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MPC for Coupled Station Keeping, Attitude Control, and Momentum
Management of GEO Satellites using On-Off Electric Propulsion

David Zlotnik?, Stefano Di Cairano†, and Avishai Weiss‡

Abstract— This paper develops a model predictive control
(MPC) policy for simultaneous station keeping, attitude control,
and momentum management of a nadir-pointing geostationary
satellite equipped with three reaction wheels and four on-off
electric thrusters mounted on two boom assemblies attached
to the anti-nadir face of the satellite. A closed-loop pulse-width
modulation (PWM) scheme is implemented in conjunction with
the MPC policy in order to generate on-off commands to the
thrusters. The MPC policy is shown to satisfy all station keeping
and attitude constraints while managing stored momentum,
enforcing thruster constraints, and minimizing required delta-v.

I. INTRODUCTION

High specific impulse, low-thrust electric propulsion sys-
tems are increasingly being deployed on satellites for both
interplanetary trajectories [1] and routine orbital mainte-
nance [2], [3]. The increased propellant efficiency of electric
thrusters relative to conventional chemical thrusters enables
increased satellite lifetime and decreased propellant mass
fraction, thereby lowering launch costs and facilitating larger
payloads [4]. Electric propulsion systems must be operated
on a near continuous basis, due to their comparitively low
levels of thrust, and consequently render manual ground-
based control impractical. Thus, autonomous closed-loop
low-thrust station keeping control has garnered significant
attention in recent years [5]–[11].

In [7], the authors use model predictive control (MPC)
to treat the combined problem of geostationary Earth orbit
(GEO) station keeping, nadir-pointing attitude control, and
momentum management of a satellite equipped with four
gimbaled electric thrusters placed directly on the satellite’s
anti-nadir face. This thruster arrangement, used also in
[2], [9], [12], while more realistic than the authors’ prior
configuration in [6], hinders delta-v performance. The range
of motion of the gimbals must be limited due to potential for
plume impingement on North-South mounted solar panels.
As North-South station keeping (NSSK), i.e. thrusting in the
out-of-plane direction, is the dominant component in delta-
v consumption, efficiency is sacrificed. Furthermore, the
geometry of thrusters placed on the satellite’s anti-nadir face
results in their nominal torque-free angles, that is, the angles
the thrusters are mounted so as to fire through the satellite’s
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center of mass, wasting much effort in the radial direction.
Thus, the MPC policy of [7] often commands the gimbals
to operate at their limits, generating undesirable torques on
the satellite and unnecessarily burdening the reaction wheels,
which due to limits on total angular momentum storage,
results in additional delta-v being expended on momentum
management. In this paper, the authors adapt the MPC policy
in [7] to a satellite equipped with four electric thrusters
mounted on two gimbaled boom assemblies attached to the
anti-nadir face of the satellite. By introducing boom-thruster
assemblies inspired by [13], the range of motion for efficient
NSSK without risk of plume impingement is increased and
the nominal torque-free angles result in less control effort
being expended radially.

Additionally, the authors in [7] assume the ability to
apply continuously variable thrust. While some advanced
electric propulsion systems can throttle thrust magnitude
[14], most systems remain on-off in nature, and thus [8]–
[11] develop closed-loop station keeping control for on-off
actuators. As such, one of the contributions of this paper is
the development of a pulse-width modulation (PWM) scheme
combined in closed-loop with an MPC policy that generates
physically realizable on-off commands to thrusters mounted
on gimbaled boom assemblies for simultaneous station keep-
ing, attitude control, and momentum management.

The following notation will be used in all derivations. An
arbitrary reference frame Fa is a set of three orthonormal
dextral basis vectors, { a−→

1, a−→
2, a3−→}. The vectors may be

arranged in a vectrix F−→a, where F−→
T
a = [ a−→

1 a−→
2 a−→

3 ].
An arbitrary vector v−→ may be resolved in Fa as v−→ =

va1 a−→
1 + va2 a−→

2 + va3 a−→
3 or alternatively as v−→ = F−→

T
ava,

where va = [ va1 va2 va3 ]T [15]. A vector may be resolved
in any reference frame, for example, v−→ = F−→

T
ava = F−→

T
b vb.

The mapping between a vector resolved in Fa to Fb is given
by the direction cosine matrix Cba ∈ SO(3), SO(3) = {C ∈
R3×3 | CTC = I, det(C) = +1}, such that vb = Cbava.
Principal rotations about the a−→

i axis by an angle α are
denoted by Cba = Ci(α). The cross product between any
two vectors can be expressed as v−→× u−→ = F−→

T
av×a ua, where

(·)× : R3 → so(3), so(3) = {S ∈ R3×3 | S + ST = 0}.
The operator (·)v : so(3) → R3 is the inverse of (·)× such
that (v×a )v = va. The anti-symmetric projection operator
Pa(·) : R3×3 → so(3), is given by Pa(U) = 1

2 (U − UT),
for all U ∈ R3×3. The vector describing the position of a
point p relative to a point q is given by r−→

pq . Similarly, the
angular velocity of frame Fb relative to Fa is given by ω−→

ba.



II. SPACECRAFT MODEL

The satellite model considered in this paper is shown in
Fig. 1. Attached to the spacecraft bus is frame Fp, where
nominally p−→

1 points to the center of the Earth and p−→
3 points

North. Point c denotes the center of mass of the spacecraft.
The spacecraft mass is denoted mB and the moment of inertia
of the spacecraft relative to point c, resolved in frame Fp, is
JBcp . Reaction wheel speeds are denoted by γ̇.
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(a) Spacecraft model with reaction wheels
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r−→
q1an F1

δi

Fn

(b) North facing boom-thruster assembly.

Fig. 1: Spacecraft model including three axisymmetric re-
action wheels and four electric thrusters. The first, second,
and third axes of each reference frame are respectively
denoted by red, green, and blue vectors. Frame Fp is fixed
to the spacecraft bus, while frames Fn and Fs determine the
orientation of the assemblies relative to the bus.

The position of the spacecraft is described by position
vector r−→

cw which denotes the position of point c relative to
point w, a point at the center of the Earth. The attitude of
the spacecraft is given by the direction cosine matrix Cpg ,
which describes the orientation of frame Fp relative to the
Earth-centered inertial (ECI) frame Fg . The angular velocity
of the spacecraft is ωpgp , that is the angular velocity of frame
Fp relative to Fg resolved in Fp. The equations of motion
of the spacecraft are

r̈cwg = −µ rcwg
||rcwg ||3

+ apg +
1

m
CT
pgfthrust

p , (1a)

JBcp ω̇
pg
p = −ωpg×p (JBcp ω

pg
p + Jsγ̇)− Jsη

+ τ pp + τ thrust
p , (1b)

Ċpg = −ωpg×p Cpg, (1c)
γ̈ = η, (1d)

where η is the acceleration of the reaction wheels, Js is the
moment of inertia of the reaction wheel array, and apg and

τ pp are perturbations. The net force and torque produced by
the thrusters are denoted by fthrust

p and τ thrust
p , respectively.

A. Thruster Configuration

The thruster configuration shown in Figs. 1a and 1b is
considered. The four electric thrusters are paired in two
boom–thruster assemblies attached to the anti-nadir face of
the spacecraft. Points an and as denote the attachment points
of the North and South facing assemblies. The North facing
thruster assembly is depicted in Fig. 1b. At the base of
the thruster assembly is a two degree of freedom gimbal,
whose gimbal angles are αn, βn. Offset from the base are
two thrusters, denoted thruster 1 and thruster 2, which apply
forces at points t1 and t2, respectively. The two thrusters
can be simultaneously gimballed through a single degree of
freedom by gimbal angle γn. Thrusters 3 and 4 are located on
the South assembly, whose gimbal angles αs, βs, and γs are
similarly defined. The thrusters are canted by fixed angles
δi, i ∈ {1, 2, 3, 4}, such that for nominal gimbal angles,
ᾱa, β̄a, and γ̄a, a ∈ {n, s}, each thruster fires through the
center of mass of the spacecraft. Associated with thruster i
on assembly a, is a frame Fi such that f−→

i = F−→
T
i fii, where

fii = −f iC2(γa)[0 0 1]T and f i = | f−→
i| is the magnitude of

f−→
i. In terms of γa and f i, fii can be explicitly written as

fii =
[
− sin(γa)f i 0 − cos(γa)f i

]T
. (2)

Resolved in frame Fp, the thruster forces can be expressed
as

f−→
i = F−→

T
pCT

ipfii = F−→
T
p fip, (3)

where Cip = CiaCap, Cia = C1(δi)C2(βa)C3(αa), Cnp =
C3(π), and Csp = C1(π)C3(π). The torque that each
thruster applies to the spacecraft is given by τ ip = rtic×p fip.
Thus, the net force and torque produced on the spacecraft
are given by

fthrust
p =

∑4
i=1 CT

ipfii, τ thrust
p =

∑4
i=1 rqic×p CT

ipfii. (4)

III. MPC POLICY

The design of a controller which allows for the simul-
taneous station keeping, attitude control, and momentum
management for the spacecraft described in the previous
section is now considered. The control objectives are to:
(a) maintain the satellite in the station keeping window,
(b) maintain the satellite in a nadir pointing configuration,
(c) unload stored angular momentum in the reaction wheels,
(d) respect thruster magnitude and pointing limitations, and
(e) limit fuel consumption.
Following the previous works [6], [7], an MPC policy will be
used to accomplish these objectives. Model predictive control
generates control inputs by solving a receding-horizon finite-
time optimal control problem based on a system model
and a user-defined cost function [16]. It is highly desirable
to formulate the MPC problem in terms of a linear time
invariant system subject to linear constraints and a quadratic
cost on the states and control inputs. Doing so allows for the



MPC problem to be formulated as a quadratic program (QP),
which may be solved quickly and efficiently making it highly
suitable for onboard implementation [6], [17]. Further, linear
MPC is appropriate as the MPC policy keeps the spacecraft
in a tight range about the equilibrium, where linearization
introduces minimal errors.

In [7], it was observed that attitude constraint violations
occurred when the MPC policy was allowed to control η.
This was due to the high degree of nonlinearity associated
with attitude control as well as the coupling between the
orbital and attitude dynamics. As a solution, an inner-
loop attitude controller was proposed in [7] to govern the
reaction wheel accelerations while the MPC policy controlled
the closed-loop satellite-attitude controller system. Here, we
follow this general controller structure while considering
the new thruster configuration described in Section II-A,
and an updated control problem formulation that results in
improvements of the control objectives.

A. Inner-Loop Attitude Controller

The non-adaptive form of the controller proposed in [18]
and utilized in [7] is described here. First, it is assumed that
the disturbance torque τ pp can be written as the output of the
LTI system

ẋd = Adxd, τ pp = Cdxd. (5)

Let τ̂ pp denote the estimate of τ pp and consider the following
observer for τ pp ,

˙̂xd = Adx̂d + Bdud, τ̂ pp = Cdx̂d, (6)

where ud = ωpdp + K1S, K1 = KT
1 > 0 is a constant, S =

−Pa(Cpd)v, and Bd is designed such that (6) is positive real.
As in [7], define

ν1 = ω×p (Jpωp + Jsγ̇)− Jp(K1Ṡ + ωpd×p ωp)

ν2 = −τ̂ pp
ν3 = −Kν(ωpdp + K1S)−KpS.

Then, the attitude controller proposed in [18] is η =
−J−1s (ν1 + ν2 + ν3).

B. Linearization

Consider a linearization about a nominal circular orbit with
mean motion n and a nadir pointing configuration with zero
reaction wheel speeds. Letting r̄g denote the nominal position
of the spacecraft in a circular orbit, the true position can
be expressed as rcwg = r̄g + δrg , where δrg is the position
error of the spacecraft. Resolved in Hill’s frame, Fh, this
error is given by δrh = Chg(rcwg − r̄g). Hill’s frame has h−→

1

along the orbital radius, h−→
2 orthogonal to h−→

1 in the orbital
plane, and h−→

3 orthogonal to the orbital plane. A spacecraft
in circular orbit with mean motion n has an angular velocity
of ω̄p = [ 0 0 n ]T. The angular velocity of the spacecraft
can then be written as ωpgp = ω̄p + δω. Let Cdg correspond
to the desired value of Cpg . The error between Cpg and Cdg
is Cpd = CpgCT

dg . Let δθ = [ δφ δθ δψ ]T denote the 3–
2–1 Euler angle sequence associated with Cpd, where δφ,

δθ, and δψ are errors in yaw, pitch, and roll, respectively.
Substituting the above definitions into (1) gives the linearized
equations of motion,

δr̈h = −2ω×0 δṙh −Ωδrh + aph +
1

m
CT
dhfthrust

p

δω̇ =
[
−K1 + ω̄×p − JpKν

]
δω − J−1p Cdτ̂ pp

+
[
K1ω̄

×
p − (ω̄×p )2 + J−1p (Kνω̄

×
p −K)

]
δθ

+ τ thrust
p

γ̈ = η
˙̃xd = Adx̃d + Bdδω + Bd(K1 − ω̄×p )δθ,

where K = KνK1 + Kp, and Ω = diag{−3n2, 0, n2}.
As mentioned previously, it is desirable to formulate the

MPC problem in terms of a linear time invariant system
subject to linear constraints. To retain a linear system model
it is assumed that αa and βa, a ∈ {n, s}, are fixed to their
nominal values (i.e., αa = ᾱa and βa = β̄a), and the control
inputs are selected as ui =

[
sin(γa)f i cos(γa)f i

]T
.

Doing so allows fthrust
p and τ thrust

p to be written as fthrust
p =∑4

i=1 Bfi ui and τ thrust
p =

∑4
i=1 Bτi ui, where Bfi =

CT
ip

[
−e1 −e3

]
and Bτi = rqic×p Bfi . are constant ma-

trices. Letting x = [ δrT δṙT δθT δωT γ̇ x̃d ]T, u =
[ uT

1 uT
2 uT

3 uT
4 ]T, and w = [ apTh 0 0 0 0 0 ]T, the discrete

linear model with sampling period ∆t is

xk+1 = Adxk + Bduk + Bw,dwk. (7)

C. Constraints and MPC Formulation

The MPC problem must restrict the thruster forces to
satisfy thruster magnitude as well as thruster pointing con-
straints. The thruster magnitude constraint is given by ||fii|| ≤
fmax, where fmax is the maximum allowable thrust. This
nonlinear magnitude constraint can be approximated by the
linear constraint |fii| ≤ fmax. The pointing constraints are
given by fii ≤ 0, which ensures that the thrusters fire
away from the spacecraft bus. These two constraints can be
accomplished by enforcing

umin
i ≤ ui ≤ umax

i , (8)

where umax
i = fmax[ 1 1 ]T, umin

i = [ 0 0 ]T. In terms of u,
the control constraint is

umin ≤ u ≤ umax, (9)

where umax = [ umaxT
1 umaxT

2 umaxT
3 umaxT

4 ]T and umin = 0.
Recall that the two North and the two South facing thrusters
are simultaneously driven by gimbal angles γn or γs. To
formulate the MPC problem as a QP the constraint enforcing
simultaneous gimbaling is neglected. Thus, the MPC policy
may command inputs that require the thrusters to gimbal
in non-physically realizable ways. However, this issue is
removed by implementing a pulse-width modulation scheme,
as will be explained later in Sec. IV.

Let λ1 and λ2 respectively denote the maximum allowable
error in longitude and latitude. Then, the station keeping
constraint can be expressed as δr̄min ≤ δr̄ ≤ δr̄max,
where r̄min =

[
−∞ −r̄ tan(λ1) −r̄ tan(λ2)

]
, δr̄max =



[
∞ r̄ tan(λ1) r̄ tan(λ2)

]
and r̄ = ||r̄g|| is the radius

of the nominal circular orbit. Similarly, the attitude pointing
constraints can be expressed as δθmin ≤ δθ ≤ δθmax.

The MPC problem can be stated as follows,

min
Ut

xTN |tPxN |t +

N−1∑
k=0

xTk|tQxk|t + uT
k|tRuk|t (10)

such that

xk+1|t = Adxk|t + Bduk|t + Bw,dwk|t,
x0|t = x(t), wk|t = ŵt(t+ k)

xmin ≤ xk|t ≤ xmax,

umin ≤ uk|t ≤ umax,

where N is the prediction horizon, Ut = {u0|t, . . . ,uN−1|t},
Q ≥ 0 and R > 0 are state and control weights, and ŵi(j) is
the open-loop predicted disturbance vector at time j based
on data at time i [6]. The matrix P > 0 is the terminal
cost determined from the solution of the Discrete Algebraic
Riccati Equation (DARE) for the infinite horizon problem.
The control input is selected as u(t) = u∗0|t, where u∗0|t is
the first element of U∗t , the minimizer of (10).

D. Simulation Results

The MPC policy developed in this section is tested in
simulation against the nonlinear model of the orbital and
attitude spacecraft dynamics (1), (4). Consider a spacecraft
orbiting the Earth at geostationary altitude. The mass of the
spacecraft is 4000 kg and each reaction wheel is 20 kg
with a radius of 0.75 m and a height of 0.2 m. The base
point of each thruster configuration is given by rancp =
[ −2 0 0.75 ]T m and rascp = [ −2 0 − 0.75 ]T m.
The boom-thruster assemblies have nominal configurations
of ᾱn = ᾱs = β̄n = β̄s = 0◦ and γ̄n = γ̄s = 40.14◦

with rq1ann = rq3ass = [ 0 0.75 1.5 ]T m and rq2ann =
rq4ass = [ 0 − 0.75 1.5 ]T m. A disturbance torque, τ pp ,
due to solar radiation pressure is included in the simulation.
The perturbation torque is given in [19, p. 229], calculated
assuming a mean surface area of 200 m2, surface reflectance
crefl = 0.6, solar facing area Sfacing = 37.5 m2, and
solar radiation pressure constant Csrp = 4.5 × 10−6 N/m2.
Acceleration perturbations, app, due to Earth’s oblateness,
solar and lunar gravitational attraction, and solar radiation
pressure are included and are calculated as in [6].

The initial spacecraft attitude is in a nadir pointing con-
figuration with initial angular velocity ωpgp (0) = ω̄p and
zero initial reaction wheel speeds. For the MPC problem,
the horizon is N = 15, the weighting matrices for each
state are Qr = 10−3diag{0, 1, 1}, Qθ = Qω = 10−3 ·
I , Qṙ = 0, Qx̃d = 0, Qγ̇ = 10−2 · I , with Q =
diag{Qr,Qṙ,Qθ,Qω,Qγ̇ ,Qx̃d}.

The control weight R is selected as R = Rthrust + Rtorque
where Rthrust = 104 · I and Rtorque = 104LTL, L =

diag{Bτ1 ,Bτ2 ,Bτ3 ,Bτ4}. In this way, uTRu = 104
∑4
i=1 f

i2 +

104
∑4
i=1 τ

i2, where τ i = ||rqic×p fip|| is the norm of the
torque produced by thruster i. By heavily penalizing torque
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Fig. 2: Simulation over a period of one year.

in the MPC problem, the effects of undesirable torques on
the spacecraft can be minimized.

Regarding the attitude controller, the controller gains are
selected as K1 = 0.2 · I , Kp = 2 · I , and Kν = 100 · I . The
matrices Ad and Cd are chosen as Ad = diag{Ād, Ād, Ād}
and Cd = diag{C̄d, C̄d, C̄d}, where

Ād =

[
−0.001 −ω2

d

1 −0.001

]
, (11)

ωd = 2π rad/day, and C̄d = [ 1 0 ]. The matrix Bd is chosen
by picking Qd = 0.001 · I solving AT

dPd + PdAd = −Qd

for Pd and setting Bd = CT
dP−1d [7].

The spacecraft is simulated for 425 days. The maximum
thruster magnitude is set to fmax = 0.1 N. The station
keeping window is ±0.01◦ in both latitude and longitude,
while the maximum allowable attitude error is ±0.02◦ for
yaw, pitch, and roll. The sampling period is ∆t = 1 hour.

The total simulation time is 425 days, however, to avoid
accounting for the (favorable) transient due to the initial
position of the spacecraft, and to isolate the steady state
periodic operation of the system, only the last 365 days of
the simulation are used. Referring to Fig. 2a and Fig. 2b all
constraints associated with station keeping and attitude are
satisfied. Reaction wheel speeds are plotted in Fig. 2c, where
it can be seen that the reaction wheel speeds remain bounded.
This indicates that the MPC policy is able to successfully
unload stored angular momentum.

The thruster force magnitudes, f i, and gimbal angles, γia,
over the last 5 orbits are plotted in Figs. 3a and 3b. The MPC
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Fig. 3: Time histories of thruster magnitudes and gimbal
angles over the last 5 days.
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policy tends to alternate between simultaneously firing either
the two North thrusters or the two South thrusters within
an orbit, consistent with correcting for orbital inclination
changes in NSSK. While in Figs. 3a and 3b the gimbal
angles γi are selected independently, in reality on each boom-
thruster assembly these are simultaneously driven and hence
not independent. The PWM scheme in IV will rectify these
non-physically realizable control commands.

The accumulation of ∆v over a one year period, by each
thruster and due to the net thrust resolved in Fh, is shown
in Fig. 4. The total annual ∆v required by the MPC policy
is about 84.3 m/s. To compare to previous results it will
be useful to determine the portion of ∆v spent on station
keeping and the portion spent on momentum management. It
is well known that the vast majority of annual ∆v required
for station keeping is accumulated in the out-of-plane h−→

3

direction to counteract large out-of-plane perturbations. In a
previous simulation considering station keeping only it was
determined that about 55 m/s was required in the out-of-plane
direction. Thus, an estimate of the amount of ∆v necessary
for station keeping only can be found by determining the
amount of thrust required by the thrusters, in their nominal
configuration, to produce ∆v3 = 55 m/s. The component
of the force produced by thruster i in direction p−→

3, which

aligns with h−→
3 in the nominal attitude configuration, is

nominally given by f ip,3 = − cos(δi) cos(γ̄a)f i for North
facing thrusters 1 and 2 and f ip,3 = cos(δi) cos(γ̄a)f i for
South facing thrusters 3 and 4. Thus, to achieve the required
∆v necessary for station keeping an increase in thruster
magnitude by a factor of (cos(δi) cos(γ̄a))−1 = 1.3789 is
expected. Consequently, an estimate of the total ∆v for
station keeping is 75.8 m/s. The remaining 8.5 m/s is used
to manage the reaction wheel speeds as well as East-West
station keeping. Comparing this to a previous result in
[7], a reduction of 16.67 m/s in total accumulated ∆v is
observed along with a reduction of 14.5 m/s in the ∆v
required for momentum management, due to the new thruster
configuration and to changes in the cost function in (10).

The effect of penalizing torque in the objectve function
can be observed by repeating the simulation with Rtorque = 0.
Doing so results in a yearly ∆v accumulation of 87.35 m/s.
Assuming again that 75.8 m/s of ∆v is used for station
keeping, the remaining 11.55 m/s is used for East-West
station keeping and momentum management. Removing the
torque waiting in (10), causes an increase of 3.05 m/s
in consumption for reaction wheels momentum dumping.
This increase is due to the fact that when the thrusters
produce torques on the spacecraft the reaction wheels act to
maintain the spacecraft in a nadir pointing configuration. As
a result, the stored angular momentum in the reaction wheels
increases and fuel consumption increases due to subsequent
momentum unloading.

IV. THRUSTER QUANTIZATION

In the previous section it was assumed that all thrusters
could fire simultaneously and that the thruster magnitudes
could vary smoothly between zero and fmax. This is imprac-
tical for several reasons. First, each thruster is in reality an
on-off actuator taking a value of either 0 or fmax at any time
instant. Second, power limitations may limit the number of
thrusters that can be on at the same time, and very often it
is desirable to have only one thruster active at a time.

To remedy these problems, a method for quantizing the
thrust requested by the MPC policy is developed and tested
in this section. This is done by implementing a simple pulse-
width modulation (PWM) scheme. The command from the
MPC policy is constant over every 1 hour time period.
During each hour active thrusters will pulse a total of Np
times. The length of each pulse must be such that the average
thrust produced is equal to the constant thrust requested
by the MPC policy. Let T = ∆t/Np, ∆t = 1 hr, be the
period of the PWM scheme. Assume the thruster fires at
the beginning of each period. The cut-off time tc is the
time during the PWM period when the thruster is on. This
can be calculated as tc = umpcT/umax, where umpc is the
thrust commanded by the MPC policy. If the MPC policy
requests more than one active thruster, the thrusters will fire
consecutively (i.e., if thruster 1 fires at time t = 0, thruster
2 fires at t = tc1 and cuts off at time t = tc1 + tc2 , etc.).
The MPC policy and thruster quantization act in closed-loop,
which is to say that MPC thruster commands are recalculated



after every sampling period while only quantized thrust is
implemented. This is a simple quantization scheme that is
meant to demonstrate the feasibility of coupled MPC and
thruster quantization.
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The MPC policy with quantized thrust is now tested
using the same paramaters as in Sec. III-D. The number
of pulses in one hour is set to Np = 5. The simulation
is over a period of 425 days, while only the last 365
days are shown. Referring to Fig. 5a, the spacecraft is able
to remain mostly within the station keeping window. The
attitude errors and reaction wheel speeds are plotted in Fig.
5b and Fig. 5c, respectively. The MPC policy coupled with
the PWM scheme manages to keep the spacecraft attitude to
within the allowable attitude error limit. As in Sec. III, the
reaction wheel speeds remain bounded, indicating that the
control system is able to successfully unload stored angular
momentum. During the simulation, the total ∆v accumulated
over a period of 365 days was 79.82 m/s. This indicates not
only that the fuel consumption is not significantly degraded,
but it may even be improved, possibly due to a finer actuator
control with a period smaller than the MPC sampling period.

V. CONCLUSION

The development of closed-loop feedback control for
station keeping has the potential to increase the safety,
robustness, and reliability of satellites while also reducing
operational costs [6], [20]. An MPC policy for the pur-
pose of simultaneous station keeping, attitude control, and
momentum management for a GEO satellite was developed
in this paper. The satellite configuration, consisting of two

boom-thruster assemblies on the anti-nadir face, allows for
more control action in the North-South direction compared
to a previous configuration [7], which is desirable for sta-
tion keeping. The introduction of a pulse-width modulation
scheme in conjunction with a closed-loop MPC policy al-
lows for physically realizable on-off thruster commands and
satisfies all control objectives in simulation, including station
keeping and attitude constraints.
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