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Kévin Degraux? , Ulugbek S. Kamilov†, Petros T. Boufounos†, and Dehong Liu†
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ABSTRACT

Computational imaging methods that can exploit multiple modalities
have the potential to enhance the capabilities of traditional sensing
systems. In this paper, we propose a new method that reconstructs
multimodal images from their linear measurements by exploiting re-
dundancies across different modalities. Our method combines a con-
volutional group-sparse representation of images with total variation
(TV) regularization for high-quality multimodal imaging. We de-
velop an online algorithm that enables the unsupervised learning of
convolutional dictionaries on large-scale datasets that are typical in
such applications. We illustrate the benefit of our approach in the
context of joint intensity-depth imaging.

Index Terms— multimodal imaging, convolutional dictionary
learning, online learning, sparse regularization

1. INTRODUCTION

Multimodal imaging systems acquire several measurements of an
object using multiple distinct sensing modalities. Often, the data ac-
quired from the sensors is jointly processed to improve the imaging
quality in one or more of the acquired modalities. Such imaging
methods have the potential to enable new capabilities in traditional
sensing systems, providing complementary sources of information
about the object. Some of the most common applications of multi-
modal imaging include remote sensing [1], biomedical imaging [2],
and high-resolution depth sensing [3].

We consider a joint imaging inverse problem with multiple noisy
linear measurements

y` = Φ`x` + e`, (1)

where for each modality ` ∈ [1, . . . , L], y` ∈ RM` denotes the
corresponding measurement vector, x` ∈ RN denotes the unknown
image, Φ` ∈ RM`×N denotes the sensing matrix, and e` ∈ RM`

denotes the noise in the measurements. The images {x`}`∈[1...L]

correspond to the same physical object viewed from different modal-
ities. For example, each x` may represent a different color channel,
spectral band, or a type of sensor. For simplicity, we assume that the
desired dimension of the images is the same across all modalities
and that acquisition devices are perfectly registered. The key insight
used in our paper is that information about a single modality exists,
in some form, in other modalities. This information can be exploited
to improve the quality of multimodal imaging, as long as it can be
extracted from the measurements.

This work was completed while K. Degraux was with MERL.
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Fig. 1. Illustration of the proposed multimodal imaging method.

1.1. Main Contributions

In this work, we propose a novel approach based on jointly sparse
representation of multimodal images. Specifically, we are inter-
ested in learning data-adaptive convolutional dictionaries for both
reconstructing and representing the signals given their linear mea-
surements. The main benefit of a convolutional approach is that it
is translation invariant and leads to a sparse representation over the
entire image. This, however, comes with the increase in the compu-
tational cost, which we address by developing a new online convo-
lutional dictionary learning method suitable for working with large-
scale datasets. Our key contributions are summarized as follows:

• We provide a new formulation for multimodal computational
imaging, incorporating a convolutional joint sparsity prior and
a total variation (TV) regularizer. In this formulation, the high
resolution images are determined by solving an optimization
problem, where the regularizer exploits the redundancies across
different modalities.

• We develop an online convolutional dictionary learning algo-
rithm, illustrated in Figure 1. By accommodating an additional
TV regularizer in the cost, the algorithm is able to learn the con-
volutional dictionary in an unsupervised fashion, directly from
the noisy measurements. We validate our approach for joint
intensity-depth imaging.

1.2. Related Work

Starting from early work by Olshausen and Field [4, 5], dictionary
learning has become a standard tool for various tasks in image
processing [6–10]. Our approach builds upon two prior lines of
research, one on convolutional sparse representations [11–13] and
one on online dictionary learning [14–16]. Since our method relies
on TV regularization, it is also related to TV-based imaging algo-
rithms [17–20]. Specifically, our method is based on the popular



fast iterative shrinkage/thresholding algorithm (FISTA) for recon-
structing images from measurements. Our method is validated
on the problem of joint intensity–depth imaging, also considered
in [21–26]. In particular, [23, 24] use traditional sparse coding for
combining depth and intensity, and [27] uses convolutional dictio-
naries for representing multiple modalities. Our approach extends
earlier work by performing multi-modal image reconstruction with
convolutional dictionaries and developing a dedicated online learn-
ing algorithm for large-scale settings.

2. PROPOSED METHOD

2.1. Problem Formulation

The underlying assumption in our approach is that a jointly sparse
convolutional model can accurately approximate the images {x`} as

x` ≈ D`α` ,
K∑
k=1

d`k ∗α`k, (2)

where {d`k} is the set of LK convolutional filters in RP , ∗ denotes
convolution, and {α`k} is the set of coefficient maps in RN̂ . Note
that D` and α` denote the concatenation of all K dictionaries and
coefficient maps, respectively. Given the complete dictionary D =
(D1, . . . ,DL), we can define our imaging problem as the following
joint optimization

(x̂, α̂) = arg min
x,α

{C(x,α; D |y,Φ)} , (3)

where the cost function C is given by

C(x,α; D |y,Φ) , 1
2
‖y −Φx‖22 + ρ

2
‖x−Dα‖22 (4)

+ λ‖α‖2,1 + τR(x),

with y , vc(y1, . . . ,yL), x , vc(x1, . . . ,xL), and α ,
vc(α1, . . . ,αL), denoting the vertical concatenation (vc) of corre-
sponding signals and Φ , diag(Φ1, . . . ,ΦL) denoting the block
diagonal sensing matrix. The first quadratic term in (4) measures the
data-fidelity, while the second controls the approximation quality of
the dictionaries. The first regularization term

‖α‖2,1 ,
K∑
k=1

N̂∑
n=1

‖α·kn‖2 (5)

imposes group- or joint-sparsity of coefficients across L modalities.
Here, α·kn ∈ RL denotes the vector formed by the aligned entries
of the coefficient maps associated with kernel k for every modality
`. Specifically, this regularizer promotes the co-occurrence of image
features, encoded by the dictionary D, in all the modalities. The sec-
ond regularizer in (4) corresponds to the isotropic TV penalty [17]

R(x) ,
L∑
`=1

N∑
n=1

‖[Lx`]n‖2, (6)

where L denotes the discrete gradient operator. Unsupervised learn-
ing of dictionaries from y is complicated when the imaging problem
is ill-posed. The goal of including the TV regularizer is to assist this
learning. In practice, we observed significant improvement in qual-
ity when TV was included, both during learning and reconstruction.
Finally, the positive constants ρ, λ, and τ are parameters controlling

the tradeoff between the data fidelity and regularization.

The joint optimization program in (3) is a convex problem. To
solve it, we use the monotonic variant of FISTA [18]. In particular,
we split C(x,α; D|Φ,y) into a smooth quadratic term

1
2
‖y −Φx‖22 + ρ

2
‖x−Dα‖22 (7)

and a non-smooth term that is separable in x and α

λ ‖α‖2,1 + τR(x), (8)

The proximal operator associated with λ ‖α‖2,1 is equal to[
proxλ‖·‖2,1(α)

]
·kn =

(
‖α·kn‖2 − λ

)
+

α·kn
‖α·kn‖2

, (9)

where the operator (·)+ extracts the positive part of its argument.
While the proximal of TV does not have a closed-form solution, it
can be efficiently implemented [18].

2.2. Learning Algorithm

Suppose the input data is streamed so that at every time step t ∈ N
we get a pair (yt,Φt). The learning procedure attempts to mini-
mize (4) for all t, jointly for x,α and D. Specifically, let J t(D) ,
minx,α

{
C(x,α; D |yt,Φt)

}
, then this amounts to solving

min
D∈D

{
E
[
J t(D)

]}
, (10)

with respect to D, where the expectation is taken over t. Note that,
to compensate for scaling ambiguities, we restrict the optimization
of D to a closed convex set D. Specifically, D is the set of convolu-
tional dictionaries that have kernels in the `2 ball, i.e., ‖d`k‖2 ≤ 1.

The joint optimization program in (10) is difficult to solve di-
rectly. Thus, we use an alternating minimization procedure. In par-
ticular, at iteration t, given the current dictionary Dt−1, and a new
pair of data (yt,Φt), we first solve

(xt,αt)← arg min
x,α

{
C(x,α; Dt−1 |yt,Φt)

}
, (11)

using the method presented in Section 2.1. Then, following the prin-
ciple of [14], we use all the previous iterates and chose D to mini-
mize a surrogate of E

[
J t(D)

]
given by

1

t

t∑
i=1

C(xi,αi; D |yi,Φi). (12)

This second step, performed using a block gradient descent on the
kernels {d`k}, is described in Section 2.3. The complete learning
algorithm is summarized in Algorithm 1.

2.3. Dictionary update

Keeping xi and αi fixed, the only term in C that depends on D is
the quadratic coupling penalty ρ

2
‖xi −Dαi‖22. Therefore, we can

equivalently minimize 1
2t

∑t
i=1 ‖x

i
` −D`α

i
`‖22, for each modality

`. Since everything is separable in `, in the remainder we drop the
subscript for notational clarity. Note that, since the convolution op-
eration is commutative and the αi are fixed, we can rewrite

Dαi =

K∑
k=1

dk ∗αik =

K∑
k=1

αik ∗ dk = Aid, (13)



Algorithm 1 Online Convolutional Dictionary Learning
1: procedure ONLINECDL
2: Input: Stream of data t 7→ (yt,Φt), initial dictionary D0.
3: C0 ← 0; b0 ← 0;
4: while streaming data, do
5: Draw a pair (yt,Φt);
6: Sparse coding step:
7: (xt,αt)← arg min

x,α

{
C(x,α; Dt−1 |yt,Φt)

}
;

8: Update memory:
9: bt ← (1− 1

t
)bt−1 + 1

t

∑t
i=1 AiTxi;

10: Ct ← (1− 1
t
)Ct−1 + 1

t

∑t
i=1 AiTAi;

11: Dictionary update (14), (15) initialized with Dt−1:
12: Dt ← arg min

D∈D

1
2t

∑t
i=1 ‖x

i −Dαi‖22;

where Ai , (Ai1, . . . ,A
i
K) ∈ RN×KP is the sum-of-convolutions

linear operator and d , vc(d1, . . . ,dK). In order to minimize
Gt(d) , 1

2t

∑t
i=1 ‖x

i −Aid‖22, subject to ‖dk‖2 ≤ 1, as in [14],
we apply a projected block-coordinate gradient descent. The algo-
rithm starts for s = 0 with dt,0 ← Dt−1 and iteratively applies the
following two steps for all k ∈ [1, . . . ,K],

d̃t,sk ← dt,s−1
k − 1

Ltk
∇dkG

t
(

vc(. . . , d̃t,sk−1,d
t,s−1
k , . . . )

)
(14)

dt,sk ← d̃t,sk /max{‖d̃t,sk ‖, 1} (15)

until convergence or until a maximum number of iterations is
reached. Note that∇dk denotes the partial gradient

∇dkG
t(d) =

1

t

t∑
i=1

AiTk (Aid− xi), (16)

and Ltk is the Lipschitz constant of ∇dkG
t(d). Importantly, we can

take advantage of all the previous iterates to compute this gradient.
Indeed, we can write it as

∇dkG
t(d) = Ct

kd− btk, (17)

where the memory vector and the symmetric memory matrix,

bt = vc(bt1, . . . ,b
t
K) ,

1

t

t∑
i=1

AiTxi, (18)

Ct = vc(Ct
1, . . . ,C

t
K) ,

1

t

t∑
i=1

AiTAi, (19)

with Ct
k , (Ct

k,1, . . . ,C
t
k,K) = (AiTkAi1, . . . ,A

iT
kAiK), are com-

puted recursively from the previous iterates as

bt ← t− 1

t
bt−1 +

1

t
AtTxt, (20)

Ct ← t− 1

t
Ct−1 +

1

t
AtTAt. (21)

Note that the aforementioned Lipschitz constant is Ltk =
∥∥Ct

kk

∥∥
2
.

2.4. Implementation details

Convolutional implementation. A naive implementation of the online
convolutional learning algorithm would require to store Ct, which is
a dense symmetric KP ×KP matrix. By definition, Aik ∈ RN×P
is a convolution operator whose columns and rows are restricted to
match the size of its input dk and output x, respectively. Similarly,
AiTk ∈ RP×N is a restricted convolution operator whose kernel α̌ik
is the flipped version of αik. Therefore, if the size of αik is chosen
such that it implements a full convolution, then the operator AiTkAik′
corresponds to a restricted convolution with a kernel α̌ik ∗ αik′ . Im-
portantly, the restrictions to a P ×P operator imply that only part of
the kernel, of size proportional to P , is actually used. We denote this
effective part by SP (α̌ik ∗ αik′) where SP is the selection operator.
This implies that Ct

kk′ is itself a convolution operator with kernel

ctkk′ ,
1

t

t∑
i=1

SP (α̌ik ∗αik′). (22)

Therefore, an efficient implementation of Ct only requires to store
or convolve with those K2 kernels. Note that this computational
trick is a big argument in favor of decoupling 1

2
‖y − Φx‖22 from

1
2
‖x −Dα‖22. By contrast, using the same technique to minimize

1
2
‖y −ΦDα‖22 instead, requires the explicit storage of a dense

symmetricKP ×KP matrix. When Φ is a mask and the dictionary
is not convolutional, Mensch et al. [16] adopt a different strategy
which consists in approximating the surrogate function.

Data centering. Patch-based dictionary learning is known to be more
effective when the input data is centered to have zero mean. While
this is not required, it is common to pre-process the data by removing
the means of the training patches [28]. Accordingly, we first estimate
a local mean, i.e., , a low-pass component, xlo of the data x. The
remaining component is the high-pass image xhi , x − xlo. We
aim to learn the sparse synthesis model xhi ≈ Dα. To do so, we
adapt the method above, replacing the coupling term in (4) by ρ

2
‖x−

xlo − Dα‖22. Specifically, we use a mask-aware low-pass filter to
estimate xlo from (y,Φ) where Φ is a mask operator. Let L(·) be a
low-pass filter and ϕ ∈ {0, 1}N the mask (i.e., the diagonal of Φ).
Then, for every pixel [L(ϕ)]n > 0, we compute [xlo]n = [L(y)]n

[L(ϕ)]n
.

We use the nearest neighbor interpolation to fill the remaining pixels
where [L(ϕ)]n = 0.

Mini-batch extension. Similarly to [14], we enhance the algorithm
by performing the sparse coding step on a few samples between ev-
ery dictionary update. This is particularly appealing when we can
process several samples in parallel. It is worth noting that there is
a trade off between the number of input samples per mini-batch and
their size. A big input sample contains a lot of redundant informa-
tion and leads to a slower coding step. Conversely, a mini-batch of a
few small but diverse samples is faster and can mitigate the effect of
a single iteration biasing towards a specific scene.

Forgetting factor. In the first few iterations of the algorithm, the ini-
tial dictionary may not be informative for effective sparse represen-
tation. Thus, the corresponding coefficient maps αt are inaccurate,
compared to coefficient maps computed with later iterates. Conse-
quently, we also introduce a forgetting factor γ ≥ 0, which allocates
more weight to newer samples than to older ones. In practice, during
the update of the memory vector (20) and matrix (21), we weigh the
old and new ones respectively by θt , (1− 1

t
)1+γ and 1− θt.



Table 1. Average PSNR for various subsampling rates on 23 images
from the Middlebury 2014 dataset.

Method 2× 3× 4×
Linear 30.72 dB 30.39 dB 29.97 dB
Guided Filter 34.18 dB 33.46 dB 32.76 dB
Weighted TV 36.85 dB 35.58 dB 34.77 dB
Proposed 37.13 dB 35.73 dB 34.88 dB

3. EXPERIMENTAL EVALUATION

To evaluate our multimodal imaging method, we focus on joint
intensity-depth reconstruction. We consider two modalities (L = 2),
where Φ1 = I is the sensing matrix associated to an intensity image
and Φ2 = diag(ϕ) is a random mask selecting a fraction of the
depth map pixels. To generate y`, Gaussian noise of 30dB PSNR is
added to Φ`x` on both modalities. Our quality metric is the predic-
tion PSNR over the missing pixels of x2. Since the reconstruction
method (3) optimizes over two distinct variables (x̂,α̂), two options
are available for the prediction: either using x̂ or using Dα̂ + xlo.
In our experiments the second solution provides better performance.
We rely only on subsampled data for both training and reconstruc-
tion, and set the number of convolutional kernels to K = 32 and
size P = 15× 15.

Comparison with other methods

In this experiment, we first train a global dictionary using 160 mini-
batches of 8 randomly selected patches of size 45 × 46 from the
Middlebury dataset [29]. Then, to process each specific frame, the
dictionary is specialized with 120 mini-batches of 8 patches sampled
from that frame. Finally, the full (480× 672) frame is reconstructed
by solving (3) with the specialized dictionary. Note that, in contrast
to patch-based dictionary learning, the input patches are not neces-
sarily of the same size as the dictionary kernels. In fact, the full
frame could be used to train the convolutional dictionary. However,
using smaller patches instead, helps to accelerate the training.

Table 1 compares the average performance of our reconstruc-
tion procedure with three alternative approaches, listed in increasing
complexity: linear interpolation, guided filtering [22], and weighted
TV [25]. Note that, similarly to our method, the guided filter and the
weighted TV both use intensity information as a guide for depth es-
timation. The parameters were hand-tuned using heuristics for every
method in order to achieve the best average performance.

Figure 2 shows the specialized dictionary and the reconstruction
results for the Backpack image. One can clearly recognize the typi-
cal image features manifested in the learned kernels. Some kernels
present sharp edges or corners. Others show more elaborate grid-
ded features. Most paired kernels have striking similarities between
depth and intensity in terms of shape, orientation, and alignment.
These results highlight the ability of our method to learn multimodal
convolutional dictionaries directly from noisy and subsampled data.

Online training on a video

In order to demonstrate the online capability of our learning algo-
rithm, we use the Road intensity-depth video sequence from [30].
We use a mask with 2× subsampling and add a 30 dB Gaussian
noise. We start with a dictionary filled with Dirac deltas. On each
512×512 frame of the video, we extract 8 randomly chosen 50×50
patches and perform one mini-batch iteration of the learning algo-
rithm. Then, we reconstruct the full frame using the current dictio-

Fig. 2. The top-left and top-right images are the intensity and depth
modalities from the Backpack image. White pixels correspond to
missing pixels due, for example, to occlusions. Bottom-left im-
age shows the trained dictionary with each pair of corresponding
intensity-depth kernels grouped. Bottom-right shows the reconstruc-
tion of the region highlighted in red for 2× subsampling.
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Fig. 3. Top row plots the evolution of the improvement in dB using
the learned dictionary instead of deltas. Middle row shows the in-
tensity frames 0, 5 and 80 next to three kernels from the correspond-
ing dictionary. Bottom row shows the residual of the reconstructed
depth.

nary and compare with the performances obtained with the initial
dictionary of deltas. Figure 3 presents the evolution, as the video is
streamed, of the PSNR improvement. As evident, the energy of the
residual decreases as the dictionary improves, especially near ob-
ject edges. Note that a temporary drop of quality might be observed
when an unexpected feature appears in the scene. This decrease is
then compensated when the dictionary adapts to the new feature.
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