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Abstract

Widely recognized as an excellent solution of global warming and oil crisis, electric vehicles
(EVs) however suffer remarkable weakness such as the limited cruise range, which can be
partly addressed by introducing en-route charging navigation systems. Different from tra-
ditional navigation, which solves a shortest path problem, the en-route charging navigation
resorts to a joint charging and routing optimization. In this paper, we formulate the en-route
charging navigation in a dynamic programming (DP) setting in both a deterministic and
a stochastic traffic network. Specifically, to relieve computational complexity in navigation
systems, a simplified charge-control (SCC) algorithm is presented in the deterministic case,
which can simplify the charging control decisions within an SCC set. In the stochastic case,
an online state recursion (OSR) algorithm is designed, which can provide an accurate navi-
gation utilizing online information. Numerical simulation verifies the computing burden and
accuracy of the proposed algorithms in a deterministic and a stochastic networks.
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Abstract—Widely recognized as an excellent solution of global
warming and oil crisis, electric vehicles (EVs) however suffer
remarkable weakness such as the limited cruise range, which can
be partly addressed by introducing en-route charging navigation
systems. Different from traditional navigation, which solves a
shortest path problem, the en-route charging navigation resorts
to a joint charging and routing optimization. In this paper,
we formulate the en-route charging navigation in a dynamic
programming (DP) setting in both a deterministic and a stochastic
traffic network. Specifically, to relieve computational complexity
in navigation systems, a simplified charge-control (SCC) algo-
rithm is presented in the deterministic case, which can simplify
the charging control decisions within an SCC set. In the stochastic
case, an online state recursion (OSR) algorithm is designed,
which can provide an accurate navigation utilizing online in-
formation. Numerical simulation verifies the computing burden
and accuracy of the proposed algorithms in a deterministic and
a stochastic networks.

Index Terms—Electric Vehicle Navigation; Joint Charging and
Routing Optimization; Deterministic Traffic Network; Stochastic
Time-Dependent Network; Online Navigation.

I. INTRODUCTION

LECTRIC vehicles (EVs) have been drawing much atten-

tion in recent years due to their efficiency and environ-
mental friendliness. However, the limited cruise range, caused
by the battery capacity, makes drivers in ‘“range anxiety”
especially on a long distance trip, and it makes EVs en-route
charging navigation systems crucial. Since real-time pricing is
widely used in electricity market to shift load and stabilize
power systems, en-route charging navigation system under
real-time pricing is different from the traditional navigation
system, where the path is both weighted by the time-dependent
electricity prices and limited by the time-dependent traffic
properties. This means that the routing cost is determined by
not only the routing decisions but also the charging control
decisions. As a result, the charging navigation becomes a
joint charging and routing optimization rather than a common
shortest path routing.

In literature, EV charging and routing problems have been
studied, separately. For example, demanded load model for-
mulation [1] and impact analysis [2] were discussed in un-
coordinated charging field. In order to solve the problems
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caused by EVs’ penetration, coordinated charging control was
presented in both deregulated and regulated electricity markets
to minimize power losses, generation cost, voltage deviations,
load variance, and charging cost [3], [4], [5], [6], [7]. However,
the charging control strategies presented above were designed
in a centralized form, which are not suitable for power systems
with vast EVs. Decentralized algorithms and protocols were
designed with the goal of shifting load, regulating frequency,
optimizing EV charging set, and minimizing generation cost
[81, [9], [10], [11]. Even though many excellent work has
been done in charging control field, they mainly focus on
coordinating EVs charging at home or parking plots, and
ignore the coupling between routing and en-route charging.

In EVs routing field, authors in [12] studied an energy-
optimal routing problem with constraints of recuperation and
battery capacity. However, the routing problem is defined
within one-charge distance rather than en-route charging. For
long distance trips, optimal routing problems were consid-
ered, where optimal objective might be charging delays [13],
energy-efficient route [14], [15], or a combination objective of
travel time, charging time, and energy consumption [16]. The
aforementioned work on en-route charging navigation however
does not consider the charging control process, which implicity
assumes constant electricity price.

The joint charging and routing problem in deterministic
networks, is formulated and solved by dynamic programming
(DP) in our previous work [17], where the time-dependent
travel cost under real-time pricing is a much more appropriate
formulation compared with the shortest path [18] and eco-
routing [19] formulation. Even though similar problems in
deterministic networks are solved in [20] and [21] using mixed
integer non-linear programming (MINLP) and DP, respec-
tively, we optimize the travel cost in time-dependent networks,
e.g., real-time electricity prices. Moreover, we propose a
simplified algorithm in [17] to relieve the computing burden
in navigation under real-time pricing. As there are randomness
and uncertainty in traffic networks, the deviation between the
simplified deterministic model and the actual traffic network
may lead to over-discharging of batteries or even driving out of
power halfway. In order to improve the accuracy of navigation,
we extend our previous deterministic charging navigation to an
online navigation system based on stochastic traffic network
models and online information.

In this paper, we present an en-route charging navigation
problem under real-time pricing in a deterministic and a
stochastic traffic network. Specifically,

o The en-route charging navigation problem under real-time



pricing is first formulated in a dynamic programming
setting, where the charging and routing decisions are
affected by the real-time electricity prices.

o A simplified charge-control (SCC) algorithm is designed
based on the characteristic in the SCC set, which can
relieve the computing burden in the deterministic case.

o An online state recursion (OSC) algorithm is designed
based on the stochastic time-dependent traffic model
and online traffic information, which can improve the
accuracy of the navigation.

The following sections are organized as follows: detailed
system models are presented in Section II. The joint charging
and routing optimization in a deterministic traffic network
is presented in Section IIl. The joint charging and routing
optimization in a stochastic traffic network is discussed in
Section IV. Simulation and conclusion are given in Section
V and VI, respectively.

II. SYSTEM MODEL AND NOTATION
A. Notation

In the rest of the paper, ¢ denotes time, and 7 denotes
a period of time. Variables with a subscript ¢ or j refer to
variables of EVs at the ¢th or the jth station, while variables
with a subscript ij refer to variables of the link (¢, j). For
example, e; is the EV’s arrival energy at the ith station,
while e;; is the energy consumption of EVs on link (3, j).
Moreover, the variables at a station without a superscript “”’
denote arrival variables, while the variables at a station with a
superscript “/”” denote departure variables, e.g., t; is the arrival
time, tg is the departure time. In the deterministic case, we
denote 7;; and e;; as the link travel time and link energy
consumption, while we use 7;;(t) and e;;(t) in the stochastic
case. Note that in the following sections, we denote m;;(t)
and ;;(t) as a special value of variables 7;;(t) and e;;(¢),
respectively. For ease of reading, a brief summarization of
notation and definition is given in Table L.

B. System Model

In this part, a charging and routing cost model is presented
in a deterministic traffic network.

1) Traffic Networks: As EVs can not arrive at the desti-
nation without recharging at long distance trips, we assume
that a network is defined as a directed graph G = (N, A)
with N = {1,...,n}, where node i € N'\{1,n} represents
a fast charging station. Node 1 and n are the origin and
destination of a long distance trip. (¢,j) € A is the road
connecting node ¢ and j. Node 1 may be a fast charging
station or a place equipped with slow chargers. As it takes
a much longer charging time to recharge an EV using a
slow charger, usually 6 ~ 8h, we don’t consider the charging
process at node 1 if it is not a fast charging station. Denote
d;; and 7;; as the distance and travel time of link (¢, j). Let
O(i) = {j € N(i,j) € A} be the successor stations of the ith
station. Denote T' = {t1,--- ,tend} as the travel time limit,
where t.,q is preset, based on the traffic network, to avoid
unpractical solution in navigation.

TABLE I
THE SUMMARIZATION OF NOTATION

Notation| Definition

N~ [Node set in traffic network.
A Arc set in traffic network.
T Travel time limit.

E Possible energy in a battery.
Expected value operator.
d;j |Distance of link (3, 7).

Ti;(t) |Link travel time (variable) at time ¢.

m;;(t) | A special value of 74 (t).

e;;(t) |Link energy consumption (variable) at time .
&i;(t) | A special value of e;;(t).

t;/t] | Arrival/departure time at the ith station.

ei/e], | Arrival/departure energy at the ith station.

Ae; |Charged energy within a unit time at the ith station.

T Waiting time at the ith station.

5 Time spent for charging at the ith station.

T Elapsed time at the ith station, including waiting time.
S; State when a EV arrives at the ith station.

Uj Routing and charging decisions at the ith station.

my A link travel time mode.

M(t) |The identified (link travel time) mode set at time ¢.
M(t) |The possible mode set at time ¢.
p(t) |Real-time electricity prices.
P(-) |Probability of a traffic mode in stochastic traffic networks.
D(-) |Charging control decision set in the ICS algorithm.
D(-) |Charging control decision set in the OSR algorithm.
C(s;) |Minimal cost from the state sq to the current state s;.
C(-) |Minimal cost from the current state (-) to the destination.

2) Link Energy Consumption: Link energy consumption
expresses the energy consumed at links, which is a constraint
of the charging control decisions. Based on the power-speed
relationship of EVs, the link energy consumption e;; can be
expressed as follows:

eij = Tij - f(dij/Tij), (1)

where d;;/7;; is the average speed of link (4, j), f is the EV’s
power-speed function.

3) Rapid Charging: Let E = [emin, -+ ,€stop, " " » Erate)
be the possible energy in the battery, where e,,;, denotes the
stop discharging energy to protect the battery cycle life, e,q¢e
denotes the rated energy of battery. In order not to damage
the battery, the rapid charging process stops when the energy
in battery rises to eg,,. For example, CHAdeMo chargers
are usually configured to stop automatically once the battery
is 80% full [22]. Before reaching egop, the rapid charger
keeps the charging current constant [23], i.e., the charging
curve is approximately linear. We denote Ae; as the energy
charged in unit time at the sth station. Let the waiting time
at the <th station be 7;, which is obtained by a waiting-time
predictor' [24]. For a EV starting to charge with the arrival
energy e; at time t;, and departing with the energy e, the
elapsed time at the 7th station can be expressed as

=1+ 718 =1+ (€] —e;)/Aey, )

where 77 is the time spent for charging at the 7th station.

4) Routing and Charging Cost at Stations: Let the (dis-
crete) real-time prices, obtained by a price predictor, be p(t),
t € T. Suppose a EV arrives at the ith station with a energy

'Waiting time at charging stations can be predicted using electric vehicle’s
online information, e.g., online intension information [24].



e; at time ¢;, and departs to the jth station with energy e;.
Denote s; = (i,e;,t;) and u; = (e}, j) as the arrival state and
decisions, respectively, then the routing and charging cost at
the 4th station is

ti+T;

Z p(t) - Ae; + - (1 + 7i5), 3)

t=t;+7

c(si,u;) =

where the first part is the charging cost, and the second part
is the elapsed time. o > 0, is used to coordinate the charging
cost and the elapsed time. « should be large (small) enough
when minimize the elapsed time (charging cost) in priority.
« can be preset for different navigation modes. Because the
successor state s; can be deduced by s; and u; as shown in
(5), the charging cost c¢(s;,u;) can be expressed as c(s;, s;),
equivalently.

III. DETERMINISTIC NAVIGATION OPTIMIZATION
A. Dynamic Programming Formulation

1) State Variables: We define the state variable at the ith
station as s; = (i,e;,t;), where 4 is the current station, e; is
arrival energy, i.e., the energy left in battery when arriving at
the +th station, t; is the arrival time. Assume a EV departs
form node 1 with a energy e; at time ¢1, then the starting
state is s1 = (1, ey, ¢1). Similarly, the state when a EV arrives
at the destination, node n, the state can be expressed as s,, =
(n, en,ty), where t,, < t.nq. As we minimize the charging
cost and elapsed time in the navigation, it is intuitively obvious
that e,, = €min.-

2) Decision Variables: Assume that charging control and
routing decisions are made when a EV arrives at a station.
Based on the current state at the ith station, s; = (,¢e;,¢;),
we define the decision variable as u; = (e}, j), where e, € E
is the departure energy, ;7 € O(i) is the successor charging
station, i.e., the routing decision is j. Given the current state
s; = (i,e;,t;) and a routing decision j € O(i), the charging
control decision set can be expressed as

D(s;, j)={e; € E|lmax{e;, €mintei;} < e <max{e;, €siop}}-(4)

If node 1 is not a charging station, the decision variable based
on the state s; = (1,e1,%1) is uy = (e1,7) with j € O(1). As
O(n) = (), the decision set is empty at node n.

Based on the current state s; = (4, e;,t;) and decision u; =
(ef,7), the state at the jth station, s; = (j,e;,t;), can be
calculated

ej = 6; — eij
tj =t +7 + Tij,
where 7; is the elapsed time at the ¢th station.

3) Recursive Value Equation: Define the value function of
the current state, C(s;), as the minimal summation of the
charging cost and the elapsed time from the starting state s;
to the current state s;, and C(s;) = 0 (boundary condition).
Then the value function of the successor state s;, determined
by the decision u; = (e}, j), can be expressed as below

C(sj) = ){C(Si) +c(si,ui) } (6)

(&)

min
JEO(i),e,€D(54,j
where ¢(s;,u;) is given in (3). In this paper, our objective is
to find an optimal solution sequence of C(sy,).

B. Deterministic Navigation Algorithms

In this part, an improved Chrono-SPT? (ICS) algorithm is
designed in a deterministic traffic network. In order to relieve
the computational complexity, an SCC algorithm is designed
further.

1) Improved Chrono-SPT (ICS) Algorithm: Borrowing the
conception of chronological searching (a variant of Dijkstra’s
algorithm) in time-dependent networks [25], we design an ICS
algorithm, which searches the optimal charging and routing
decision sequences, chronologically.

In the ICS algorithm, we denote s; = (4, e;,t;), u; = (€}, 7),
and s; = (j,e;,t;) as the current state, current decision ,
and successor state, respectively. Let C(s;) be the minimal
cost from the starting state s; = (1,e;,t1) to the state s;,
and denote (s;) = u; as the optimal decisions based on the
current state s;, which will be used in constructing optimal
decision sequences. We use a bucket-list B = {B;|t € T} to
efficiently perform the selection operations, where B; is the
state bucket at time ¢. The definition is given below.

Definition 1: Given a traffic network G = (N, A) and

possible arrival states set S = {(1,e1,t1), -, (n,en,tn)},
the state bucket at time ¢ is By = {(i, e;,¢;) € S|t; = t}.
In initialization steps, we initialize By, = {s1}, s1 =

(1,e1,t1), while the other buckets are all empty. What’s more,
the cost label of starting state is initialized as zero, i.e.,
C(s1) = 0, while the others are initialized as positive infinite.
The termination condition is verified when all the buckets are
all empty, i.e., B = ¢. Note that an extended state network
can be obtained at the end of the algorithm, where the optimal
routing and charging decision sequences can be found. The
main iteration of ICS algorithm is given in Algorithm 1.

Algorithm 1: ICS Algorithm
* main iteration *

1: select s; = (i,e;,t;) from By,;

20 By, = Btz‘\{si};

3:  for each j € O(i)

4: for each €] € D(s;,j) % calculate successor state
5: ui = (€5, 5);

6: i =1 + (ef — e;)/Aes;

7: t; =t + 7 + 753

8: ej = €; — eij;

9: sj = (J,€5,45);

10: c(siyui) = 3457w p(t) - Aei + a- (10 + 7ij);
11: Bi; = By, U{s;};

12: if C(si) + c(si,s5) < C(s;) then

13: C(s;j) = C(si) + c(si,85); % update cost

14: U(ss) = us;

15: end if

16:  end for

17: end for

In Algorithm 1, lines 3 ~ 9 are the steps of calculating
the successor states, lines 12 ~ 15 are corresponding to the
relaxation steps in Dijkstra’s algorithm. Lines 3 ~ 5 are used to
search all the possible routing and charging control decisions.
Once state s; is selected, it is removed from state bucket By,
as shown in line 2, and the successor state s; is added to the
corresponding state bucket By, .

2Chrono-SPT is short for chronological shortest path tree.



Compared with the Chrono-SPT algorithm [25], the ICS
algorithm can search the optimal decision sequences in
both time- and energy-dependent network, not just a time-
dependent network. Similar to the Chrono-SPT algorithm, the
convergence of the ICS algorithm follows the theorem below.

Theorem 1: Given a directed acyclic graph G = (N, A) and
the travel time limit 7', the ICS algorithm terminates after a
finite number of iterations, which is no more than |A|-|E|?:|T).

Proof: Since the given graph G = (N, A) is a directed
acyclic graph, and the feasible charging control decision set
D(s;,j) € E, the ICS algorithm terminates after a finite
number of iterations. Suppose there is a link (4, ) in the given
graph G = (N, A), then the possible arrival state at the ith
station is « = (i,¢e;,t;), ¢; € E, t; € T, i.e., the number of
possible arrival state is no more than | E|-|T’|. For each possible
arrival state, the charging control decisions e; € D(s;,j) CE,
then the iterations in Algorithm 1 is no more than |A|-|E|?:|T.

|

As the desensitization level of E and 7' is related to both
the computational complexity of the ICS algorithm and the
navigation accuracy, the desensitization level of E and T
is a tradeoff between the accuracy and the computational
complexity. As the time granularity of 1 min is usually
acceptable in navigation, we define the desensitization level
of 7" is 1 min, and the desensitization level of £ is 1 KW:-h,
according to the charging rate.

The ICS algorithm enumerates all the possible charging
control decisions, it has a high computational complexity.
Since all the information, related to the routing and charging
decisions, can be collected locally in deterministic cases, the
navigation system can be deployed on traditional navigation
devices by simply upgrading the software. Taking the low
computing power of the embedded devices and the rapid
response requirement of the navigation system, the compu-
tational complexity of the navigation algorithm must be low
enough, which brings new requirements in improving the ICS
algorithm above.

2) Simplified Charging Control (SCC) Algorithm: Since
real-time electricity prices usually fluctuate over time, hourly
[29], the charging control decisions can be simplified in a
constant price interval for some cases.

Suppose that charging rates at the :th and the jth station
are the same®, and the waiting time at the jth station is 0%,
ie, Ae; = Aej, and 71 = 0. Denote s; = (i,e;,t;) and j as
the current state and routing decision, respectively. Suppose
the electricity price is constant for ¢, t§ < ¢§, i.e., the constant
price time set can be expressed as T, = {t € T|tC <t <t5}.
Then the SCC set can be defined as follows.

Definition 2: Given the current state s; = (i, e;, t;), routing
decision j, and constant price time set 7., the SCC set is
S(si, 4, Te) —{6 € D(si, j)|ti+Ti ETC&ti+Ti+T¢j+T;U €
Te, 7 =18+ (e —e;)/Ae;, Ae; = Aej,T;f" =0}.

Simply put, the SCC set is a charging control decisions set,
which can be simplified. The SCC set can be calculated offline.

3 As nearly all of Japan’s and 3/4 of American fast chargers are CHAdeMO
chargers [28], there are many stations with the same charging rate.

4As the penetration rate of EVs is low, waiting times may be zero especially
at off-peak hours.

Note that if the SCC set exists, for different charging control
decisions in the SCC set, we have the following theorem.

Theorem 2: Suppose there are charging control decisions
e > él, el,el es (si, J,T¢), and the successor states, deter-
mined by €} and &, are s; = (j,e;,t;) and 3; = (4,€;,%;),
the equation c¢(s;, s;) = ¢(s;, 8;) + ¢(s;,3;) holds.

Proof: Given the current state s; = (i,e;,t;), routing
decision j, two different charging control decision e; > é’i,
e}, e. € S(s;,j,T.) and the corresponding arrival states at the
jth station s; = (j,e;,t;) and §; = (j, é;,1;), we have t; =
ti+7—i+7_ij and Ej = ti+7~—i+7_ija where T = Tiw+(6;76i)/A€i,
7i =7 4 (€ — e;)/Ae;. Since e} > €}, we have 7; > 7; and
t; > t;. As described in Definition 2, the electricity price is
the same for ¢, t;,+7; <t < ti+Ti+Tij —|—T;~U. As Ae; = Aej
and T;—”U = 0, the cost from current state s; to the successor
state s; satisfies
ti+T7i
c(si,sj) =2t e p(t) - Ae; + - (75 + Tij)
= ST b0 Aot (i) + ST p(0) A

- C(Slv S]) + C(Sja Sj)

It means that the charging control decisions in the SCC set
can be simplified. [ |

Note that, if the SCC set exists, the charging control
decisions in the set can be simplified to depart with any
element in the set and recharge to the corresponding energy at
the successor station. Based on theorem 2, the SCC algorithm
is designed below. For simplicity, only changes are presented
in Algorithm 2, corresponding to lines 4 ~ 15 in Algorithm
1. In line 2, the charging control decisions in set S(s;, j,T%)
is simplified when the SCC set exists.

Algorithm 2: SCC Algorithm
* main iteration
T.) # ¢ then % simplify set D(s;, j)
D(SlaJ):D(Slv .])\{S(Sh Js TC)} U mzn{S(sz, Js TC)};
end if

for each e; € D(s;,j) % calculate successor state

Ui ( 7,7.7)
(ef —e;)/Aey;
t; +n+m,

if S(si,j7

[
<0

55 (j:ej7tj);

) = 2w P(E) - Aei + - (7i + 7ij);
11: Btj :Bt U{SJ}

12: if C(sy) { c(si,us) < C(s;) then

13:  C(s;) = C(s:) + c(ss,us); % update cost

R A S o

14: P(ss) = us;
15: end if
16: end for

Remark 1: Given a directed acyclic graph G = (N, .A) and
the real-time prices p(t), the derived optimal cost in the SCC
algorithm equals to that in the ICS algorithm.

As described in Theorem 2 that the charging control deci-
sions in the simplified charging control set can be simplified,
and recharged to the same state at the next station, the
optimal cost in SCC algorithm equals to that in ICS algorithm,
obviously.

In order to further explain the ICS and SCC algorithms, a
simple example is given below.



Example 1: Suppose there is a 5-node traffic network, as
shown in Fig. 1, where each links are marked with the link
travel time (min) and corresponding link energy consumption
(kW-h). Assume the charging rate at node 2, 3 and 4 are
the same, and the waiting time at node 3 and 4 are 0.
The parameters about the battery of the electric vehicle are
emin =2 kKW-h, egop = 22 kW-h, €74t = 24 kW-h , and
the state at node 1 is s; =(1,24,7:00). Let the granularity
of charging control decisions be 2 kW-h, for simplicity, and
Ae; = 40 kW, i = 2,3, 4. Based on the instance of Illinois
Power Company real-time pricing [29], the electricity prices
are 4.0 Cent/kW-h, 4.2 Cent/kW-h, and 3.5 Cent/kW-h, for
70 <t <7 :59 8:00 <t <9 :359 and
10: 00 <t <10 : 59, respectively.

Fig. 1. A 5-node traffic network.

Based on the state at node 2, s =(2,6,8:00), the feasible
charging control decisions in the ICS algorithm are D(s9, 3) =
{20,22} and D(s2,4) = {20, 22}. Since the electricity prices
are constant for t € T, = {t € T|8 : 00 < ¢t < 9 : 59},
the SCC sets are S(s2,3,7.) = {20,22} and S(s2,4,T.) =
{20, 22}. As shown in Fig. 2(b), the charging control decisions
at station 2 can be simplified in the SCC algorithm, i.e.,
the SCC algorithm has a lower computational complexity.
Since electricity prices are the same when the EV charge at
stations 2, 3, and 4, the derived optimal costs in the ICS and
SCC algorithms are equivalent. The extended state networks
corresponding to the ICS and SCC algorithms are presented
in Fig. 2.

1 2 3 4  5Node 1 2 3 4
> —

7:00 1 Q(L22,7:00) 7:00

8:00

8:00 -~ >

9:00 9:007  (32,9:11)

(3,4,9:14) ©
10:001 ===~ (5,2,10: 28>
(5,2,10:35)

10:00

(5,2,10:35)
11:00 11:00

Timey Timey

(a) ICS extended network. (b) SCC extended network.

Fig. 2. Extended network obtained by the ICS and SCC algorithms.

IV. STOCHASTIC NAVIGATION OPTIMIZATION

As an outstanding feature of traffic networks, the traffic
profiles, such as link travel time, are stochastic. In order to
improve the accuracy of EV navigation systems, a stochastic
navigation optimization is presented below, based on a stochas-
tic link travel time model.

A. Stochastic Link Travel Times

There are multiple random events in traffic network, such
as incident, vehicle breakdown, and bad weather, which affect
the link travel time. Additionally, the link travel time is usually
correlated link-wisely and time-wisely. For example, if the

TABLE II
TEMPORAL AND SPATIAL PROBABILITY DISTRIBUTION

Link Travel Time (min)

Time Probability
a b c d e
T00< 1< 859 [ 60 | 50 [ 50 | 30 | 60 T
. 160 [ 50 [ 50 | 50 | 30 05
900t < 9:59 555150 150 T 70 05
_ 50 [ 50 [ 50 | 50 | 60 04
10:00< ¢ <10:59 —5——55150 150 [ 60 06

randomness comes from the weather, link travel times of the
whole network over a certain time period are related. If the
randomness comes from incidents, link travel times around the
incident location are related to the incident duration. In this
part, we use the stochastic link travel time model in [26], with
the assumption that link travel times are temporal and spatial
dependent, and travellers have perfect online information, i.e.,
they know the realizations of all the link travel times up to
the current time.

Denote I'(t) as the possible travel time set of all links at time
t (an illustration is given in Example 2). We define the link
travel time mode in the stochastic time-dependent networks as
follows.

Definition 3: Given a traffic network G = (N, .A) and
the travel time limitation set 7', a link travel time mode,
m,, 18 a possible combination of all the link travel time
over T, determined by the temporal and spatial dependence,

ie., m, € R‘T‘Xl‘A‘, and m, = (Tlg(tl),--- ,Tij(tl),
Somia(t), - mi(t), oo Tia(tend), 5 Tij(tend))-
Denote mq,--- ,m,,--- ,mpr as the possible link travel

time modes, the joint link travel time (discrete) probability
distribution is the distribution of such modes. Denote P(m,.)
as the possibility of mode m,., we have Zle P(m,) =1.

Example 2: For a given traffic network as shown in Fig. 1,
suppose there is a temporal and spatial probability distribution
over T = {7:00,---,10 : 59} as shown in Table II, where
the rows reflect the spatial dependence and the columns reflect
the temporal dependence. The joint link travel time probability
distribution can be obtained from Table II, as shown in Table
II1. Note that the rows in Table II correspond to I'(¢), e.g., for
7:00 <t < 8:59, I'(t) = {(60, 50, 50,50, 60)}, and for 9:00
<t <9:59, I'(t) = {(60, 50,50, 50, 50), (60, 50, 50, 50, 70)}.
Moreover, the rows in Table III are the possible link travel
time modes my, ---, My.

Given the joint link travel time distribution, the link travel
time modes can be identified utilizing online link travel time
information. Denote 7;;(#) as the known link travel times
before current time ¢, where (i,5) € A, £ < t. The mode
set, identified by m;; (t~), can be defined as follows.

Definition 4: For a given joint link travel time distribution,
the identified mode set at time ¢ is M(t) = {m,|V(i,j) €
AVE < t,7(t) = 7 (t)}, where 7;;(%) is a special value of
Tij (t)

For example, suppose the current time is ¢ = 9 : 30, and the
known link travel time is m;;(t), £ < ¢, (i,j) € A. In Table
III, if the link travel time sequence is (60, ---, 50), then the
identified mode set at time ¢ is M (t) = {my, ma}. If the link
travel time sequence is (60, - - -, 70), then the identified mode



TABLE III
AN EXAMPLE OF JOINT LINK TRAVEL TIME DISTRIBUTION.

. . 7:00 <t < 8:59 9:00 <t < 9:59 10:00 <t < 10:59 o
Time & Link 7 R —1 S 2 R —1 - Py R— S Probability
m1 60 50 50 50 60 [ 60 S0 S50 50 50|50 50 50 50 60 0.2
Mode |2 60 50 50 50 60 | 60 50 S50 50 50 70 50 50 50 60 0.3
ms 60 50 50 50 60 [ 60 50 50 50 70 [ 50 50 50 50 60 0.2
my 60 50 50 50 60 |60 S50 S50 50 70 |70 50 50 50 60 0.3

set at time ¢ is M(t) = {ms,mq4}.

Suppose the current time is ¢, and denote the possible
identified mode set at time t* > t as M;(t*),--- , Mg(t*),
we define the possible mode set at time t* > ¢ as M(t*) =
{My(t*),- -+, Mi(t*)}, t* > t. For example, suppose current
time is ¢ = 8 : 00, then the possible mode set at time

*=9:00is M(t*) = {{m1,ma}, {ms,ma}}.

Suppose there are mode sets M (t) and M (t*), t* > ¢, then
the conditional probability of such mode sets can be expressed
as

P(m,«)
. _ mueM(H)NM(t)
PO M (D) = I D ()
m,€M(t)
where M (t) N M (t*) = ¢ or M(t*).

B. Dynamic Programming Formulation

Compared with the deterministic case, the time-dependent
link travel times in stochastic traffic network are related to
the charging and routing cost. In this part, we describe state
variables with the EV arrival state and the identified mode set.

Suppose that the current state is s; = (i,e;,t;), and
the identified mode set is M(¢;). Denote m;;(t) and &;;(t),
(1,7) € A, t <t;, as a special value of 7;;(t) and e;;(¢) in the
identified mode set M (¢;). Let u; = (e}, j) be the decision
at the ith station, where the decisions satisfy j € O(i), and
e, € D(s;, M(t;),7). D(si, M(t;),7) is defined as

D(-)={e; € Elmax{e;,emintEij(ti)} < e; <max{e;, estop}} (8)

Similarly, the charging cost at the ith station can be ex-
pressed as
titTi

c(si,u;) = Z

t=t; T

p(t) - Ae; + - (ri +mii(t) (9

According to the current state (s;, M(t;)) and decision wu;,
the successor state is s; = (j, e;,t;), where e; = e, — &;;(t;),
t; = t;+71;+m;(t;), and 7; can be calculated by (2) Suppose
the possible mode set at time ¢; is M(¢;). Define C(s;, M (¢;))
as the minimal cost from the current state (s;, M(;)) to the
destination node, then it can be formulated in a recursion form

C(s;,M(t;)) :min{c(si7 u;)+ [Cls;, M(tj))]} , (10)

Fx
M(t;) e M)
C. Online State Recursion (OSR) Algorithm

Similar to the ICS algorithm, we search the optimal charging
and routing decisions in a stochastic traffic network, chrono-
logically.

In the OSR algorithm, we denote C(s;, M (t;)) as the mini-
mal cost from the currents state (s;, M (¢;)) to the destination
node. Let C(s;, M(t;)) be the expectation of C(s;, M(t;)),
M(t;) € M(t;). Denote 9(s;, M (t;)) as the optimal decisions
based on the current state (s;, M(¢;)). We assume that EVs
make decision as soon as they arrive at a station. The detailed
steps are presented in Algorithm 3.

Algorithm 3: OSR Algorithm
*Main iterationsx

1: select (s;, M(t;)) from By,;

2 By, = Bu\{(z, M(t:))};

3 ifi==n

4:  C(si, M(t;)) =0; % boundary condition

5: else

6: for each j e O(i) % calculate successor state

7: for each ¢; € D(s;, M(t;),7)

8: Ui = (elia])s

9: T =1+ (e —e;)/Aes;

10: ti =t + 7 +mij(t);

11: €j = 6; - fij(ti);

12: 55 = e5,t5);

13: c(si,u;)= z tTwap( )-Ae; + - (1 + i (t));
14: for each M (t; )GM( i) N M (t;)

15: Bi; = By; U {(sj, M (tj))}

16: P = P(M(tj)‘M(ti)); % conditional probability
17: C(s5,M(t;))=C(s5,M(t;))+P-C(s;,M(t;);
18: end for

19:if C(si, M(t:)) > c(si,ui) + C(s5, M(t;))

20: Clsi, M(t:)) = c(si,ui) + C(s5, M(t5)):

21: P(si, M(t;)) = us; % update cost

22: end if

23:  end for

24: end for

25: end if

Corresponding to the recursion formulation in (10), the cost
of the successor state C(s;, M(t;)) is called when calculating
the cost of the current state (s;, M (¢;)). Line 3 is the boundary
condition of iterations. Lines 14 ~ 18 are used to calculate
the expected minimal cost of the possible successor state
(sj, M(t;)). Lines 19 ~ 22 are used to update the minimal
cost of the current state (s;, M (¢;)). In line 24, v(s;, M (t;)) is
used to record the optimal charging and routing decisions. The
intermediate variable C(s;, M (t;)) (in line 17) is initialized as
Zero.

Theorem 3: Given a traffic network G = (N, A), the
travel time limit 7', and the possible link travel times mode
mi,--- ,mpg, the OSR algorithm terminates after a finite
number of iterations, which is no more than |A|-|E|?-|T|-|R|.

We omit the proof for brevity, which is similar to the proof
of Theorem 1.

In OSR algorithm, on-line traffic information must be



obtained to identify the current mode set M(¢), which
brings high-density communication between EVs and traffic
infrastructures. Moreover, detailed history data are needed
in constructing the joint link travel time distribution, which
introduces heavy computing burden. In order to balance the
navigation accuracy, computing burden, and communication
overload, a new navigation infrastructure, such as an on-line
server-client infrastructure, is necessary, where the servers,
with powerful computational capacities, is used to construct
the joint link travel time distribution and search the optimal
decisions, and on-vehicle clients are used to upload EV’s states
and receive the optimal routing and charging decisions.

V. NUMERICAL SIMULATION

In this section, we simulate the joint charging and routing
optimization in both deterministic and stochastic networks. In
the deterministic case, we compare the CPU time and cost
in the ICS and SCC algorithms. In the stochastic case, we
compare the cost in the OSR algorithm with an assumed
omniscient driver, who knows the real traffic properties in
advance. The computer used in simulation has a 2.93GHz CPU
and 2 GB RAM.

In simulation, we use the parameters of Renault ZOE, where
emin = 2 kKW - h, egop = 22 kW- h, and e,4e = 24kW-
h. The ZOE power-speed curve [27] is used in calculating
the link energy consumption. As CHAdeMO chargers are in
the majority of the existing fast chargers [28], we set all the
charging rate to 40kW. Assume the electric vehicle departs
from node 1 at time 7 : 00 with the energy 24 kW-h, and the
travel time limit is 7= {7 : 00,--- ,11 : 59}. The charging
control decision granularity is assumed to be 1 kW-h. We
use the real-time price of the Illinois Power Company [29]
in simulation.

As shown in Table IV, three traffic networks with different
topology are used, where case 1 and case 2 have the same
link numbers, case 2 and case 3 have the same node numbers.
We assume that the distance between two charging stations is
subject to uniform distribution within [60 km, 80 km], which
is suitable for EVs with a cruise range of about 100 km. The
distance between the origin and the destination nodes is about
300 km ~ 400 km, corresponding to a near 5 hours trip for
the EV drivers.

TABLE IV
SIMULATED TRAFFIC NETWORKS AND TOPOLOGIES.
Case | Node | Link Topology
OO —®
1 10 15 | @ QMQE
F—0—9
B—©—0O
O—@—D
B, /N, /@
IR ENL N
3 12 20 © 9‘3‘3{%3{3 ®

A. Simulation in Deterministic Networks

The ICS and SCC algorithms are simulated in deterministic
traffic networks, where the travel speed is subject to uniform
distribution within in [60 km/h, 90km/h]. To evaluate the

performance of the SCC algorithm, we set the waiting times
as 0 here. We simulate 100 times for each cases, the average
costs, iteration numbers, and CPU times are presented in Table
V.

TABLE V
SIMULATION RESULTS OF THE ICS AND SCC ALGORITHMS

Item ICS algorithm SCC algorithm
Case Tteration | Times (s) | Cost | Iteration | Times (s) | Cost
Case 1 3311 5.74 146.81| 2503 394 |46.81
Case 2 2460 3.56 |46.35| 1967 2.66 |46.35
Case 3 4637 9.35 46.10| 3736 7.04 |46.10

As shown in Table V, the number of iterations and the CPU
times in the SCC algorithm are much smaller than those in the
ICS algorithm. In detail, the SCC algorithm saves about 1/4
~ 1/3 CPU times compared with the ICS algorithm. Since
the algorithms are deployed on on-vehicle embedded devices
with low computational capacities, the SCC algorithm with a
shorter CPU time is more suitable than the ICS algorithm.

B. Simulation in Stochastic Networks

According to the analysis of spatial and temporal correlation
in [30], a joint link travel time distribution is presented in
Table VI. The columns in Table VI is travel time of all the
links over 7:00 ~ 11:59. Assume the hour between 8:00 and
9:00 is peak hour, the hour between 10:00 and 11:00 is off-
peak hour, and the other hours are intermediate hours. The
link travel times can be obtained by the link distance and
the uniformly distributed link speed, which have an average
speed 60 km/h at peak hours, 90 km/h at off-peak hours, and
70 km/h at intermediate hours. The detailed link travel times
are omitted, and the table is rotated (compared with Table III)
for space saving. The waiting time at each node is generated
randomly within 0~5 min.

TABLE VI
THE JOINT LINK TRAVEL TIME DISTRIBUTION IN SIMULATION.

Link travel time (min) mode
m1 [ ma [ m3 [ ma | ms [ me | mr [ ms
al 60 60 60 60 60 60 60 60
7:00<t<7:59 |[b| 50 50 50 50 50 50 50 50

Time & Link

8:00 <t < 8:59
9:00<t<9:59 |..
T0:00 <7< 10:59] ...
11:00 <t < 11:59] ...
P(m,)

0.280.12 1 0.07 [ 0.03 | 0.28 | 0.12 ] 0.07 | 0.03

Assume there is an omniscient EV driver who knows the
real link travel times of each simulation scenarios in advance.
The ideal cost of the omniscient driver is calculated utilizing
the time-dependent deterministic traffic properties. In order
to evaluate the accuracy of the OSR algorithm in stochastic
networks, we define the normalized residual as

5= 430 (Culsr M(1)) — Cls1.m,))/Culsn,m).

where § is the normalized residual, N is the number of
simulations, Cx(s1, M (t1)) is the cost of the OSR algorithm
at the kth simulation with a starting state s; and the identified
mode set M (t1), Cr(s1,m,) is the ideal cost at the kth
simulation with the starting state s; and the known ahead link



TABLE VII
SIMULATION RESULTS OF THE OSR ALGORITHMS

Item Omniscient driver OSR algorithm 5 (%)
Case Tteration | Times (s) | Cost | Iteration | Times (s) | Cost
Case 1 4432 3492 [44.61| 30710 | 273.10 [48.50| 8.72
Case 2 3896 32.17 |45.01| 27468 | 276.21 |46.46| 3.22
Case 3 4734 43.58 |40.79| 30951 | 366.50 |44.18| 8.31

travel time mode m,. The average costs, iteration numbers,
and CPU times are given in Table VIIL

As shown in Table VII, the cost in the OSR algorithm is
quite close to the ideal cost of the omniscient EV driver, within
a normalized residual of about 10%. The CPU times (iteration
numbers) in the OSR algorithm are much larger than those
in the omniscient cases, because all the possible link travel
time modes must be discussed in stochastic cases. Moreover,
additional CPU times are introduced by the states searching
in the minimal cost update of each iteration, which can be
reduced by storing the states in the corresponding place of
the matrix, if there are enough caches or RAMs. Since the
OSR algorithm will be deployed on servers with powerful
computational capacities and large caches, EV drivers may
receive the optimal routing and charging decisions within a
much smaller response time.

VI. CONCLUSION

In this work, we study the electric vehicle navigation prob-
lem, which can provide the minimal routing and charging cost
during a long distance trip. Because of the advantages such
as none/less communication requirement, low computational
complexity, the SCC algorithm based navigation system is
compatible to the traditional navigation systems. Utilizing the
stochastic traffic model, the OSR algorithm based navigation
system guarantees the accuracy of the navigation systems,
when there is enough on-line traffic information. In this
paper, we focus on the navigation of single electric vehicle,
the interactions between electric vehicles and navigation of
multiple electric vehicles will be studied in the future.
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