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Abstract
It is challenging to measure the geometry distortion of point cloud introduced by point cloud
compression. Conventionally, the errors between point clouds are measured in terms of point-
to-point or point-to-surface distances, that either ignores the surface structures or heavily
tends to rely on specific surface reconstructions. To overcome these drawbacks, we propose
using point-to-plane distances as a measure of geometric distortions on point cloud compres-
sion. The intrinsic resolution of the point clouds is proposed as a normalizer to convert the
mean square errors to PSNR numbers. In addition, the perceived local planes are investi-
gated at different scales of the point cloud. Finally, the proposed metric is independent of
the size of the point cloud and rather reveals the geometric fidelity of the point cloud. From
experiments, we demonstrate that our method could better track the perceived quality than
the point-to-point approach while requires limited computations.
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ABSTRACT

It is challenging to measure the geometry distortion of point
cloud introduced by point cloud compression. Convention-
ally, the errors between point clouds are measured in terms
of point-to-point or point-to-surface distances, that either ig-
nores the surface structures or heavily tends to rely on spe-
cific surface reconstructions. To overcome these drawbacks,
we propose using point-to-plane distances as a measure of ge-
ometric distortions on point cloud compression. The intrinsic
resolution of the point clouds is proposed as a normalizer to
convert the mean square errors to PSNR numbers. In addi-
tion, the perceived local planes are investigated at different
scales of the point cloud. Finally, the proposed metric is in-
dependent of the size of the point cloud and rather reveals the
geometric fidelity of the point cloud. From experiments, we
demonstrate that our method could better track the perceived
quality than the point-to-point approach while requires lim-
ited computations.

Index Terms— 3D point cloud, quality measurements,
point-to-point distortion, point-to-plane distortion

1. INTRODUCTION

With the growth of 3D sensing technologies, 3D point
clouds have become an important and practical representa-
tion of 3D objects and surrounding environments in many ap-
plications, such as virtual reality, mobile mapping, scanning
of historical artifacts, 3D printing and digital elevation mod-
els [1]. A key challenge in 3D point cloud processing is the
handling of a huge amount of data. To address this, com-
pression of the point cloud data is needed. In this context,
measuring the errors introduced from compression becomes
necessary. That is, we need to evaluate the quality degrada-
tion of a compressed 3D point cloud relative to the incoming
3D point cloud.

To solve this problem, point-to-point distances have been
considered [2]. First, for every point in one point cloud, a
corresponding point from the other point cloud is identified.
Then the average or maximum of the Euclidean distances be-
tween such point pairs is used as the basis for a measurement.
We refer to this approach as point-to-point or cloud-to-cloud
distances (C2C). A notable drawback of this approach is that
it fails to account for the fact that points in a point cloud often

represent surfaces in the structure.
In order to overcome the drawback of the point-to-point

approach, another known approach point-to-surface or cloud-
to-mesh (C2M) [3] was studied. It first constructs a mesh or
model from the reference point cloud. Then, the distances
from each point in the processed point cloud to that mesh are
computed and used as basis for C2M metrics. This method
has been incorporated into some point cloud processing soft-
ware, like CloudCompare [4]. Unfortunately, as it heavily
depends on the method to construct the mesh or model from a
point cloud, that often need special tuning on different target
point clouds, it is hard to deploy this approach for point cloud
compression.

As the point clouds often need to be rendered before be-
ing viewed, another potential way for the evaluation could
be based on projections to an image plane. That is, the pro-
jected view from the uncompressed point cloud serves as a
reference. Then, the compressed point cloud would be pro-
jected to the same image plane and a distortion could be com-
puted. However, this may be a good approach to measure
the distortions on the associated attributes, e.g. RGB/YUV
components, it is not straightforward to measure geometric
distortion in the projected views.

In this paper, we consider a point-to-plane, or named
as cloud-to-plane (C2P) approach, that falls in between the
point-to-point and point-to-surface methods. While integrat-
ing local plane properties and tracking visual qualities, the
proposed point-to-plane metric is less dependent on a com-
plex surface construction and can be deployed in practical.

2. PROPOSED POINT-TO-PLANE METRICS

2.1. Principles of Point-to-Plane Distances

Let A and B denote the original and the compressed point
cloud, respectively. We are to evaluate the compression errors
in point cloud B relative to the original point cloud A. This
would be achieved by a two-pass computation. In each pass,
we select one point cloud as reference, e.g. when computing
eA,B, A serves as a reference. In the end, we will select a
worse metric among eA,B and eB,A as the final measurement.

As illustrated in Fig. 1, the steps of computing point-to-
point distance ec2cA,B and the proposed point-to-plane distance
ec2pA,B are elaborated as follows.
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Fig. 1: Point-to-point distance vs. point-to-plane distance.

1) For each point aj in point cloud A, i.e., the red point in
the figure, identify a corresponding point bi in point cloud B,
i.e. the black point in the figure. The nearest neighbor is used
to locate the corresponding point.

2) Take the unit normal vector Nj on point aj in the refer-
ence point cloud A, if available. Otherwise, the normal vector
would be estimated on the fly using a state-of-the-art method.

3) Compute the error vector E(i, j) by connecting point
aj to point bi. The length of the error vector would actually
lead to the conventional point-to-point error, i.e.,

ec2cA,B =
1

NA

∑
∀aj∈A

‖E(i, j)‖22. (1)

where NA is the number of points in point cloud A.
4) To get proposed point-to-plane errors, we project the

error vector E(i, j) along the normal direction Nj to get a
new error vector Ê(i, j). The point-to-plane error is finally
computed as,

ec2pA,B =
1

NA

∑
∀aj∈A

(E(i, j) ·Nj)
2. (2)

Compared to point-to-point distances, the proposed point-
to-plane distances measure projected error vectors along nor-
mal directions rather than measuring the original error vec-
tors directly, that would impose larger penalty on the errors
that move more away from the local plane surface. For point
clouds characterized by surfaces of structures, such point-to-
plane distances is better aligned with the perceived quality
than point-to-point.

As the point-to-plane distances rely on the normal vec-
tor associated with each point, concerns may arise from the
normal accuracy near to edges. In this situation, a hybrid
measurement could help alleviating the issues, where point-
to-point distances would be still used for the points with un-
reliable normal vectors and point-to-plane distances is used
only with points with reliable normals. In practice, however,
the overall impact from edge points is negligible because such
points only occupy a quite small percentage in a point cloud.
Hence, in this work, we won’t consider a hybrid metric.

Note that similar error metrics have been studied in the
context of surface registration, e.g., Iterative Closest Point
(ICP) algorithms [5, 6] for faster convergence. One contri-
bution of this paper is to apply this method for evaluation of

the point cloud geometric errors introduced from compression
and discover its capability to follow perceptual qualities.

2.2. Peak Signal to Noise Ratio (PSNR)

The mean square error (MSE) proposed so far could be
reported as a metric and sometimes it is preferred because it
carries the physical units in 3D space. However, people often
found it hard to understand the MSE’s between multiple point
clouds. Hence, converting the MSE’s into PSNR numbers
would normalize the metrics with respect to a peak value p,

PSNRA,B = 10 log10
p2

eA,B
, (3)

where the value p is to be selected.
Conventionally, the diagonal distance of a bounding box

of the point cloud is used to define the peak value p. One ob-
vious disadvantage is that, given the same amount of error for
each point, a point cloud from a larger object would produce
a higher PSNR number than a point cloud from a smaller ob-
ject. However, their fidelity should be the same since each
point has the same distortions.

Furthermore, since the perceptual qualities are of our in-
terest, we need to fix certain viewing setting-up for all con-
tents to be inspected. That is, a viewing box need to be fixed
in all (x, y, z) directions. Let the bounding box of two point
clouds denoted as (xi, yi, zi), with i = 1, 2. Note that they
are not from a single point cloud with different qualities, but
two subjects to be studied. To simplify the interpretation, we
assume, for the time being, that the distance between neigh-
boring points within one point cloud is a constant d(i), with
i = 1, 2, and d(1) 6= d(2). Parameter d(i) actually indicates
the intrinsic resolution of an input point cloud in the acquisi-
tion domain. When we pick variable p based on the bounding
box (xi, yi, zi), it means that we are fitting the content from
(xi, yi, zi) to (x, y, z), and an overall scaling is likely to be
necessary. Even if the ratios between (xi, yi, zi) are kept un-
changed during the scaling to avoid geometric deformations,
we are certainly to check the geometric details, represented in
the original data, in an unfair way for the two point clouds,
because the neighboring points rendered in the viewing box
(x, y, z) would be apart from each other at different distances
for the two subjects.

In order to address the above issues, we propose using the
intrinsic resolution d(i) of the input point cloud instead of its
bounding box to define the variable p. In that way, the neigh-
boring points from different point clouds would be put at the
same distance in the viewing box. In practice, the intrinsic
resolution d(i) would be derived from the nearest neighbor
distances for all points ak in the input point cloud, denoted
as dk. Statistical parameters from dk is proposed to deter-
mine the intrinsic resolution. In an advanced choice, one
may use the most probable value as the intrinsic resolution
via a histogram analysis. In this work, we simply choose



the maximum value due to its simplicity. Hence, we have
p = d(i) = max∀ak∈A(dk).

The above proposed way to choose p value based on the
intrinsic resolution seems to make the PSNR be dependent
on the input data. However, since we are to evaluate the qual-
ities in a rendering space rather than the acquisition space,
we should focus on the viewing process. By setting the peak
value p as per the intrinsic resolution, it actually intends to
normalize the MSE’s according to the native resolution during
the rendering, i.e., the viewing conditions. Different choice
of statistic parameters in dk would lead to some minor adjust-
ment for viewing. With maximum value being selected, the
neighboring points with a smaller distance would be mixed
to some extent. With minimum value, the neighboring points
with a bigger distance would allow some gaps between them
or their point sizes are adjusted to fill up the gaps.

In the end, √eA,B/p in PSNR computation represents a
normalized error with respect to a fixed rendering resolution,
that is decoupled from the acquisition.

3. PERCEIVED NORMALS AT DIFFERENT SCALES

With a point cloud compression system, we often need
to deal with a decoded point cloud having fewer points than
in the original point cloud. This may be a consequence from
a scalable coding scenario, where the decoded number of
points progressively increases with more layers being de-
coded. Hence, the decoded point cloud may be only a subset
of points in the original point cloud. The approach proposed
in Section 2, however, does not account for cases when many
points may be missing intentionally.

The normal vectors associated with each point in an orig-
inal point cloud is regarded as a representation of the local
surface when the viewer sits from a close distance to the point
cloud. When the point cloud becomes sparser, each point
would represent a larger space in 3D world. This mimics
a procedure that the viewer is moving away from the point
cloud. As a result, the perceived surface from the same point
is becoming different. This can be illustrated by the viewing
experience on a rock in a hill slope in Fig. 2. When we are
close to the rock, we could differentiate the points on the rock,
and hence there are different normal directions for points on
the rock representing the rock’s shape. When we are far away
from the hill, the perceived normal from the rock becomes a
single direction representing the hill slope instead of the rock
shape, even the sampled point physically belongs to the rock.

Now we come up with a proposed refinement when com-
puting eA,B as in Section 2. After an error vector is generated
for each point from A, the error vector will be projected along
a normal vector that represents the local plane in B. We pro-
pose a way to derive the normal vector representing the per-
ceived local plane in B that follows the principles described
previously.We want to avoid estimating normal vectors solely
based on points in B because such estimation is likely to be
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Fig. 2: Rock on a hill slope. The different perceived nor-
mals at different scales /viewing distances. Left: Closer view.
Right: Further view.

biased due to geometric distortions introduced in B. We also
want to avoid directly using the normal vector carried from
the corresponding point in A because it does not represent
the “perceived” local plane in B. Instead, we propose to clus-
ter the points in A using the points in B as centroids, then
the normal vectors from the points within the same cluster in
A will be averaged as the “perceived” normal at the current
viewing distance. The clustering can be accomplished via de-
termining nearest neighbors in B. All points in A sharing the
same nearest neighbor in B are clustered together.

4. EXPERIMENTS

In order to validate the point-to-plane metric in context of
point cloud compression systems, we conducted two sets of
experiments in this section. The first experiment intends to
simulate different types coding errors, while the second ex-
periment evaluates subsampling schemes that may be utilized
with a scalable compression system. Point-to-point is used
as a benchmark metric. k-NN approach is used to estimate
normals, with k = 12. PSNR values will be computed using
Eq. 3.

4.1. Evaluations on Random Errors vs. Surface Errors

We first simulated different types of displacement errors
on the point locations. Such errors may be introduced by dif-
ferent quantization methods.

Two types of errors were investigated. Type 1 errors move
the points in an arbitrary 3D direction in a random way, and
is called Random Errors. With type 2 errors, the points are
shifted approximately within a local plane, named as Surface
Errors. Both displacement errors are bounded with the same
magnitude and are applied on all points in a point cloud.

Due to lack of space, we only show the snapshots from
Bunny point cloud [7] in Fig. 3. CloudCompare is used for
the rendering [4]. Basically, we perceive more noises with
respect to the contours from the point cloud with Type 1 er-
rors than the point cloud with Type 2 errors, for example, the
contour in the front and the back of the Bunny as highlighted.
Perceptually speaking, the latter with Type 2 errors shows less
noises during viewing than the former errors.



Original (18.6dB, 24.6dB) (18.6dB, 43.6dB)

Fig. 3: Bunny with errors. From left to right: Original; Ran-
dom error; Surface error. (point-to-point, point-to-plane) dB.
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Fig. 4: Evaluation on sampling schemes. “Point2point”
and “Point2plane”: uniform sampling. “Point2point 2” and
“Point2plane 2”: contour-based sampling.

On the other hand, because of the same magnitude in both
errors, their point-to-point metric reports the same number,
18.6dB. That is, point-to-point metric fails to differentiate
the visual qualities. However, point-to-plane metric reports
24.6dB for Type 1 errors and 43.6dB for Type 2 errors, that
clearly demonstrates consistent observation as their percep-
tual qualities.

4.2. Evaluations on Different Subsampling Schemes

Subsampling scenarios play important roles in a scalable
compression system. In this subsection, two subsampling
schemes are to be evaluated. For scheme 1, the sampled
points are selected in a uniform way, called Uniform Sam-
pling. As comparison, in scheme 2, the points from edge or
corner area are forced to have higher probabilities to be cho-
sen [8], and named as Contour-based Sampling.

Fig. 4 shows the point-to-point and point-to-plane mea-
sures for the two subsampling schemes on two point clouds.
The Terrain is provided by Lindstrom et.al [9]. The subsam-
pling ratio ranges from 10% to 90%.

When looking at the point-to-point curves, uniform sam-
pling is reported to be better than contour-based sampling
across all subsampling ratios. On the contrary, the point-
to-plane curves cross each other. In particular, according to
point-to-plane curves, for low sampling ratios, uniform sub-
sampling produces higher quality; while at high sampling ra-
tios, contour-based subsampling instead is preferred.

Fig. 5 shows snapshots of Terrain point cloud at sub-
sampling ratio of 30% and 70% with the two subsampling
schemes. The PSNR numbers using point-to-point and point-
to-plane metrics are also listed. At ratio 30%, both point-to-

(14.7dB, 29.3dB) (11.5dB, 27.1dB)

(24.0dB, 38.5dB) (22.8dB, 40.4dB)

Fig. 5: Terrain. Top and Bottom, subsampling ratio are 30%,
70%. Left, Uniform sampling. Right, Contour-based sam-
pling. (point-to-point, point-to-plane) dB.

point and point-to-plane indicates the uniform subsampling
is better than contour subsampling. From the snapshots, it
could be observed that uniform sampling looks better as it
could better maintain the overall geometric shape of the ob-
jects, e.g. the hilltop. At ratio 70%, however, the observations
from two metrics are different. Point-to-point prefers uniform
sampling and point-to-plane prefers contour-based sampling.
From the corresponding snapshots, it could be observed that
both sampling could describe the overall geometric shape
while the contour-based sampling is able to highlight the
structure details. Hence, the contour-based sampling is pre-
ferred in terms of visual qualities, that is consistent to the
observation from the proposed point-to-plane metric.

Starting from very limited bit budget, uniform sampling
strategy is preferred as the overall geometric information
should be the first priority at the beginning. When more
and more bit budget becomes available, contour-based sam-
pling strategy should start taking effect to highlight the point
cloud details. Using the proposed point-to-plane metric, it
could lead to an adaptive sampling scheme for an overall best
viewing experiences. A fully design for such a framework is
subject to future work.

5. CONCLUSION

In this paper, we propose a point-to-plane measurement as
an objective metric for geometric distortions from point cloud
compression. The intrinsic geometry resolution is further pro-
posed to be used to compute PSNR numbers so as to normal-
ize the errors. In addition, the perceived local planes and their
normals were investigated that should rely on the scaling level
of the point cloud. Comparing to the point-to-point metric,
experiments demonstrate that the point-to-plane metric could
better track visual qualities of a point cloud through a com-
pression system. On the other hand, comparing with other
complex metrics that account for surface structures, point-to-
plane metric is able to capture the surface features while re-
quiring low-complexity computations.
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