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Abstract

The problem of reconstructing an object from the measurements of the light it scatters is common in nu-
merous imaging applications. While the most popular formulations of the problem are based on linearizing the
object-light relationship, there is an increased interest in considering nonlinear formulations that can account
for multiple light scattering. In this paper, we propose an image reconstruction method, called CISOR, for non-
linear diffractive imaging, based on our new variant of fast iterative shrinkage/thresholding algorithm (FISTA)
and total variation (TV) regularization. We prove that CISOR reliably converges for our nonconvex optimization
problem, and systematically compare our method with other state-of-the-art methods on simulated as well as
experimentally measured data.

1 Introduction

Estimation of the spatial permittivity distribution of an object from the scattered wave measurements is ubiquitous
in numerous applications. Although the classical linear scattering models such as the first Born approximation [1]
and the Rytov approximation [2] can be solved by comparatively simple inverse algorithms, such models are highly
inaccurate when the physical size of the object is large or the permittivity contrast of the object compared to the
background is high [3]. In order to be able to reconstruct strongly scattering object, nonlinear formulations
that can model multiple scattering need to be considered. More recent work has been trying to integrate the
nonlinearity in the forward model and design new nonlinear inverse algorithms to reconstruct the object. Exam-
ples of existing nonlinear methods include iterative linearization [4, 5], contrast source inversion [6–8], hybrid
methods [9–11], and optimization with error backpropagation [12–16].

One way for solving the inverse problem is via optimization. The objective function usually consists of a
smooth data fidelity term and a non-smooth regularization term whose proximal mapping is easily computed.
For such objective functions, the proximal gradient method ISTA [17–19] or its accelerated variant FISTA [20]
can be applied. Theoretical convergence analysis of FISTA is well-understood for convex problems, whereas no
convergence guarantee is known for FISTA applied to nonconvex cases. A variant of FISTA has been proposed
in [21] for nonconvex optimization with convergence guarantee. This algorithm computes two estimates from
ISTA and FISTA, respectively, at each iteration, and selects the one with lower objective function value as the final
estimate at the current iteration. Therefore, both the gradient and the objective function need to be evaluated at
two different points at each iteration. While such extra computation cost may be insignificant in some applications,
it can be prohibitive in the inverse scattering problem that we consider here, since additional evaluations of the
gradient and the objective function require computation of the entire forward model.

In this work, we propose a new image reconstruction method called Convergent Inverse Scattering based on
Optimization and Regularization (CISOR). CISOR is based on our novel nonconvex optimization formulation that
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Figure 1: Visual representation of the measurement scenario considered in this paper. An object with a real
scattering potential f (x) is illuminated with an input wave uin(x), which interacts with the object and results in
the scattered wave usc at the sensor domain Γ ⊂ R2. The complex scattered wave is captured at the sensor and
the algorithm proposed here is used for estimating the potential f .

can account for multiple scattering, while enabling fast computation of the gradient of the cost functional. Addi-
tionally, CISOR relies on our new relaxed variant of FISTA for nonconvex optimization problems with convergence
guarantees that we establish here. The convergence analysis of our new FISTA variant may be of interest on its
own as a general nonconvex solver.

This paper is organized as follows. In Section II, we present the formulation of the scattering problem. In
Section III, we present CISOR and analyze its convergence. In Section IV, we present experimental results illus-
trating the performance of our algorithm on simulated as well as experimental data. The technical details of our
proofs are presented in the appendix.

2 Problem Formulation

The problem of inverse scattering is described as follows and illustrated in Figure 1. Suppose that an object is
placed within a bounded domain Ω ⊂ R2. The object is illuminated by an incident wave uin, and the scattered
wave usc is measured by the sensors placed in a sensing region Γ ⊂ R2. Let u denote the total field, which satisfies
u(x) = uin(x)+usc(x),∀x ∈ R2. The Lippmann-Schwinger equation [1] establishes the fundamental object-wave
relationship

usc(x) =

∫

Ω

g(x−x′)u(x′) f (x′)dx′,∀x ∈ Γ

u(x) = uin(x) +

∫

Ω

g(x−x′)u(x′) f (x′)dx′,∀x ∈ Ω.

In the above, f (x) = k2(ε(x)− εb) is the scattering potential, where ε(x) is the permittivity of the object, εb is
the permittivity of the background, and k = 2π/λ is the wavenumber in vacuum. The free-space Green’s function
in 2D is defined as g(x) = − j

4 H(1)0 (kb‖x‖), where H(1)0 is the Hankel function of first kind and kb = k
p
εb is the

wavenumber of the background medium. The corresponding discrete system is then

y= Hdiag(f)u+ e

u= uin +Gdiag(f)u,
(1)

where f ∈ RN , u ∈ CN , uin ∈ CN are N uniformly spaced samples of f (x), u(x), and uin(x) on Ω, respectively, and
y ∈ CM is the measured scattered wave at the sensors with measurement error e ∈ CM . The matrix H ∈ CM×N is
the discretization of the Green’s function g(x−x′) with x ∈ Γ and x′ ∈ Ω, whereas G ∈ CN×N is the discretization
of the Green’s function with x,x′ ∈ Ω. The inverse scattering problem is then to estimate f given y, H, G, and uin.
Note that this is a nonlinear inverse problem, because u depends on f through u= (I−Gdiag(f))−1uin.
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3 Proposed Method

Our proposed method is based on a nonconvex optimization formulation with total variation regularization. Let
A := I − Gdiag(f) and Z (f) := Hdiag(f)u = Hdiag(f)A−1uin. Moreover, let C ⊂ RN be a set that contains all
possible values that f can take, and we assume there exists a constant M > 0 such that ‖f‖ ≤ M ,∀f ∈ C . We
estimate f from (1) by solving the following optimization problem:

bf= argmin
f∈RN
F (f) := D(f) +R(f), (2)

with

D(f) =
1
2
‖y−Z (f)‖2

2 (3)

R(f) = τ
N
∑

n=1

√

√

√

√

2
∑

d=1

|[Dd f]n|2 +χC (f), (4)

where Dd is the discrete gradient operator in the dth dimension, and χC (·) is defined as

χC (f) :=

¨

0, if f ∈ C
∞, if f 6∈ C

.

Note that D(·) is differentiable whenever A is non-singular,R(·) is proper convex closed (lower semi-continuous)
whenever C is convex and closed, and F (·) is nonconvex since D(·) is nonconvex.

3.1 Relaxed FISTA

We now propose a new variant of FISTA to solve (2) and provide its theoretical convergence guarantee. Starting
with some initialization f0 ∈ RN and setting s1 = f0, t0 = 1, α ∈ [0, 1), for k ≥ 1, the proposed algorithm proceeds
as follows:

fk = proxγR (sk − γ∇D(sk)) (5)

tk+1 =

q

4t2
k + 1+ 1

2
(6)

sk+1 = fk +α
�

tk − 1
tk+1

�

(fk − fk−1), (7)

where the choice of the step-size γ to ensure convergence will be discussed in Section 3.2. Notice that the
algorithm (5)-(7) is equivalent to ISTA when α = 0 and is equivalent to FISTA when α = 1. For this reason, we
call it relaxed FISTA. Figure 2 illustrates the convergence rate of relaxed FISTA for values of α between 0 and 1.
The plot was obtained by using the experimentally measured scattered microwave data collected by the Fresnel
institute [22]. We can see from Figure 2 that the empirical convergence speed increases as α increases from 0 to
1. Our theoretical convergence analysis of relaxed FISTA is presented in Section 3.2 and establishes convergence
for any α ∈ [0,1).

The two main elements of relaxed FISTA are the computation of the gradient∇D and of the proximal mapping
proxγR . Given ∇D(sk), the proximal mapping (5) can be efficiently solved by constrained TV-FISTA [23]. The
following proposition provides an explicit formula for ∇D.

Proposition 1. Let Z (f) = Hdiag(f)u, r = y −Z (f), and JZ be the Jacobian matrix of Z with Hermitian JH
Z .

Then we have
∇D(f) = Re

�

JH
Z r
	

= Re
�

diag(u)H
�

HHr+GHv
�	

, (8)

where u and v are obtained from the linear systems

Au= uin, and AHv= diag(f)HHr. (9)
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Figure 2: Empirical convergence speed for relaxed FISTA with various α values tested on experimentally measured
data.

Proof. See Appendix ??.

Note that in the above, u and v can be efficiently solved by conjugate gradient. In our implementation, A is
an operator rather than an explicit matrix, and the convolution with the Green’s function is computed using the
fast Fourier transform (FFT) algorithm.

3.2 Performance Guarantee

The following proposition shows that the data fidelity term (3) has Lipschitz gradient on a bounded domain,
which is essential to prove the convergence of relaxed FISTA.

Proposition 2. Suppose that U ⊂ RN is bounded. Assume that ‖uin‖ <∞ and the matrix A = I−Gdiag(s) is
non-singular for all s ∈ U . Then D(s) has Lipschitz gradient on U . That is, there exists an L ∈ (0,∞) such that

‖∇D(s1)−∇D(s2)‖ ≤ L‖s1 − s2‖, ∀s1, s2 ∈ U . (10)

Proof. See Appendix ??.

Notice that all fk obtained from (5) are within a bounded set C , and each sk+1 obtained from (7) is a linear
combination of fk and fk−1, where the weight α

�

tk−1
tk+1

�

∈ [0,1) since α ∈ [0,1) and tk−1
tk+1
≤ 1 by (6). Hence,

the set that covers all possible values for {fk}k≥0 and {sk}k≥1 is bounded. Using this fact, we have the following
convergence guarantee for relaxed FISTA.

Proposition 3. Let U in Proposition 2 be the set that covers all possible values for {fk}k≥0 and {sk}k≥1 obtained
from (5) and (7), L be the corresponding Lipschitz constant defined in (10). Choose γ ≤ 1−α2

2L for any fixed
α ∈ [0, 1). Define the gradient mapping as

Gγ(s) :=
s− proxγR (s− γ∇D(s))

γ
.

Then, relaxed FISTA converges to a stationary point in the sense that the gradient mapping norm satisfies

lim
k→∞

‖Gγ(sk)‖= 0.

Proof. See Appendix ??.

Note that when Gγ(bs) = 0, this implies that 0 ∈ ∂F (bs), where ∂F denotes the limitting subdifferentiation of
F [24]. Hence, bs is a stationary point of F . This establishes that relaxed FISTA converges to the stationary point
of the problem (2).
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Figure 3: Comparison of different reconstruction methods for various contrast levels tested on simulated data.

4 Experimental Results

We now compare our method CISOR with the state-of-the-art method SEAGLE [15], as well as several conventional
methods, including the first Born approximation (FB) [1], iterative linearization (IL) [4, 5], and contrast source
inversion (CSI) [6–8].

Comparison on simulated data. We first use simulated data to demonstrate the reconstruction quality of dif-
ferent methods for objects with various contrast values, where the contrast of an object f is defined as max(|f|)/k2

b.
In the experiment, we generate a Shepp-Logan image in Matlab and change its contrast to the desired value to
obtain the ground-truth ftrue. We then run our forward model to generate the scattered wave, which is then used
as measurements. Let the center of the image be the origin, and the physical size of the image is assumed to be
120 cm × 120 cm. Two linear detectors are placed on two opposite sides of the image at a distance of 95.9 cm
from the origin. Each detector has 169 sensors with a spacing of 3.84 cm. The transmitters are placed on a line
48.0 cm left to the left detector, and they are spaced uniformly in azimuth with respect to the origin within a
range of [−60◦, 60◦] at every 5◦. The wavelength of the incident wave is 7.49 cm and the pixel size is 0.94 cm.
The reconstructed SNR, which is defined as 20 log10(‖ftrue‖/‖̂f− ftrue‖), is used as the comparison criterion. For
each contrast value and each algorithm, we run the algorithm with 5 different regularization parameter values:
τ= 2a × 2.5× 10−5‖y‖2 with a = −2,−1,0, 1,2, and select the result that yields the highest reconstructed SNR.

Figure 3 shows that as the contrast increases, the reconstructed SNR of FB and IL decreases, whereas that of
the proposed method CISOR is not affected by the increasing contrast value.

Comparison on experimental data. We use three objects from the public dataset provided by the Fresnel
institute [22]: FoamDielExtTM, FoamDielintTM, and FoamTwinDielTM. The objects are placed within a 15 cm
× 15 cm square region centered at the origin of the coordinate system. The number of transmitters is 8 for
FoamDielExtTM, FoamDielIntTM, and 18 for FoamTwinDielTM. The number of receivers is 360 for all objects. The
transmitters and the receivers are placed on a circle centered at the origin with radius 1.67 m and are spaced
uniformly in azimuth. Only one transmitter is turn on at a time and only 241 receivers are active for each
transmitter. That is, the 119 receivers that are closest to a transmitter are inactive for that transmitter. While
the dataset contains multiple frequency measurements, we only use the ones corresponding to 3 GHz, hence the
wavelength of the incident wave is 9.99 cm. The pixel size of the reconstructed images is 0.12 cm.

Figure 4 demonstrates the relative reconstructed SNR, which is defined as defined as 20 log10(‖fref‖/‖̂f−fref‖),
obtained by CISOR with different measurement reduction factors, where fref is the reconstructed image using all
measurements, namely, 8 transmitter with 241 measurements each. A reduction factor of 64 reduces the number
of measurements for each transmitter to 7. The regularization parameter τ is set to be 2.5× 10−5‖yS ‖2, where
yS is the subset of the full measurements that is used for reconstruction.

Figure 5 provides a visual comparison of the reconstructed images obtained by different algorithms. For
each object and each algorithm, we run the algorithm with 5 different regularization parameter values: τ =
2a × 2.5× 10−5‖y‖2 with a = −2,−1,0, 1,2, and select the result that has the best visual quality. Figure 5 shows
that all nonlinear methods CISOR, SEAGLE, CSI, and IL obtained reasonable results in terms of both the contrast
value and the shape of the object, whereas the linear method FB significantly underestimated the contrast value
and failed to capture the shape. Among the nonlinear methods, CISOR and SEAGLE obtained images with the
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Figure 4: Reconstruction quality CISOR with various data reduction factors tested on experimentally measured
data.

Figure 5: Reconstructed images obtained by different algorithms from experimentally measured data. The first
row uses FoamDielExtTM, and the second row uses FoamTwinDielTM. From left to right: ground truth, recon-
structed images by CISOR, SEAGLE, IL, and FB. Note that the color-map used for FB is different from the rest,
because FB significantly underestimated the contrast values.

best visual quality.
Note that one advantage of CISOR over SEAGLE is that CISOR computes the gradient D(·) (8) on the fly

at each FISTA iteration, whereas SEAGLE needs to store iterates from the forward model for computing the
gradient. Therefore, in order to obtain accurate gradient, CISOR can set the stopping criterion for the conjugate
gradient algorithm to be sufficiently small when computing u and v in (9) , whereas SEAGLE needs to consider
the availability of memory to store the iterates. Moreover, the relaxed FISTA applied in CISOR has theoretical
convergence guarantee for the nonconvex problem (2), whereas the standard FISTA applied in SEAGLE is not
guaranteed to convergence for nonconvex problems.

5 Conclusion

In this paper, we proposed a nonconvex formulation for nonlinear diffractive imaging. The nonconvex optimiza-
tion problem was solved by our new variant of FISTA. We provided an explicit formula for fast computation of the
gradient at each FISTA iteration and proved that the algorithm converges for our nonconvex problem. Numerical
results demonstrated that the proposed method is competitive with several state-of-the-art methods. Two key
advantages of CISOR over other methods are in its (i) memory efficiency and (ii) convergence guarantees.
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6 Appendix

6.1 Proof for Proposition 2

Let Ai = I−Gdiag(si), ui = A−1
i uin, zi =Z (si), ri = y− zi , and vi = A−H

i Hdiag(si)ui for i = 1, 2. Then,

‖∇D(s1)−∇D(s2)‖ ≤ ‖diag(u1)
HHHr1 − diag(u2)

HHHr2‖

+ ‖diag(u1)
HGHv1 − diag(u2)

HGHv2‖.

Label the two terms on the RHS as T1 and T2. We will prove T1 ≤ L1‖s1 − s2‖ for some L1 ∈ (0,∞), and
T2 ≤ L2‖s1− s2‖ can be proved in a similar way for some L2 ∈ (0,∞). The result (10) is then obtained by letting
L = L1 + L2.

T1 ≤ ‖diag(u1)
HHHr1 − diag(u2)

HHHr1‖

+ ‖diag(u2)
HHHr1 − diag(u2)

HHHr2‖

≤ ‖u1 − u2‖‖H‖‖r1‖+ ‖A−1
2 ‖‖uin‖‖H‖‖z1 − z2‖,

where the last inequality uses the fact that for a diagonal matrix, ‖diag(d)‖=maxn∈[N] |dn| ≤ ‖d‖. Notice that

‖u1 − u2‖ ≤ ‖A−1
1 (A2 −A1)A

−1
2 ‖‖uin‖

≤ ‖A−1
1 ‖‖A2 −A1‖‖A−1

2 ‖‖uin‖

≤ ‖A−1
1 ‖‖G‖‖s1 − s2‖‖A−1

2 ‖‖uin‖,
‖z1 − z2‖ ≤ ‖Hdiag(s1)u1 −Hdiag(s1)u2‖
+ ‖Hdiag(s1)u2 −Hdiag(s2)u2‖

≤ ‖H‖‖s1‖‖u1 − u2‖+ ‖H‖‖s1 − s2‖‖A−1
2 ‖‖uin‖.

Then the result T1 ≤ L1‖s1 − s2‖ follows by noticing that ‖s1‖, ‖uin‖, and ‖A−1
i ‖ for i = 1,2 are bounded by

our assumption, ‖G‖, ‖H‖ are bounded since they are convolution operators, and the fact that ‖r1‖ ≤ ‖y‖ +
‖H‖‖s1‖‖A−1

1 ‖‖uin‖<∞.

6.2 Proof for Proposition 3

By (10), we have that for all x,y ∈ U ,

|D(x)−D(y)− 〈∇D(y),x− y〉| ≤
L
2
‖x− y‖2. (11)

By (5), we have that for all x ∈ U , t ≥ 0,

R(x)≥R(ft) + 〈
st − ft

γ
−∇D(st),x− ft〉. (12)

Let x= fk, y= fk+1 in (11) and x= fk, t = k+ 1 in (12). Then, adding the two inequalities, we have

F (fk+1)−F (fk)≤ 〈∇D(fk+1)−∇D(sk+1), fk+1 − fk〉

+
1
γ
〈sk+1 − fk+1, fk+1 − fk〉+

L
2
‖fk+1 − fk‖2 (13)

(a)
≤

L
2
‖sk+1 − fk+1‖2 +

L
2
‖fk+1 − fk‖2 +

1
2γ
‖sk+1 − fk‖2

−
1

2γ
‖sk+1 − fk+1‖2 −

1
2γ
‖fk+1 − fk‖2 +

L
2
‖fk+1 − fk‖2

(b)
≤
�

1
2γ
− L

�

�

‖fk − fk−1‖2 − ‖fk+1 − fk‖2
�

−
�

1
2γ
−

L
2

�

‖sk+1 − fk+1‖2.
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In the above, step (a) uses Cauchy-Swartz and Proposition 2, as well as the fact that 2ab ≤ a2 + b2, for the first
term in (13), and uses the formula 2〈a−b,b−c〉= ‖a−c‖2−‖a−c‖2−‖b−c‖2 for the second term in (13). Step (b)
uses the condition in the proposition statement that γ≤ 1−α2

2L and (7), which implies ‖sk+1−fk‖ ≤ α
tk−1
tk+1
‖fk−fk−1‖,

where we notice that tk−1
tk+1
≤ 1 by (6), and α < 1 by our assumption. Summing both sides from k = 0 to K:

�

1
2γ
−

L
2

� K−1
∑

k=0

‖sk+1 − fk+1‖2 ≤F (f0)−F (fK)

+
�

1
2γ
− L

�

�

‖f0 − f−1‖2 − ‖fK − fK−1‖2
�

(a)
≤ F (f0)−F (fK)

(b)
≤ F (f0)−F ∗,

where F ∗ is the global minimum, step (a) follows by letting f−1 = f0, which satisfies (7) for the initialization
s1 = f0, and step (b) holds because F ∗ ≤F (fK). Since Gγ(sk) =

sk−fk
γ , we have

lim
K→∞

K
∑

k=1

‖Gγ(sk)‖2 ≤
2L (F (f0)−F ∗)
γL(1− γL)

<∞.

Therefore, limk→∞ ‖Gγ(sk)‖= 0.
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