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Abstract
Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) is demonstrated to
efficiently solve eigenvalue problems for graph Laplacians that appear in spectral clustering.
For static graph partitioning, 10-20 iterations of LOBPCG without preconditioning result in -
10x error reduction, enough to achieve 100% correctness for all Challenge datasets with known
truth partitions, e.g., for graphs with 5K/.1M (50K/1M Vertices/Edges in 2 (7) seconds,
compared to over 5,000 (30,000) seconds needed by the baseline Python code. Our Python
code 100% correctly determines 98 (160) clusters from the Challenge static graphs with 0.5M
(2M) vertices in 270 (1,700) seconds using 10GB (50GB) of memory. Our single-precision
MATLAB code calculates the same clusters at half time and memory. For streaming graph
partitioning, LOBPCG is initiated with approximate eigenvectors of the graph Laplacian
already computed for the previous graph, in many cases reducing 2-3 times the number of
required LOBPCG iterations, compared to the static case. Our spectral clustering is generic,
i.e. assuming nothing specific of the block model or streaming, used to generate the graphs for
the Challenge, in contrast to the base code. Nevertheless, in 10-stage streaming comparison
with the base code for the 5K graph, the quality of our clusters is similar or better starting at
stage 4 (7) for emerging edging (snowballing) streaming, while the computing time is 100-1000
smaller.
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Abstract—Locally Optimal Block Preconditioned Conjugate
Gradient (LOBPCG) is demonstrated to efficiently solve eigen-
value problems for graph Laplacians that appear in spectral
clustering. For static graph partitioning, 10–20 iterations of
LOBPCG without preconditioning result in ˜10x error reduction,
enough to achieve 100% correctness for all Challenge datasets
with known truth partitions, e.g., for graphs with 5K/.1M
(50K/1M) Vertices/Edges in 2 (7) seconds, compared to over
5,000 (30,000) seconds needed by the baseline Python code. Our
Python code 100% correctly determines 98 (160) clusters from
the Challenge static graphs with 0.5M (2M) vertices in 270 (1,700)
seconds using 10GB (50GB) of memory. Our single-precision
MATLAB code calculates the same clusters at half time and
memory. For streaming graph partitioning, LOBPCG is initiated
with approximate eigenvectors of the graph Laplacian already
computed for the previous graph, in many cases reducing 2-3
times the number of required LOBPCG iterations, compared to
the static case. Our spectral clustering is generic, i.e. assuming
nothing specific of the block model or streaming, used to generate
the graphs for the Challenge, in contrast to the base code.
Nevertheless, in 10-stage streaming comparison with the base
code for the 5K graph, the quality of our clusters is similar or
better starting at stage 4 (7) for emerging edging (snowballing)
streaming, while the computing time is 100–1000 smaller.

I. INTRODUCTION

Spectral clustering is a classical method for grouping to-
gether relevant data points, while at the same time separating
irrelevant data points. Spectral clustering is commonly formu-
lated as a partitioning of a graph, with vertices of the graph
being mapped with data points. The clustering is called “spec-
tral” because its algorithms are based on spectral graph theory,
i.e. spectral properties of matrices associated with the graph,
such as graph adjacency and Laplacian matrices, and thus
can be related to dimensionality reduction via the principal
component analysis. Compared to other practical clustering
techniques, spectral clustering is arguably well supported
mathematically, mostly avoiding heuristic simplifications, typ-
ically needed in combinatorial optimization formulations of
clustering to make computations tractable. Spectral clustering
has been successful in a wide variety of applications, ranging
from traditional resource allocation, image segmentation, and
information retrieval, to more recent bio-informatics, providing
meaningful results at reasonable costs.

The graph partitioning problem can be formulated in terms
of spectral graph theory, e.g., using a spectral decomposition
of a graph Laplacian matrix, obtained from a graph adjacency
matrix with non-negative entries that represent positive graph
edge weights describing similarities of graph vertices. Most
commonly, a multi-way graph partitioning is obtained from
approximated “low frequency eigenmodes,” i.e. eigenvectors
corresponding to the smallest eigenvalues, of the graph Lapla-
cian matrix. Alternatively and, in some cases, e.g., normalized
cuts, equivalently, one can operate with a properly scaled graph
adjacency matrix, turning it into a row-stochastic matrix that
describes probabilities of a random walk on the graph, where
the goal is to approximate the dominant eigenpairs.

The Fiedler vector, or a group of eigenvectors of the graph
Laplacian corresponding to the left-most eigenvalues, are
computed iteratively by solving the corresponding symmetric
eigenvalue problem. Efficiency of iterative solvers is crucial
for practical computations for large or real time streaming data.
The need to deal with big data and the resulting humongous
matrix eigenvalue problems in data sciences is not historically
the first one. Computational mechanics and especially material
sciences have long been sources of large scale eigenvalue prob-
lems, with the increasing needs outgrowing all advances in
computing resources. For example, a decade ago two Gordon
Bell Prize finalists at ACM/IEEE Conferences on Supercom-
puting in 2005 [1] and 2006 [2] implemented on Japan’s Earth
Simulator—the number one supercomputer in the world at that
time,—and successfully tested, for multi-billion size matrices,
the Lanczos [3] and Locally Optimal Block Preconditioned
Conjugate Gradient (LOBPCG) [4] methods.

The remainder of the paper is organized as follows. In §II,
we briefly review, cf. [5], [6], traditional graph-based spectral
clustering and cuts partitioning, discuss numerical issues of
related large scale computations for Big Data spectral cluster-
ing, and describe our approach. Partition Challenge Datasets
with Known Truth Partitions [7] suitable for our techniques
are reviewed in §III. Our numerical results appear in §IV.
We conclude in §IV that spectral clustering via LOBPCG is
an efficient scalable technology for high-quality fast graph
partitioning in the present era of Big Data.

http://www.merl.com/people/knyazev


II. APPROACH

A. Introduction to spectral clustering in a nutshell

Let entries of the matrix W be called weights and the matrix
D be diagonal, made of row-sums of the matrix W . The matrix
W may be viewed as a matrix of scores, which represent the
similarity between of data points. Similarities are commonly
determined from their counterparts, distances. The distance
matrix is a matrix containing the distances, taken pairwise,
of a set of data points. The general connection is that the
similarity is small if the distance is large, and vice versa.

Commonly, the data clustering problem is formulated as
a graph partition problem. The graph partition problem is
defined on data represented in the form of a graph G = (V,E),
with n vertices V and m edges E such that it is possible to
partition G into smaller components with specific properties.
For instance, a k-way partition partitions the vertex set into k
components. The similarity matrix W is provided as an input
and consists of a quantitative assessment of the relative simi-
larity of each pair of points in the dataset. In the framework
of graph spectral partitioning, entries of the n-by-n matrix W
are weights of the corresponding edges E, and the matrix W
is called the weighted graph adjacency matrix.

Traditional mathematical definitions of graph partitioning
are combinatorial and naturally fall under the category of
NP-hard problems, solved using heuristics in practice. Data
clustering via graph spectral partitioning , initiated in [8],
[9], is a state-of-the-art tool, which is known to produce high
quality clusters at reasonable costs.

In directed graphs, the weighted graph adjacency matrix
W is not symmetric. For the purpose of spectral partitioning,
which is based on eigenvalue decompositions of matrices
associated with the graph, it is very convenient to deal with
symmetric matrices, so the non-symmetric W is often sym-
metrized. The symmetrization we use is substituting W +W ′

for W , where W ′ denoted the transpose of the matrix W and
the sum + may be logical if the graph has no weights, e.g.,
all non-zero entries in W are simply ones. In general, we
assume that all the entries (weights) in W are non-negative
real numbers and the sum is algebraic.

Let us introduce the graph Laplacian matrix L = D −W .
The column-vector of ones is always an eigenvector of L
corresponding to the zero eigenvalue. The symmetric matrix L
has all non-negative eigenvalues, provided that all entries of
the matrix W are nonnegative; cf. [10]. The actual number
of major partitions is automatically determined in spectral
clustering using a gap in the smallest eigenvalues of the
graph Laplacian. The gap is calculated by comparing the
increments in the eigenvalues to find the first significantly
large increment. The number of eigenvalues located below
the gap determines the number of major multi-way graph
partitions/clusters. An absence of the gap indicates that no
reliable multi-way graph partitioning is available. Multi-way
block partition is computed from the matrix of approximate
eigenvectors via QR factorization with column pivoting, shown
in [11] to supplement or supersede the traditional k-means++.

B. Numerical challenges of spectral clustering

Our spectral clustering performs block partitioning of
graphs using the Locally Optimal Block Preconditioned Con-
jugate Gradient (LOBPCG) method to iteratively approximate
leading eigenvectors of the symmetric graph Laplacian for
multi-way graph partitioning. The number of the eigenvectors
should not subceed the number of anticipated partitions.

If further lower-level partitioning is desired, the multi-
way clustering procedure described above can be repeated
recursively to independently partition each of the already
determined clusters, resulting in a hierarchical tree of block
partitions. Our code, written for the IEEE HPEC Graph
Challenge 2017 [7], does not have this feature implemented,
performing only a single multi-way graph partitioning.

Both Lanczos and LOBPCG methods do not require storing
a matrix of the eigenvalue problem in memory, but rather
only need the results of multiplying the matrix by a given
vector. Such a matrix-free characteristic of the methods makes
them particularly useful for eigenvalue analysis problems of
very large sizes, and results in good parallel scalability on
multi-threaded computational platforms to large matrix sizes
processed on many parallel processors.

Compared to Lanczos, LOBPCG is a block method, where
several eigenvectors are computed simultaneously as in the
classical subspace power method. Blocking is beneficial if the
eigenvectors to be computed correspond to clustered eigen-
values, which is a typical scenario in multi-way spectral par-
titioning, where often a cluster of the smallest eigenvalues is
separated by a gap from the rest of the spectrum. Blocking also
allows taking advantage of high-level BLAS3-like libraries
for matrix-matrix operations, which are typically included in
CPU-optimized computational kernels.

LOBPCG may be optionally accelerated by preconditioning,
if available, e.g., see [4], [12], [13], to speed up convergence,
e.g., using Algebraic Multigrid Method (AMG) applied to
a regularized graph Laplacian. The regularization is needed,
since AMG attempts to mimic an action of a matrix inverse,
while the original graph Laplacian is technically not invertible,
always having the trivial constant eigenvector corresponding to
the zero eigenvalue. AMG preconditioning increases the com-
putational costs per iteration, but may reduce the number of
required LOBPCG iterations. AMG preconditioning is known
to perform extremely well for some classes of graphs, although
may be inefficient for arbitrary graphs. Since preconditioning
is optional in LOBPCG, it can be dynamically turned off or
on, as well as AMG parameters may be tuned, depending on
past performance in the case of streaming graph.

The open-source Python function of LOBPCG from SciPy is
used for our numerical tests; cf., [14]. AMG and dense matrix
factorizations, e.g., QR, are also performed by well-known
open-source Python functions. Similar open-source LOBPCG
and AMG functions are available in C with MPI and OpenMP
parallel functionality, e.g., in hypre and PETSc/SLEPc [13],
Trilinos/Anasazi [15] libraries, as well as GPU implementa-
tions in MAGMA [16] and NVIDIA nvGRAPH [17].



III. EXPERIMENTS

IEEE HPEC Streaming Graph Challenge Stochastic Block
Partition seeks to identify optimal blocks (or clusters) in a
graph. In static processing, given a large graph G the goal is
to partition G. In stateful streaming, which is the focus of the
streaming graph challenge, given an additional smaller graph
g the goal is to partition G+ g; see [7].

Taking advantage of the second author expertise in numer-
ical solution of matrix eigenvalue problems, we have selected
the graph partition challenge, for which spectral clustering
is known in practice to produce high quality clusters at
reasonable computational costs. The costs of spectral cluster-
ing are primarily determined by a choice of an eigenvalue
solver. All eigenvalue solvers are by nature iterative, so one
needs to minimize the costs per iteration as well the total
number of iterations needed to achieve the required accuracy
of clustering. The LOBPCG eigenvalue solver, that we have
selected to use, only requires the result of single multiplication
of the graph adjacency matrix by a vector (or a group of
vectors that is called a multi-vector) per iteration, just as the
classical power method.

For static graphs, the initial approximations for the eigen-
vectors of the graph Laplacian in LOBPCG are chosen
randomly—every component of every eigenvector is Gaussian
or uniformly distributed on [-1,1]. Such randomization helps
LOBPCG to avoid local stationary points in the iterative
process of convergence to the leading eigenvectors. Streaming
graphs are treated via warm-starts of LOBPCG, where the
approximate eigenvectors already computed for the previous
graph in the stream serve as high-quality initial approximations
in LOBPCG for the graph Laplacian of the current graph.
Such warm-starts of LOBPCG may significantly reduce the
number of iterations of LOBPCG, compared to the randomized
initialization for the static case, if the streaming graph is
sampled often enough. To enable possible appearance of
additional partitions of the streaming graph one should choose
the starting number of the eigenvectors to be computed large
enough and keep it, or determine the number of computed
eigenvectors dynamically, always slightly exceeding (for the
gap calculation) the expected number of partitions.

Streaming graphs with dynamically changing numbers of
vertices, like in the snowball example, can also be efficiently
processed by LOBPCG with warm-starts, if a mapping is
known between the sets of old and new vertices. In the
snowball example, the old vertices are always numbered first
and in the same order in a subset of the new vertices, thus for
warm-starts we put the previously computed eigenvectors in
the top block of the initial approximate eigenvectors for the
current graph. Since the set of vertices in the snowball example
is growing, warm-starts require filling the missing entries in
the bottom block of the initial approximate eigenvectors for the
current graph. One can fill in the missing entries by random
or use interpolation of the already available values in the
old vertices, e.g., by propagating the values using the graph
connectivity. In our tests, we use the random fill-in.

We have limited our testing to Partition Challenge Datasets
with Known Truth Partitions. In terms of the number of
vertices of the graphs, our MATLAB, Python, and C codes
partition the Challenge static 5K graph 100% correctly in a
second, already making reliable timing difficult, so 5K is the
smallest size we have tested. Our Python code runs out of 128
GB memory in the case of 5M vertices with 221 partitions,
so our largest tested Challenge graph is with 2M vertices.

There are public eigensolvers in C with MPI, allowing
well-scalable parallel distributed-memory solution of eigen-
value problems, e.g., LOBPCG in hypre and PETSc/SLEPc
[13], Trilinos/Anasazi [15], and MAGMA [16]. We have
performed preliminary tests with LOBPCG in hypre and
PETSc/SLEPc/BLOPEX on a single node, but observe no
dramatic increase of performance, compared to our Python
and MATLAB codes, so do not report the corresponding
results in the present work. Our explanation is that, to our
knowledge, the present versions of LOBPCG in hypre and
SLEPc/BLOPEX implement the distributed column-matrix
multi-vector X only rudimentarily, as a collection of dis-
tributed single vectors, which does not allow utilizing highly
efficient matrix-matrix BLAS-3 type libraries. In contrast,
PETSc/SLEPc, Trilinos/Anasazi, and MAGMA versions of
LOBPCG pay special attention to efficient implementation of
distributed multi-vectors and thus are expected to perform well
both in shared and distributed memory environments.

Our Python and MATLAB codes do not use MPI, so all our
tests are on a single node. However, the BLAS and LAPACK-
type functions in Python and MATLAB are multi-threaded
and most expensive operations in LOBPCG are matrix-matrix
BLAS-3 type, so multiple cores are being used.

We test matrix-free versions of our codes, where the original
non-symmetric adjacency matrix A is read from the given
file and stored in binary sparse matrix format, and where the
required by LOBPCG multiplication of the graph Laplacian L
by a column-matrix (block of vectors) X is performed by a
function call, e.g., LXfun = @(X)diagL. ∗ X − A ∗ X −
(X ′ ∗ A)′ in MATLAB, wherein the vector diagL contains
pre-computed diagonal entries of L. AMG commonly needs
the matrix L of the graph Laplacian being explicitly available,
however. We have found that our matrix-free implementations
in Python and MATLAB lead to no decrease in computing
time, although saves memory for matrix storage.

The Python AMG has not led to acceleration in our tests,
and the corresponding results are not shown. We have also
tested LOBPCG in hypre and PETSc/SLEPc with hypre alge-
braic multigrid BoomerAMG, but observed no advantages, so
we report no results here. Our explanation is that LOBPCG
has been able to determine 100% correct partition typically
after a relatively small, 10–20, number of iterations, even
without AMG. The extra costs of constructing and applying
AMG preconditioning that we have tested are significant,
due to a large, relative to that in typical AMG use for
partial differential equations, vertex degrees. Preconditioning
for graph Laplacians is a competitive research area, but we
have limited testing to MPI software available via PETSc.



TABLE I
TYPICAL PYTHON TIMING IN SEC FOR 100% CORRECT PARTITION OF

STATIC GRAPHS FROM THE CHALLENGE DATASETS WITH KNOWN TRUTH

|V |/|E| 5K/.1M 20K/.4M 50K/1M .5M/10M 2M/41M
# Clusters 19 32 44 98 160
LOBPCG <1 2 7 270 1700
Base 400 5100 30000 N/A N/A

IV. RESULTS

We have tested our MATLAB, Python, and C codes on
several platforms, ranging from MS Windows and MAC
laptops to r4.16xlarge AWS EC2 instances. Typical timing in
seconds for 100% correct partition of static graphs in Table I
is for a single node with 20 cores of Intel Xeon CPU E5-2660
v3 2.60GHz and 128 GB DDR4 RAM. We have not attempted
to run the base Python code for graphs with over 50K vertices.

Checking scalability as the size of the graph increases
in Table I, we see that the timing grows at least linearly
with the product of the number of edges m = |E| and the
number of clusters, we denote by k. We remind the reader
that we simultaneously compute l approximate eigenvectors
in LOBPCG and keep l slightly larger than the expected
number k of the clusters. LOBPCG performs linear algebraic
operations with multi-vectors (n-by-l matrices), at the cost
proportional to n · l ≈ n · k. In single-precision MATLAB
tests, not reported here, but where we get more stable timing
measurement for graphs with 20K and smaller vertices, for
10x growth from the graph size 5K/.1M Vertices/Edges to
50K/1M Vertices/Edges at the same time increases 2.5x the
number of clusters from 19 to 44, resulting in approximately
25x increase in computation time from .3 sec to 7 sec. In Table
I, 10x growth from the graph size 50K/1M Vertices/Edges to
.5/10M Vertices/Edges at the same time increases 2.2x the
number of clusters k from 44 to 98, resulting in approximately
40x increase in computation time from 7 sec to 270 sec, so it
appears that the growth may be quadratic in k.

Indeed, LOBPCG also computes Gram matrices for multi-
vectors, which has the computational cost proportional to n·l2.
When the number k ≤ l of the clusters grows, this quadratic
term in the costs may start dominating. However, we observe
in Table I that 4x growth from the graph size .5M/10M
Vertices/Edges to 2M/40M Vertices/Edges at the same time
increases 1.6x the number of clusters k from 98 to 160, but
resulting in only 6.3x increase in computation time from 270
sec to 1700 sec, which is linear in n · k. This effect may be
explained by faster convergence for larger k and efficient soft
locking [18] of already converged eigenvectors in LOBPCG.

The main memory usage in LOBPCG is for 6 multi-
vectors—matrices of the size n-by-l, in addition to whatever
memory is needed to store the adjacency matrix A or its
equivalent, that is required to perform the multiplication of a
multi-vector by the graph Laplacian. Simultaneous computing
of l = 162 eigenvectors for the graph with 2M/40M Ver-
tices/Edges requires approximately 50 (25) GB of RAM in
double (single) precision in our Python (MATLAB) codes.

To save memory, LOBPCG can also perform hard-locking,
i.e. compute eigenvectors one-by-one or block-by-block, in the
constrained subspace that is complementary to all previously
computed eigenvectors. Hard-locking is implemented in all
LOBPCG versions, and is easy to use, but may lead to slower
LOBPCG convergence. Even more radical memory saving
approach would be recursive spectral bisection, which however
would likely decrease both the convergence speed and the
quality of partition. The Challenge graphs are small enough
not to have forced the issue, allowing multi-way partitioning
simply using the full block-size in LOBPCG without hard-
locking, except for the largest graph with 5M vertices, when
our code runs out of memory.

Our main Python and MATLAB codes are very short, but
call the LOBPCG function and a few standard functions for
matrix computations, e.g., available in LAPACK.

Accuracy of partitions for the streaming Partition Challenge
Datasets with Known Truth Partitions is displayed using
optimal partition matching (PM), pairwise recall (PR), and
pairwise precision (PP). We report separately the results of
streaming with random (R) and warm-start (W) initialization.

Our spectral clustering is generic, i.e., based entirely on the
graph adjacency matrix, not making any assumptions specific
to the block model, used to generate the graphs for the
Challenge, in contrast to the baseline code. Unsurprisingly,
PM and PP values for our partitions may at initial stages of
graph streaming be small, relative to those for the base code,
for small-size graphs, since the spectral gap may determine the
number of clusters different from k. We report the correctness
only at stages 5− 10 of the streaming process, except for 5K
and 2M cases, where we provide the complete data.

The timing is reported in seconds in all tables. Using
the warm-start (W) in LOBPCG compared to random (R)
initialization may not only speeds up LOBPCG convergence,
but has also typically positive effect on correctness of the
partition, especially in the case of emerging edges.

Partitioning streaming graphs with snowballing effects
brings new challenges, compared to the case of emerging
edges. Since new vertices emerge in the streaming, we have
to come up with the warm-start procedure, which gives us
the values to initialize eigenvector components corresponding
to the previously missing vertices for our vertex-based graph
Laplacian spectral clustering.

We resort to the trivial scenario, where the missing values
are just chosen randomly, while the previously computed
values are reused wherever available. Such a warm-start is
somewhat beneficial in some tests, compared to random ini-
tialization of all components of approximate eigenvectors, but
not as good as for emerging edges. We conjecture that better
results might be obtained via graph-based signal reconstruction
techniques, such as in [19], that interpolate a given signal on
some vertices of a graph to all the vertices, using low-pass
graph based filters.

We finally note that due to random initialization numerical
results somewhat vary when tests repeated even on the same
hardware. The presented results are typical, in our experience.



TABLE II
5K EMERGING (TOP) AND SNOWBALL (BOTTOM) BASE VS. LOBPCG

|V | Base LOBPCG warm-start
sec PM PR PP sec PM PR PP

1 507 .088 1 .056 .5 .14 .21 .08
2 617 .941 .97 .895 .5 .09 .99 .06
3 460 .996 .992 .993 .5 .09 .99 .06
4 447 .919 .868 .999 .7 .97 .98 .96
5 439 1 1 1 .7 .99 .98 1
6 446 .919 .869 1 1.1 .97 .99 .96
7 442 .926 .871 1 .7 1 1 1
8 432 1 1 1 .8 1 1 1
9 415 1 1 1 1.1 1 1 1
10 409 .921 .869 1 1.4 1 1 1
1 22 .550 .382 .656 .2 .34 .999 .14
2 52 .915 .751 .981 .2 .25 .973 .08
3 80 .999 .999 .999 .2 .93 .929 .99
4 113 1 1 1 .4 .13 .988 .06
5 146 1 1 1 .3 .27 .985 .08
6 190 1 1 1 .4 .26 .999 .08
7 244 1 1 1 .4 1 1 1
8 298 1 1 1 1.3 1 1 1
9 366 1 1 1 1 1 1 1
10 416 1 1 1 1.4 1 1 1

TABLE III
2M EMERGING (TOP) AND SNOWBALL (BOTTOM) LOBPCG RANDOM VS.

WARM-START

# secR secW PMR PMW PRR PRW PPR PPW
1 850 800 .016 .016 .008 .344 .008 .007
2 1200 1000 .014 .013 .354 .662 .007 .007
3 2100 1600 .019 .013 .784 .916 .007 .007
4 3300 4700 .013 .013 1 1 .007 .007
5 3300 2600 .013 .013 1 1 .007 .007
6 2800 2800 .013 .013 1 1 .007 .007
7 3000 1500 .013 .964 1 .993 .007 .943
8 2600 1200 1 .992 1 .999 1 .991
9 3000 800 1 1 1 1 1 1

10 3800 1600 1 1 1 1 1 1
1 440 420 .08 .08 .998 .998 .014 .014
2 1020 960 .037 .037 1 1 .008 .008
3 1110 1400 .024 .083 1 .794 .007 .012
4 1450 1570 .02 .02 .999 .98 .007 .007
5 1660 2000 .015 .015 .999 .999 .007 .007
6 2260 2000 .037 .838 .993 .941 .007 .669
7 1980 720 .036 .953 .999 .995 .007 .912
8 1840 1140 1 .998 1 1 1 .998
9 2400 710 1 1 1 1 1 1

10 3800 3200 1 1 1 1 1 1

V. CONCLUSION

We review algorithms and software for eigenvalue problems,
focusing on LOBPCG for spectral clustering and describing
our spectral multi-way graph partitioning implemented in
Python, MATLAB and C. Our tests for all static graphs in the
Challenge demonstrate 100% correct partition, even though
our spectral clustering approach is general, not tailored for
the stochastic block model used to generate the graphs. Our
Python code is at least 100–1000 times faster for all tested
graphs with 5K and more vertices compared to the baseline
Python dense serial implementation of the reference method.
Potential next steps include testing SLEPc, Trilinos/Anasazi,
MAGMA, and CUDA versions of LOBPCG in shared and dis-
tributed memory environments for practical graph partitioning.
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TABLE IV
EMERGING EDGES STAGES 5–10 LOBPCG PYTHON

Stage 5
|V | 5K 20K 50K .5M 2M

sec R .8 5 14 443 3300
sec W .7 3 4 373 2600
PM R .99 .965 .892 .021 .013
PM W .99 .98 .903 .021 .013
PR R .979 .988 .952 .999 1
PR W .98 .99 .971 .998 1
PP R 1.0 .952 .822 .011 .007
PP W 1.0 .974 .848 .011 .007

Stage 6
|V | 5K 20K 50K .5M 2M

sec R .7 4 15 520 280
sec W 1.1 1.3 4 290 2800
PM R .97 .999 .991 .039 .013
PM W .97 .983 .983 .917 .013
PR R .988 .997 .997 .998 1
PR W .988 .998 .996 .979 1
PP R .957 1.0 .987 .012 .007
PP W .957 .984 .968 .85 .007

Stage 7
|V | 5K 20K 50K .5M 2M

sec R .9 4.6 10 380 3000
sec W .7 1.4 7 280 1500
PM R 1 1 .992 .039 .013
PM W 1 1 .992 .987 .964
PR R 1 1 .997 1.0 1
PR W 1 1 .997 .999 .993
PP R 1 1 .987 .012 .007
PP W 1 1 .987 .982 .943

Stage 8
|V | 5K 20K 50K .5M 2M

sec R .9 3 10 360 2600
sec W .8 4 4 160 1200
PM R 1 1 .992 .997 1
PM W 1 1 .992 1 .992
PR R 1 1 .997 .999 1
PR W 1 1 .997 1 .999
PP R 1 1 .987 .995 1
PP W 1 1 .987 1 .991

Stage 9
|V | 5K 20K 50K .5M 2M

sec R 1 4.5 10 480 3000
sec W 1 1.4 6 260 800
PM R 1 1 1 1 1
PM W 1 1 1 1 1
PR R 1 1 1 1 1
PR W 1 1 1 1 1
PP R 1 1 1 1 1
PP W 1 1 1 1 1

Stage 10
|V | 5K 20K 50K .5M 2M

sec R 1.7 4.8 16 800 3800
sec W 1.4 5.6 20 600 1600
PM R 1 1 1 1 1
PM W 1 1 1 1 1
PR R 1 1 1 1 1
PR W 1 1 1 1 1
PP R 1 1 1 1 1
PP W 1 1 1 1 1

TABLE V
SNOWBALL STAGES 5–10 LOBPCG PYTHON

Stage 5
|V | 5K 20K 50K .5M 2M

sec R .4 1.3 5.5 280 1660
sec W .3 1.2 3.7 200 2000
PM R .268 .963 .337 .02 .015
PM W .268 .997 .965 .02 .015
PR R .985 .989 .975 .999 .999
PR W .985 .993 .989 .999 .999
PP R .082 .933 .049 .011 .007
PP W .083 1 .946 .011 .007

Stage 6
|V | 5K 20K 50K .5M 2M

sec R .5 1.6 5.7 310 2260
sec W .4 .8 4 110 2000
PM R .262 .998 .991 .038 .37
PM W .262 .998 .979 .946 .838
PR R .999 .996 .996 .999 .993
PR W .999 .997 .991 .99 .941
PP R .082 1 .986 .012 .007
PP W .082 1 .967 .908 .669

Stage 7
|V | 5K 20K 50K .5M 2M

sec R .7 2 7.7 270 1980
sec W .4 1.3 3 200 720
PM R 1 .998 1 .038 .036
PM W 1 .999 .992 .992 .953
PR R 1 .996 .999 .1 .999
PR W 1 .999 .997 .999 .995
PP R 1 1 1 .012 .007
PP W 1 1 .987 .988 .912

Stage 8
|V | 5K 20K 50K .5M 2M

sec R .9 2.3 8.9 320 1840
sec W 1.3 2 4.5 170 1140
PM R 1 1 1 .997 1
PM W 1 1 1 .997 .998
PR R 1 1 1 .999 1
PR W 1 1 1 .999 1
PP R 1 1 1 .996 1
PP W 1 1 1 .996 .998

Stage 9
|V | 5K 20K 50K .5M 2M

sec R 1.2 2.9 9.8 340 2400
sec W 1 5.5 6.2 380 710
PM R 1 1 1 .997 1
PM W 1 1 1 .997 1
PR R 1 1 1 .999 1
PR W 1 1 1 .999 1
PP R 1 1 1 .996 1
PP W 1 1 1 .996 1

Stage 10
|V | 5K 20K 50K .5M 2M

sec R 1.4 7 18 670 3800
sec W 1.4 5 19 550 3200
PM R 1 1 1 1 1
PM W 1 1 1 1 1
PR R 1 1 1 1 1
PR W 1 1 1 1 1
PP R 1 1 1 1 1
PP W 1 1 1 1 1
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