
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Motion Planning with Invariant Set Trees

Weiss, A.; Danielson, C.; Berntorp, K.; Kolmanovsky, I.V.; Di Cairano, S.

TR2017-128 August 2017

Abstract
This paper introduces the planning algorithm SAFERRT, which extends the rapidly-exploring
random tree (RRT) algorithm by using feedback control and positively invariant sets to
guarantee collision-free closed-loop path tracking. The SAFERRT algorithm steers the output
of a system from a feasible initial value to a desired goal, while satisfying input constraints
and non-convex output constraints. The algorithm constructs a tree of local state-feedback
controllers, each with a randomly sampled reference equilibrium and corresponding positively
invariant set. The positively invariant sets indicate when it is possible to safely transition
from one local controller to another without violating constraints. The tree is expanded from
the desired goal until it contains the initial condition, at which point traversing the tree
yields a dynamically feasible and safe closed-loop trajectory. We demonstrate SAFERRT on
a spacecraft rendezvous example.

IEEE Conference on Control Technology and Applications

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2017
201 Broadway, Cambridge, Massachusetts 02139

Motion Planning with Invariant Set Trees
Avishai Weiss, Claus Danielson, Karl Berntorp, Ilya Kolmanovsky, and Stefano Di Cairano

Abstract— This paper introduces the planning algorithm SA-
FERRT, which extends the rapidly-exploring random tree (RRT)
algorithm by using feedback control and positively invariant
sets to guarantee collision-free closed-loop path tracking. The
SAFERRT algorithm steers the output of a system from a
feasible initial value to a desired goal, while satisfying input
constraints and non-convex output constraints. The algorithm
constructs a tree of local state-feedback controllers, each with
a randomly sampled reference equilibrium and corresponding
positively invariant set. The positively invariant sets indicate
when it is possible to safely transition from one local controller
to another without violating constraints. The tree is expanded
from the desired goal until it contains the initial condition, at
which point traversing the tree yields a dynamically feasible
and safe closed-loop trajectory. We demonstrate SAFERRT on
a spacecraft rendezvous example.

I. INTRODUCTION

Path planners generate a collision-free path between an
initial state and a goal state in a generally non-convex
environment. The presence of obstacles in the environment,
and hence the non-convexity, renders this problem PSPACE-
hard [1]. Fortunately, many heuristic techniques have been
developed to simplify the problem. Recently, sampling-based
planning methods, such as rapidly-exploring random trees
(RRT), have become popular. In these methods, the search
space of possible paths is reduced to a graph search amongst
randomly selected samples [2]–[4].

In RRT, each generated sample is checked for collision;
a collision-free sample is added as a vertex, and connections
are made to surrounding vertices for tree expansion. Some
versions of RRT provide geometric paths. In these cases, the
considered system is assumed to achieve prefect tracking.
However, in many applications, the equations of motion
(i.e., the differential constraints) significantly restrict the
reachable set and must therefore be accounted for. Notably,
the kinodynamic version of RRT incrementally grows a
tree of trajectories in the state space by sampling control
inputs and simulating the motion of the system with these
random control inputs over a time horizon [2], [3]. Hence,
the trajectories that are generated by RRT are dynamically
feasible by construction. One drawback with kinodynamic
RRT is that exploration via random selection of control inputs
is inefficient when the dynamics are complex and/or unstable.
To remedy this, [5] proposed CL-RRT, which uses closed-
loop prediction for trajectory generation. For systems subject

A. Weiss, C. Danielson, K. Berntorp, and S. Di Cairano are with
Mitsubishi Electric Research Laboratories, Cambridge MA, USA. I. Kol-
manovsky is with the University of Michigan, Ann Arbor MI, USA.

e-mail: {weiss,danielson,berntorp,dicairano}@merl.com,
ilya@umich.edu

to unmeasured disturbances, model uncertainty, and unmod-
eled dynamics, the preceding approaches do not guarantee
that the resulting trajectories will satisfy the system output
constraints.

In this work we present an extension of RRT, called
SAFERRT, that builds a tree of local state-feedback con-
trollers along with corresponding positively invariant sets.
These positively invariant sets incrementally partition the
state space into regions where the closed-loop trajectories
produced by the local controllers are guaranteed to be safe.
A set is positively invariant if any closed-loop state trajectory
that starts inside the set remains in the set for all future times.
Thus, by generating controllers whose corresponding posi-
tively invariant sets satisfy the input and output constraints,
it is possible to guarantee that the closed-loop trajectories
will be collision free and thus safe, avoiding the need for
a computationally expensive collision check. Furthermore,
by constructing a tree of feedback controllers that stabilize
their randomly sampled reference equilibria, paths generated
by SAFERRT inherently satisfy the systems’ equations of
motion and produce dynamically feasible trajectories without
the need for a steering function.

The concept of using constraint-admissible positively in-
variant sets for path planning is based on [6], which devel-
oped the underlying idea for the spacecraft obstacle avoid-
ance. The authors in [7] expanded upon [6] and posed the
following questions about the algorithm:

1. How do we design the local controllers such that their
positively invariant sets satisfy the input and output con-
straints?

2. How do we sample the output set such that the controller
graph contains a path from an initial vertex whose posi-
tively invariant set contains the initial state to a goal vertex
whose positively invariant set contains the goal state?

3. How do we provide good performance?

The first question was addressed in [7], which introduced
a method for computing local controllers and compared it
with a previous method that uses fixed-gain controllers with
scaled invariant sets as in [6]. The method in [7] designs
local controllers by solving a semi-definite program (SDP)
to maximize the volume of the positively invariant set that
satisfies state and input constraints. This approach increases
the number of edges in the graph used for path planning
which can lead to better performance, albeit at the expense
of solving a computationally burdensome SDP in place of a
simpler linear program (LP).

We leave the treatment of the third question as well as
the treatment of systems affected by model uncertainty or

unmeasured disturbances exploiting robust control invariant
sets [8], [9] to future work.

This paper focuses on the second question. In this work,
a tree is expanded from the desired goal equilibrium by
adding vertices of new controllers, along with their randomly
sampled reference equilibria and corresponding constraint
admissible positively invariant sets, until the initial state lies
inside a positively invariant set of a vertex in the tree, at
which point it is possible to generate a dynamically feasible
and safe closed-loop trajectory from initial state to desired
goal. By using a tree and simple feedback controllers to
generate control inputs, the algorithm is ensured to have low
computational burden. Related ideas are used in [10]–[13].

The following notation and definitions will be used. A set
O is positively invariant (PI) for an autonomous system x(t+
1) = f(x(t)) if x(t+ 1) = f(x(t)) ∈ O for every state
x(t) ∈ O. If V (x) is a Lyapunov function for the stable
autonomous system x(t + 1) = f(x(t)), then any level-set
O = {x ∈ Rn : V (x) ≤ l} is a PI set since V (f(x)) ≤ V (x).
A graph G = (V, E) is a set of vertices V together with a list
of ordered pairs E ⊂ V×V called edges. Vertices i, j ∈ V are
called adjacent if (i, j) ∈ E is an edge. A path is a sequence of
adjacent vertices. Two vertices i, j ∈ V are called connected
if there exists a path connecting them. A cycle is a path that
begins and ends with the same node. A tree T is a graph with
no cycles. In this paper, a vertex vi ∈ V of a tree T = (V, E)
will be used to index the triples of equilibrium points x̄i,
controllers κi, and sets Oi.

II. PATH-PLANNING PROBLEM AND ALGORITHM

In this section we define the path-planning problem and
describe the RRT algorithm for solving this problem. In
Section III we will present our variant of RRT.

A. Path-Planning Problem

The objective of the path-planning problem is to drive
the output y(t) of a dynamic system to a specified goal
position yf . The dynamics of the system are represented by
the following discrete-time model

x(t+1) = f
(
x(t), u(t)

)
(1a)

y(t) = g
(
x(t)

)
(1b)

where x(t) ∈ Rnx is the state, u(t) ∈ Rnu is the control
input, and y(t) ∈ Rny is the output. The input u(t) and
output y(t) are subject to constraints u(t) ∈ U and y(t) ∈ Y .
In particular, the output set Y ⊆ Rny is generally non-convex,
but can be described as a union of convex sets

Y =
⋃

k∈IY
Yk. (2)

We assume that each output ȳ ∈ Y corresponds to a unique
feasible equilibrium of the system (1), i.e., for each output
ȳ ∈ Y there exists a state x̄ ∈ Rnx and feasible input ū ∈
int(U) such that x̄ = f(x̄, ū) and ȳ = g(x̄).

The path-planning problem is formally stated below.
Problem 1: Find a feasible input trajectory u(t) ∈ U for

t ∈ Z≥0 that produces a feasible output trajectory y(t) ∈

Y for all t ∈ Z≥0 that converges to the target output
limt→∞ y(t) = yf . �

The main difficulty of Problem 1 is that the output set Y
is generally non-convex. This problem is especially difficult
when the dynamics (1) are complex or nonlinear and thus
produce output trajectories y(t) with complex geometry.

B. Path-Planning Algorithm
A popular method for solving Problem 1 is the rapidly-

exploring random tree (RRT) algorithm [3]. Algorithm 1
details one of several versions of RRT. RRT constructs a
tree T of equilibrium states connected by directed edges
that indicate the existence of a control input that steers the
state from one equilibrium point to another. The tree T is
rooted at the initial state x0 of the system (1) and the tree
T is expanded until it contains the equilibrium state x̄f ,
corresponding to the target output yf .

Algorithm 1 Rapidly-Exploring Random Tree

1: Input: {x0, yf , T }
2: T .init(x̄f)
3: while ‖g(x̄f)− g(x̄new)‖ > ε do
4: x̄rand ← RANDOM STATE();
5: x̄near ← NEAREST NEIGHBOR(x̄rand, T);
6: unew ← SELECT INPUT(x̄rand, x̄near);
7: x̄new ← NEW STATE(x̄near, unew);
8: T .add vertex(x̄new)
9: T .add edge(x̄new, x̄near)

10: end while

The tree T is initialized with the current state x0 of
the system (1). During each iteration, Algorithm 1 sam-
ples a random output yrand ∈ Y from the environ-
ment Y and computes the corresponding equilibrium state
x̄rand = RANDOM STATE(). The algorithm then finds the
vertex vnear ∈ V of the tree T whose equilibrium state
x̄near = NEAREST NEIGHBOR(x̄rand, T) is closest to the
random state x̄rand in terms of the Euclidean distance

NEAREST NEIGHBOR(x̄rand, T) = arg min
v∈V
‖x̄v − x̄rand‖.

Next, the algorithm selects a control input unew =
SELECT INPUT(x̄rand, x̄near) that results in a collision-free
trajectory that steers the considered system from the state
x̄near toward the sampled state x̄rand, and is given by

SELECT INPUT(x̄rand, x̄near)=argmin
u∈U

‖x̄rand−f(x̄near, u)‖.

The resulting state

x̄new = NEW STATE(x̄near, unew) = f(x̄near, unew)

is checked for collision. There are various methods for
collision checking and it is often the most computationally
burdensome step in the algorithm. If a collision occurs a new
point is sampled, otherwise the vertex is added to the vertex
list V of the tree T and the edge between x̄new and x̄near is
added to the edge list E . Algorithm 1 terminates when the
new output ynew = g(x̄new) is within ε-distance from the
target output yf , i.e., ‖yf − g(x̄new)‖ ≤ ε.

III. SAFERRT ALGORITHM

This section describes the SAFERRT algorithm.

A. Path-Planning Algorithm

The SAFERRT algorithm is detailed in Algorithm 2. The
main difference between the SAFERRT (Algorithm 2) and
the basic RRT (Algorithm 1) is that SAFERRT uses infor-
mation about the controller that will be used to track the
equilibrium points x̄v of the search-tree, T , where x̄v is the
equilibrium point associated with the vertex v ∈ V . Thus,
SAFERRT leverages closed-loop information in the planning
phase.

Algorithm 2 SAFERRT

1: Input: {x0, yf , T }
2: T .init(x̄f)
3: while x0 /∈ Onew do
4: x̄rand ← RANDOM STATE();
5: vnear ← NEAREST NEIGHBOR(x̄rand, T);
6: x̄new ← NEW STATE(x̄rand, vnear);
7: {κnew,Onew} ← GENERATE SAFE SET(x̄new);
8: v ← {x̄new, κnew,Onew}
9: T .add vertex(v)

10: T .add edge(x̄new, x̄near)
11: end while

As in Algorithm 1, the vertices v ∈ V of the search-tree
T = (V, E) produced by Algorithm 2 include an equilibrium
point x̄v of the system (1). However, in Algorithm 2, the
vertices also include a local feedback controller κv , used to
stabilize the equilibrium point x̄v , and a subset Ov ⊆ Rnx

of states x ∈ Rnx , for which it is safe to use the local
controller κv . The safe set Ov is a level-set of a Lyapunov
function Vv(x) for the system (1) in closed-loop with the
local controller κv , given by

Ov =
{
x ∈ Rnx : Vv(x− x̄v) ≤ ρ

}
. (3)

Since Vv(x− x̄v) is a Lyapunov function, any state trajectory
x(t) that initially resides x(t0) ∈ Ov in the set Ov , will
remain inside the set Ov for all t ≥ t0. This property of
the set Ov is called positive invariance and is fundamental to
our algorithm. The scale-factor ρ of the positively invariant
set (3) is chosen such that the positively invariant set Ov
does not intersect any of the obstacles in the environment Y
and satisfies the input constraints U , i.e., g

(
Ov
)
⊆ Y and

κv(Ov) ⊆ U . Such a positively invariant set Ov is called
constraint-admissible. Hence, if the local controller κv is
engaged when the state x(t0) ∈ Ov is inside the constraint-
admissible positively invariant set Ov , it is guaranteed that the
output y(t) = g(x(t)) ∈ Y does not collide with an obstacle
since g(Ov) ⊆ Y for all t ≥ t0. Hence, we often refer to
constraint-admissible positively invariant sets as safe sets.

Similarly to Algorithm 1, Algorithm 2 selects a random
equilibrium state x̄rand by sampling an output yrand ∈ Y from
the output space Y and finding the corresponding equilibrium
state x̄rand and input ūrand. The random equilibrium state

x̄rand is moved to a nearby equilibrium state x̄near in the
search-tree T (Line 5). However, in the SAFERRT algorithm,
NEAREST NEIGHBOR(x̄rand, T) is defined in terms of the safe
sets Ov , using the Minkowski function [14]

ΦOv−x̄v
(x) = min

λ≥0
λ (4a)

subject to x ∈ λ(Ov − x̄v). (4b)

The Minkowski function (4), applied to x = x̄rand, measures
the distance between the random equilibrium state x̄rand and
the equilibrium point x̄v for vertex v ∈ V , by determining
how much we need to scale the safe set Ov in order to contain
x̄rand ∈ λ(Ov − x̄v). If the Minkowski function is less than
one, i.e., ΦOv

(x̄rand) ≤ 1, then x̄rand is inside the safe set
Ov .

The nearest neighbor vnear is then chosen as the vertex
v ∈ V in the search-tree T closest to x̄rand in terms of the
Minkowski function (4),

NEAREST NEIGHBOR(x̄rand, T)=arg min
v∈V

ΦOv−x̄v (x̄rand).

(5)

This nearest neighbor rule (5) tends to choose the vertices
v ∈ V with the largest safe sets Ov , since these sets are more
likely to need less scaling λ(Ov− x̄v) to contain the random
state x̄rand. Thus, the output sample points yv ∈ Y are farther
apart than in the standard RRT. This means that Algorithm 2
generally requires less sampling to find a path through the
environment Y .

Next, Algorithm 2 selects a new equilibrium point x̄new

by moving the random equilibrium point x̄rand closer to the
nearest point x̄near using the rule

NEW STATE(x̄rand, vnear) = x̄near +
α

λ

(
x̄rand−x̄near

)
(6)

where λ = ΦOnear−x̄near(x̄rand) is the Minkowski function
(4), α ∈ (0, 1) is a user-determined step-size, and Onear

is the safe set associated with vertex vnear ∈ V , generated
during previous iterations of the algorithm. By the properties
of the Minkowski function (4), the new equilibrium point
x̄new ∈ Onear, selected by (6), will be inside the safe set
Onear associated with the equilibrium point x̄near. Hence, it
is possible to safely move from the new equilibrium point
x̄new to the existing equilibrium point x̄near using the local
controller κnear without collision. Thus SAFERRT does not
require collision checking. Since Algorithm 2 is initialized
with the equilibrium point x̄f corresponding to the target
output yf , it follows that there exists a path in the search-tree
T from the new equilibrium point x̄new to the target state x̄f .

Unlike the standard RRT, Algorithm 2 has an additional
step (Line 7) where we compute the safe set Onew for the
new equilibrium point x̄new. We use a pre-designed local
controller u = κ(x, x̄new) that asymptotically stabilizes the
equilibrium state x̄new. Stability is certified by a Lyapunov
function Vvnew(x− x̄new). The safe set (3) can be computed
by scaling the unit level-set O0

new = {x : Vvnew(x− x̄new) ≤
1} using a scaling factor ρ, such that g

(
ρ(O0

new − x̄new) +

x̄new

)
⊆ Y . This can be posed as an optimization problem

ρnew = arg max
ρ

ρ (7a)

subject to g
(
ρ(O0

new−x̄new)+x̄new

)
⊆ Y. (7b)

Since the local controller u = κ(x, x̄new) asymptotically sta-
bilizes the equilibrium state x̄new, level-sets of the Lyapunov
function Vvnew

(x − x̄new) are invariant, and thus (7) always
has a strictly positive solution. The optimization problem (7)
is generally non-convex, since Y is generally non-convex
and g(·) is generally nonlinear. However, since the decision
variable ρ ∈ R+ is a scalar, there are many computationally
efficient methods for solving (7). In fact, if the dynamics
(1) are linear and the constraints are polyhedral unions, this
problem has a closed-form solution [7]. The new safe set
Onew and controller κnew are then given by

GENERATE SAFE SET(x̄new) =

=
{
κ(x, x̄new), ρnew(O0

new−x̄new)+x̄new

}
.

(8)

Finally, Algorithm 2 adds the new equilibrium point x̄new,
new controller κnew, and new safe set Onew to the vertex list
V for the search-tree T , and adds an edge between vnew and
vnear to the edge list E . Algorithm 2 terminates when the safe
set Onew of the new equilibrium point x̄new contains x0 ∈
Onew the initial state x0. By the construction of the search-
tree T , this guarantees that there is a path in the search-
tree T from the initial state x0 to the target state x̄f . The
next section describes how this path is used to produce a
closed-loop trajectory x(t) for the system (1) that converges
y(t) = g(x(t))→ yf to the target output yf .

B. Path-Tracking Algorithm

In this section we describe how the search-tree T produced
by Algorithm 2 can be used to solve Problem 1.

Algorithm 3 Closed-loop Execution

1: initial target equilibrium point x̄v = x̄1

2: for each time t ∈ N do
3: if x(t) ∈ Oi+1 then
4: update target equilibrium point x̄v = x̄i+1

5: else
6: use same target equilibrium point x̄v = x̄i
7: end if
8: u(t) = κv(x(t), x̄v)
9: end for

Algorithm 3 summarizes the real-time execution of SA-
FERRT. Offline, the path-tracking algorithm searches the
search-tree T for a sequence of equilibrium points x̄1, . . . , x̄f
such that the initial state x0 = x(0) ∈ O1 is contained in the
safe set O1 of the first equilibrium point x̄1 and the final
equilibrium point x̄f corresponds to the target output yf =
g(x̄f). Online at each time instance t ∈ N, the path tracking
algorithm uses the local controller u(t) = κv(x(t), x̄v) to
drive the system to the currently targeted equilibrium point
x̄v , where x̄1 is the first targeted equilibrium point. The target
equilibrium x̄v is updated as x̄v = x̄i+1 when the state x(t)

reaches the safe set Oi+1 of the next equilibrium point x̄i+1

in the sequence. The last targeted equilibrium point is the
equilibrium point x̄f corresponding to the target output yf .

By the construction of the search-tree T in Algorithm 2,
each equilibrium point x̄v = x̄i is inside the safe set Oi+1 of
the next equilibrium point x̄i+1. Furthermore, the trajectory
x(t) from x̄i to x̄i+1 is safe since the set Oi+1 is a constraint-
admissible positively invariant set. Algorithm 3 therefore
guarantees that the output trajectory y(t) ∈ Y does not collide
with any obstacles in the environment Y and converges
y(t) = g(x(t)) → yf to the target output yf = g(x̄f). A
formal proof can be found in [7].

IV. EXAMPLE: SPACECRAFT MANEUVER PLANNING

In this section we use SAFERRT to design a spacecraft
rendezvous maneuver.

A. SafeRRT for Spacecraft Maneuver Planning

Spaceraft rendezvous maneuvers are typically planned us-
ing the relative motion dynamics of the spacecraft in the non-
inertial Hill’s frame, which tracks the position and orientation
of the target spacecraft on a nominal circular orbit. When
the spacecraft separation distances are much smaller than the
orbital radius, the linearized Hill-Clohessy-Wiltshire (HCW)
equations [15] can be used to model the motion of a chaser
spacecraft relative to the target spacecraft in the orbital plane,

r̈1 = 3n2r1 + 2nṙ2 + u1, (9a)
r̈2 = −2nṙ1 + u2, (9b)

where the origin [r1, r2] = [0, 0] is the position of the target
spacecraft, r1 is the radial position of the chaser spacecraft
relative to the target spacecraft, r2 is the in-orbital-track posi-
tion of the chaser spacecraft relative to the target spacecraft,
and n denotes the mean motion of the nominal orbit. The
inputs u1 and u2 are external thrust forces normalized by the
spacecraft mass acting on the spacecraft along the radial and
orbital velocity directions, respectively. Assuming a sampling
period of ∆T seconds, the dynamics (9) are discretized as

x(t+ 1) = Ax(t) +Bu(t), (10a)
y(t) = Cx(t) (10b)

where x = [r1, r2, ṙ1, ṙ2]T. The C matrix selects the relative
position elements y = [r1, r2] of the state x.

Since the spacecraft dynamics (10) are linear, we can
simplify the general nonlinear expressions for safe sets (3),
distance metric (4), and control design (7) used by SAFERRT.
The local controllers are linear state-feedback controllers

u = Fv(x− x̄v) + ūv, (11)

where κv = Fv is the controller gain, and x̄v and ūv are
an equilibrium state and input pair for the vertex v ∈ V .
Controller (11) is designed to asymptotically stabilize the
equilibrium point x̄v . Thus, the matrix A + BFv is Schur.
A quadratic Lyapunov function is of the form

Vv(x) = (x− x̄v)TPv(x− x̄v), (12)

Fig. 1: Initial position and target position of the chaser spacecraft
with an obstacle between. The white area is the output set Y ⊂ R2

and the black square is the obstacle.

where Pv satisfies

(A+BFv)
TPv(A+BFv)− Pv ≺ 0, Pv � 0.

Hence, the safe sets (3) used by SAFERRT are the ellipsoidal
sub-level sets of the Lyapunov function (12)

Ov =
{
x ∈ Rnx : (x− x̄v)TPv(x− x̄v) ≤ ρ

}
. (13)

For ellipsoidal sets, the Minkowski function (4) has a closed-
form solution given by

ΦOv−x̄v
(xrand) = ||xrand − x̄v||Pv

.

The method (7) to compute the safe sets Ov for linear
systems is detailed in [7]. It uses a single feedback gain
matrix Fv = F for every vertex v ∈ V , and thus each of the
local controllers (11) has a Lyapunov function that shares a
common Lyapunov matrix Pv = P . The scale factor ρ in (13)
is chosen to maximize the volume of Ov for each v ∈ V while
satisfying input and output constraints. If the constraints are
described as polyhedral unions, the optimal scale factor has
an analytic expression [7].

B. Results
We now provide simulations to illustrate the SAFERRT al-

gorithm using (7) for safe setOv computations, for two differ-
ent step-sizes α. We consider a target spacecraft on a 415 km
circular orbit, yielding n = 1.1×10−3 s−1. The dynamics (9)
are discretized with a sample period of ∆T = 30 s. We apply
SAFERRT to the problem of planning a maneuver around
the obstacle shown in Fig. 1. The obstacle is a square with a
100 meter side length located at [300, 400]T meters from the
target spacecraft. The output set Y is the set difference of the
bounding box [−400, 1000] × [−400, 1100] meters and the
obstacle set. The component sets Y1, . . . ,Y4 that comprise
the output set Y = Y1 ∪ · · · ∪ Y4 are obtained by flipping
each of the 4 constraints that define the obstacle set and
intersecting with the bounding box. The chaser spacecraft’s
normalized thrust forces must satisfy the constraints

−10−2 ≤ u1, u2 ≤ 10−2 N · kg−1. (14)

The chaser spacecraft is initialized at x0 = [450, 650, 0, 0]T

and the desired goal is the target spacecraft at the origin.
Fig. 2 shows the results of the SAFERRT algorithm

with the GENERATE SAFE SET function of method (7). The

(a) α = 0.95

0 50 100 150 200 250

P
o

s
it
io

n

-500

0

500

1000

0 50 100 150 200 250

V
e

lo
c
it
y

-0.5

0

0.5

Time
0 50 100 150 200 250

In
p

u
t

-1

0

1

Time
0 50 100 150 200 250

M
o

d
e

0

20

40

60

(b) α = 0.95

(c) α = 0.05

0 20 40 60 80 100 120 140

P
o

s
it
io

n

-500

0

500

1000

0 20 40 60 80 100 120 140

V
e

lo
c
it
y

-0.6

-0.4

-0.2

0

0.2

Time
0 20 40 60 80 100 120 140

In
p

u
t

-1

0

1

Time
0 20 40 60 80 100 120 140

M
o

d
e

0

100

200

(d) α = 0.05

Fig. 2: (a) and (b) show the safe setsOv and the edges of the search-
tree T produced by Algorithm 2 using (7) to generate the safe sets
for different values of the step-size α. (c) and (d) show the closed-
loop state, input, and vertex trajectories produced by Algorithm 3
using the search-trees T shown in (a) and (b).

linear state-feedback gain Fv = F is given by the lin-
ear quadratic regulator (LQR) with penalty matrices Q =
diag(102, 102, 107, 107) and R = (2×107)I2 where diag(V)
is a diagonal matrix with the elements of V on the diagonal
and I2 ∈ R2×2 is the identity matrix. The Lyapunov matrix
Pv = P is the corresponding solution to the discrete-time
algebraic Riccati equation. In Figs. 2a and 2c, the white area
is the output set Y ⊂ R2, the black square is the obstacle, the
solid lines are the edges between vertices V in the search-tree
T , the highlighted solid blue line is the path through the tree
connecting the initial and final outputs as labeled in Fig. 1,
the transparent ellipsoids are the position slices of the safe
positively invariant safe sets Ov , and the dashed green line
is the closed-loop chaser spacecraft trajectory as executed by
Algorithm 3. Observe that each safe set Ov is scaled using
(7) to a different size depending on both input and output
constraints applicable to that vertex.

The results in Fig. 2a are for the step-size α = 0.95,
whereas Fig. 2c shows the results for α = 0.05. These two
extremes are chosen to highlight the range of performance
of the algorithm. When the step size is large, the NEW STATE

function (6) generates a new sample near the boundary of the
safe set Ov . The search-tree T therefore covers more of the
state-space with each additional sample, and hence requires
fewer samples to connect initial and desired goal states.
However, as a consequence, during closed-loop execution of
the path, Algorithm 3 must maintain the currently targeted
equilibrium point x̄i until the trajectory nearly converges, be-
fore the state x(t) reaches the safe set Oi+1 of the following
equilibrium target in the path. As convergence is exponential,
the trajectory slows down significantly before it is able to
switch to the next vertex in the path; this phenomenon can
be observed in the velocity plot of Fig. 2b.

In contrast, when the step size is small as in Fig. 2c, many
more samples must be generated to expand the search-tree
before a path connects initial and desired goal states. This
produces better closed-loop trajectories, but adds additional
computational burden. The chaser spacecraft trajectory need
not nearly converge to the currently targeted equilibrium point
x̄i because the density of the safe-sets in the search-tree
results in the trajectory constantly entering into the safe set
Oi+1 of the following equilibrium target in the path. The
trajectory is thus able to quickly switch between the sequence
of target equilibria along the path, maintaining velocity and
more quickly reaching the desired goal. As a result of the
lack of convergence to intermediate equilibria along the path
contained in the search-tree, the trajectory deviates from
and smoothes out the path. Note that despite the deviation,
the trajectory is guaranteed to be safe due to the positive
invariance properties of the safe sets Ov . Furthermore, since
the safe sets were designed to satisfy both the input and
output constraint, the closed-loop trajectories do not violate
the input constraints as evidenced in Figs. 2b and 2d.

Finally, we highlight SAFERRTon a more challenging
problem of navigating through a debris field. Fig. 3 shows the
results with the GENERATE SAFE SET function of method (7)
and α = 0.05. Although the path through the debris field is

(a) (b)

Fig. 3: Debris field navigation by SAFERRT using (7) to generate
the safe sets (omitted for visual clarity). (a) closed-loop trajectory
in dashed, along with path through the tree. (b) edges of the tree T .

jagged, Algorithm 3 produces a smooth closed-loop trajectory
that avoids obstacles and satisfies thrust constraints.

V. CONCLUSION

We presented SAFERRT, which constructs a tree of feed-
back controllers along with their randomly sampled reference
equilibria and corresponding safe sets. By using constraint-
admissible positively invariant sets, SAFERRT avoids the
need for computationally expensive collision checking
amongst vertices, since the dynamically feasible closed-
loop trajectories are guaranteed to evolve inside the safe
sets corresponding to their targeted equilibrium point. Also,
closed-loop feedback control provides robustness to model
uncertainty.

REFERENCES

[1] J. H. Reif, “Complexity of the mover’s problem and generalizations,”
in Conference on Foundations of Computer Science, 1979.

[2] S. LaValle, Planning Algorithms. Cambridge University Press, 2006.
[3] S. LaValle and J. Kuffner, “Randomized kinodynamic planning,” Int.

J. Robot. Res., 2001.
[4] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal

motion planning,” Int. J. Robot. Res., 2011.
[5] J. Leonard, J. How, S. Teller, M. Berger, S. Campbell, G. Fiore,

L. Fletcher, E. Frazzoli, A. Huang, S. Karaman et al., “A perception-
driven autonomous urban vehicle,” J. Field Robot., 2008.

[6] A. Weiss, C. Petersen, M. Baldwin, R. Erwin, and I. Kolmanovsky,
“Safe positively invariant sets for spacecraft obstacle avoidance,” J.
Guidance, Control, and Dynamics, 2015.

[7] C. Danielson, A. Weiss, K. Berntorp, and S. Di Cairano, “Path planning
using positive invariant sets,” in Conf. Decision and Control, 2016.

[8] I. Kolmanovsky and E. G. Gilbert, “Theory and computation of dis-
turbance invariant sets for discrete-time linear systems,” Mathematical
problems in engineering, 1998.

[9] E. Kerrigan, “Robust constraints satisfaction: Invariant sets and pre-
dictive control,” Ph.D. dissertation, Dep. of Engineering, University of
Cambridge, 2000.

[10] O. Arslan, K. Berntorp, and P. Tsiotras, “Sampling-based algorithms
for optimal motion planning using closed-loop prediction,” in Int. Conf.
Robot. Automation, 2017.

[11] W. McConley, B. Appleby, M. Dahleh, and E. Feron, “A compu-
tationally efficient Lyapunov-based scheduling procedure for control
of nonlinear systems with stability guarantees,” IEEE Trans. Autom.
Control, 2000.

[12] F. Blanchini, F. Pellegrino, and L. Visentini, “Control of manipulators
in a constrained workspace by means of linked invariant sets,” J. Robust
and Nonlinear Control, 2004.

[13] R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts, “LQR-
trees: Feedback motion planning via sums-of-squares verification,” Int.
J. Robot. Res., vol. 29, no. 8, pp. 1038–1052, 2010.

[14] F. Blanchini and S. Miani, Set-Theoretic Methods in Control.
Birkhäuser, 2008.

[15] B. Wie, Spacecraft Dynamics and Control. AIAA, 2010.

	Title Page
	page 2

	/projects/www/html/publications/docs/TR2017-128.pdf
	Motion Planning with Invariant Set Trees
	page 2
	page 3
	page 4
	page 5
	page 6

