∆

= p(φn|ψn)p(wn|W\n)p(ψn|wn,W
\n,Ψ\n). (4)

The derivation of Equation (4) is based on the chain rule, condi-
tional independencies that are read from the Bayesian model by
d-separation [28], and marginalization of the language model ∆
and the pronunciation dictionary Θ.

In the equation, predictive distributions p(wn|W\n) and

p
(
ψn|wn,W

\n,Ψ\n
)

are obtained by CRP, and are used
through collapsed Gibbs sampling [27]. The predictive dis-
tribution p(wn|W\n) is easily evaluated by the CRP be-
cause W\n is in the conditional, which means it is treated
as if it is observed, and it works as a language model for
the selected utterance.1 Similarly, the predictive distribution
p
(
ψn|wn,W

\n,Ψ\n
)

is easily evaluated by CRP because

both W\n and Ψ\n are in the conditional part, which means
they are treated as if their alignments were known. This
works as a pronunciation dictionary for the selected utterance.
p(φn|ψn) corresponds to the segmentation rule, which takes
a value of 1 only when φn is obtained by removing the word
boundaries in ψn, and otherwise it is 0. In a word-segmented
text, the segmented phone sequence and the phone sequence
may be marginalized out instead of sampling their values be-
cause of the Bayesian model’s structure.

3.4. WFST-based implementation

Sampling from the joint posterior distribution of the hidden
variables of the selected utterance is not a simple task due to its
complex internal structure. To implement Gibbs sampling, we
make use of WFSTs, extending the implementation of the un-
supervised word and LM learning [6, 7, 8] to introduce the pro-
nunciation dictionary. In order to perform sampling from a joint
probability of p(ψn,wn|φn,Φ\n,Ψ\n,W\n) given an input
phone sequence φn of a selected utterance, first the phone se-
quence φn and each component of Equation (4) are represented
by WFSTs and they are composed to form a single WFST. The

1Particularly, it is an extended version of the Kneser-Ney N-
gram [29] when a hierarchical Pitman-Yor language model is used [30].

composed WFST expresses an unnormalized distribution of the
posterior. Then a sample is obtained by applying the forward fil-
tering backward sampling algorithm, which uses dynamic pro-
gramming to effectively sample from the WFST.

There is a problem, however, when composing a WFST for
our proposed framework. Specifically, the intermediate sym-
bols are removed if we use normal composition operations. This
means the necessary information about the segmented phone
sequence ψn is marginalized out. To address the problem, we
modify the composition operation so that intermediate symbols
are accumulated in the input label. When an arc having “a” and
“b” as the input and output labels and an arc having “b” and “c”
are composed by the modified composition, the composed arc
has “a b” as the input label and “c” as the output label instead
of “a” and “c”.

4. Experimental setup
Experiments were performed using the WSJ corpus [31, 32] and
the CMU dictionary. As the phone transcript, true phone labels
were used. The number of phones was 39 and lexical stress
was not used. The word entries of the pronunciation dictionary
were made from a word level transcript, in which pronuncia-
tions were initially given to a subset of the words. The task
was to find pronunciations for the remaining words using un-
aligned word and phone level transcripts. As the base distri-
bution for the pronunciation, a phone 0-gram model was used.
The concentration parameter α for the pronunciation dictionary
was set to 0.1. Gibbs sampling was initialized by performing
the Viterbi assignment to the hidden variables at the first epoch.
For the initialization, all the utterances were processed before
updating the statistics. After the first epoch, the distributions
were updated utterance by utterance. During the sampling, the
vocabulary was fixed so that no new word was generated with
unknown spelling. The language model was first initialized us-
ing the word-segmented text, where the segmented phone se-
quences and the phone sequences were marginalized out. The
software was implemented by modifying LatticeWordSegmen-
tation [8, 33, 6],2 which implements a hierarchical Pitman-Yor
language model. As the baseline, G2P was evaluated where Se-
quitur G2P [13]3 was used for the implementation.

5. Results
To investigate the basic properties of the proposed method, we
first run experiments using a small data set, and then scale it up
to a larger setting. The first experiments were performed using
100 utterances with phone level transcript and 100 utterances
with word level text. In this experiment, the word and phone
level transcripts were obtained from the same 100 utterances in
the corpus. However, no utterance level alignment information
was given to the system. The vocabulary size was 849 in which
pronunciations were given to 70%, which was 594 words, with
the remaining 30% not given pronunciations. The language
model was a word 2-gram, and the perplexity was 30.8. When
a third order G2P model was trained using the 594 words and
applied to the remaining 255 words to compensate for the miss-
ing pronunciations, 60.4% of the words were assigned a wrong
pronunciation. Looking at the whole dictionary, 18.1% of the
words had a wrong pronunciation.

2https://github.com/fgnt/
LatticeWordSegmentation

3https://www-i6.informatik.rwth-aachen.de/
web/Software/g2p.html
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Figure 2 shows WER results evaluated for output word la-
bels of WFST paths obtained by the sampling for the phone
input data. The plotted WER is an average of three indepen-
dent runs. In the figure, “G2PBase” is the baseline result when
a Viterbi assignment was performed using the G2P-augmented
dictionary pinning the pronunciations by choosing α almost
0 (1E-9) and prohibiting model update. “GIBBS” indicates
the result of the proposed method using the initial dictionary
with the missing pronunciations. “VitBeamN” is a result when
Viterbi beam approximation with beam widthN was used in the
Gibbs sampling. “VitBeam1kP6” is similar to VitBeam1k but
six utterances were processed in parallel before updating the
statistics. By proceeding the sampling epochs, smaller WERs
were obtained for all the conditions compared to 23.0% of
the baseline WER showing the effect of the proposed method.
VitBeam1kP6 gave similar WER as VitBeam1k, which indi-
cates parallel processing for faster computation does not harm
the WER. The minimum WERs by GIBBS, VitBeam500, Vit-
Beam1k, VitBeam1kP6, and VitBeam10k after 40 epochs were
9.6%, 16.3%, 15.0%, 14.6% and 9.4%, respectively. When a
Xeon X5650 CPU was used, their processing times were 37
min, 2.1 min, 4 min, 1.3 min, and 99 min per epoch. This result
shows the Viterbi beam approximation is useful in reducing the
computational time, while the improvement in WER is reduced
if the beam width is narrow.

To analyze the learned dictionary obtained by GIBBS, Fig-
ure 3 depicts the number of insertion and deletion dictionary
errors normalized by the vocabulary size. Here, an insertion er-
ror means an extra wrong pronunciation appeared in one of the
sampled pronunciations for the word, and a deletion means a
correct pronunciation is missing. For the G2P-augmented dic-
tionary, these errors are both 18.1% since one wrong pronun-
ciation results in one insertion and one deletion error. In the
figure, the zeroth epoch is the initial condition and only dele-
tion errors existed. At the first epoch, insertion errors increased
since a new pronunciation was generated for the words having
no pronunciation. After that, both insertion and deletion errors
mostly monotonically decreased.

Table 2 shows an example of a part of sampled word se-
quences obtained for a phone input when GIBBS was used. It
can be seen that the correct sentence was obtained at the third
epoch, which was the result of successful pronunciation assign-
ment.

We next perform a larger experiment using all the training

Table 2: Example of a part of sampled sentences. Pronuncia-
tions of “but”, and “times” were initially unknown.
Reference you’re a friend in bad times as well as good
Epoch1 you’re a friend in , as well as good
Epoch2 you’re a friend in bad time close as well as good
Epoch3 you’re a friend in bad times as well as good

Table 3: WERs when non-overlapping larger data set was used.
Init condition 15% missing 30% missing
Epoch 1 2 5 1 2 5
G2PBase 16.7 - - 21.1 - -
VitBeam 20.3 15.0 14.5 33.8 25.1 24.1
VitBeam+G2P 11.1 8.8 8.9 18.4 13.8 13.5

data in the WSJ corpus after removing duplicated utterances.
The first 8000 utterances were used as the word transcript and
the remaining 2796 utterances were used as the phone tran-
script. There was no overlap between them. The vocabulary
size was 12.5k in which 15% and 30% words were not given
pronunciations initially. A word 3-gram was used as the lan-
guage model. The perplexity was 200.8 and the OOV rate was
2.4%. When G2P was used to compensate for the 15% and the
30% of the missing pronunciations, the error rates were 38.7%
and 39.7%, respectively. For fast computation and suppressed
memory usage, VitBeam1kP6 was used (denoted as VitBeam).
We additionally tested an extension of the proposed method
where the G2P-augmented dictionary was used as an initial dic-
tionary (VitBeam+G2P). Table 3 shows the results. The WERs
of the G2P baseline were 16.7% and 21.1% for the 15% and
30% initial conditions, respectively. VitBeam gave an improve-
ment as epochs progressed in this condition as well, but the re-
sult obtained at fifth epoch was worse than the G2P baseline
when the 30% of pronunciations were initially missing. How-
ever, by combining the G2P with the proposed method, Vit-
Beam+G2P successfully gave a significantly smaller WER of
8.9% and 13.5%, respectively.

6. Conclusion and future work
We have proposed a Bayesian semi-supervised pronunciation
dictionary learning method using a disjoint phone and word
data. Experiments using WSJ corpus have demonstrated its ef-
fectiveness in obtaining reductions in WER. Future work in-
cludes improving the base distribution for improved perfor-
mance. In fact, purely context information was utilized in this
paper based on the phone 0-gram base distribution to find or cor-
rect pronunciations of words, but utilizing a more informative
base distribution could potentially be useful. Investigating other
sampling strategies such as beam sampling [34] would improve
the computational efficiency. Another important extension is
to use automatically recognized phone transcripts. For this, a
WFST encoding a phone lattice could be used instead of the
one best hypothesis, or a layer of HMMs could be appended to
the framework to form a full Bayesian model of a speech recog-
nition system.
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