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Abstract
Local steering, which constructs a kinematically or dynamically feasible path between two
configurations, is a core component of various path planning methods. This paper investigates
the continuous curvature (CC) steering for car-like robots subject to constraints on velocity,
curvature and derivative of the curvature. Based on the u-tangency conditions in [9], we
establish existence conditions for a class of CC paths which admit the same driving patterns as
the Reeds-Shepp paths [6]. These conditions allow efficient implementation of the CC steering,
which enables real-time CC path planning. The feasibility and computation efficiency of the
resultant CC steering are validated by numerical simulations.
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Abstract: Local steering, which constructs a kinematically or dynamically feasible path between two configurations, is a core
component of various path planning methods. This paper investigates the continuous curvature (CC) steering for car-like robots
subject to constraints on velocity, curvature and derivative of the curvature. Based on the µ−tangency conditions in [9], we
establish existence conditions for a class of CC paths which admit the same driving patterns as the Reeds-Shepp paths [6]. These
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computation efficiency of the resultant CC steering are validated by numerical simulations.
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1 Introduction

Path planning problem of mobile robots has been exten-
sively investigated during the past few decades, with the con-
sideration of various kinematic, dynamic and environmental
constraints [1–3]. A vast majority of research efforts have
been devoted to path planning of robots with nonholonomic
dynamics [4–7] and particularly car-like robots, due to the
broad applications of car-like platforms [8].

Pioneering work [5, 6] has shown that shortest length
paths, also known as Reeds-Shepp (RS) paths, are sequen-
tial composition of line segments and tangential circular arcs
of the minimum turning radius. Nevertheless, the curvature
along these optimal paths is discontinuous. This is undesir-
able in practice, since a mobile robot has to stop and per-
form stationary steering, leading to unnecessary time delay
and extra wearing of tires [8, 9].

Many contributions have been made to constructing opti-
mal continuous curvature (CC) [9] paths for car-like robots.
Work [10–12] established the existence of optimal CC paths,
which are composed of clothid curves and line segments;
however, it is also shown that the line segment involves
infinite chattering. This discouraging discovery motivates
the study of finding computationally efficient sub-optimal
CC paths. For instance, work [13] planed CC paths based
on Bézier curve fitting; nonetheless, sub-optimality was not
extensively studied therein. Work [14] developed a nu-
merically efficient planning scheme, which is applicable to
forward-moving robots.

This paper considers schemes to enable real-time com-
putation of sub-optimal CC paths for car-like robots with
curvature and its time derivative bounded. The sub-optimal
CC paths admit the same driving patterns as the RS paths,
and thus can be viewed as a generalization of the RS paths.
Based on the µ−tangency conditions [9, 12], we establish
existence conditions of the sub-optimal CC paths. The ex-
istence conditions can be used to determine whether a sub-
optimal CC path with a specific driving pattern exists, and
how to construct efficiently.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the kinematic model of a car-like robot
and formulates the optimal path planning problem. In
Section 3, we review the RS paths as well as clothoid
curves and µ−tangency conditions. The clothoid curves and

µ−tangency conditions are further utilized in Section 4 to
derive existence conditions of CC paths. Section 5 com-
pares RS steering and the proposed CC steering by simu-
lation. Concluding remarks are presented in Section 6.

2 Preliminaries

Besides stating the continuous curvature (CC) path plan-
ning problem, this section overviews classes and patterns of
Reeds-Shepp (RS) paths, clothoid turns, and µ−tangenecy
conditions. Readers are referred to [6, 9] for details.

2.1 Kinematic Model of Car-like Robots
Fig. 1 illustrates the car-like robot, which is equipped with

a front-fixed steering wheel and fixed parallel rear wheels.
The pointR is located at the mid of the rear wheels. The pose
of the robot is uniquely described by a triple (x, y, θ) where
(x, y) represent the coordinates of R in the global frame and
θ is the orientation angle of the robot with respect to the pos-
itive x-axis of the global frame. The robot has a wheelbase
b, and a steering angle φ.

Fig. 1: A car-like robot with reference point R [9].

The kinematic model of the car-like robot is given by
ẋ
ẏ

θ̇
κ̇
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0
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where the curvature κ is an extra configuration parameter in
addition to (x, y, θ). The control inputs of system (1) are
u = (v, σ), where v is the driving velocity of the rear wheels
and σ the steering rate. The relationship between φ, κ and σ



is established as follows:

κ =
tanφ

b
, σ = κ̇ =

φ̇

b cos2 φ
.

Assume that both forward and backward motions are al-
lowed for the robot and the driving velocity is bounded,
whereas the angle of the steering wheel is subject to me-
chanical constraints, i.e.,

|v| ≤ vmax, |φ| ≤ φmax, |κ| ≤ κmax :=
tanφmax

b
. (2)

The steering rate σ is also assumed to be bounded, i.e.,

|σ| ≤ σmax. (3)

Thus, the set of admissible control inputs is defined by

U = {u ∈ U : u(t) ∈ U, t ∈ [0, Tf ]}, (4)

where U is the set of all measurable functions defined over
[0, Tf ], and U := [−vmax, vmax]× [−σmax, σmax].

2.2 Optimal Path Planning Problem
Given an initial configuration q0 = (x0, y0, θ0, κ0), a final

configuration qf = (xf , yf , θf , κf ) and the model (1) with
constraints (2) (3), we aim to find a feasible and optimal path
between q0 and qf .By normalizing the velocity of the robot,
i.e., |v| = 1, planning the optimal (shortest) feasible path is
equivalent to solving the following optimal control problem.

Problem 1 (Optimal Path Planning). Given a robot with dy-
namics (1) and the cost functional

J(u) =

∫ Tf

0

dt = Tf , (5)

determine the optimal control input u∗ ∈ U with u∗ :
[0, Tf ] 7→ U and the associated optimal state trajectory
q∗ : [0, Tf ] 7→ R2 × S1 × R, such that

1) Boundary conditions q∗(0) = q0 = (x0, y0, θ0, κ0),
and q∗(Tf ) = qf = (xf , yf , θf , κf );

2) Feasibility ∀t ∈ [0, Tf ], q∗(t) ∈ R2 × S1 ×
[−κmax, κmax];

3) Optimality The optimal control u∗ minimizes the cost
functional J(u).

Similar to [9], we assume that q0, qf have null-curvature
configurations, i.e., κ0 = κf = 0. Extension to connecting
non-zero curvature configurations can be achieved. Without
loss of generality, we further assume q0 = (0, 0, 0, 0).

2.3 Reeds-Shepp Paths
As shown in [6], RS paths can be categorized into 12

classes, and admit a total of 48 patterns. All classes and
patterns are summarized in Table 1, where C stands for a
circular curve and S stands for a line segment; while L and
R specify left and right turns with + or − denoting forward
or backward motion, respectively. In addition, the subscripts
denote the (absolute) angular value of a certain circular arc
and | represents a cusp occurring in a path.

Table 1: Reeds-Shepp Classes of Paths
Classes Patterns
CSC − 1 L+S+L+, L-S-L-, R+S+R+, R-S-R-
CSC − 2 L+S+R+, L-S-R-, R+S+L+, R-S-L-
C|C|C L+R-L+, L-R+L-, R+L-R+, R-L+R-
C|CC L+R-L-, L-R+L+, R+L-R-, R-L+R+
CC|C L+R+L-, L-R-L+, R+L+R-, R-L-R+

CCu|CuC L+R+L-R-, L-R-L+R+, R+L+R-L-, R-L-R+L+
C|CuCu|C L+R-L-R+, L-R+L+R-, R+L-R-L+, R-L+R+L-
C|Cπ

2
SC − 1 L+R-S-R-, L-R+S+R+, R+L-S-L-, R-L+S+L+

C|Cπ
2
SC − 2 L+R-S-L-, L-R+S+L+, R+L-S-R-, R-L+S+R+

CSCπ
2
|C − 1 L+S+L+R-, L-S-L-R+, R+S+R+L-, R-S-R-L+

CSCπ
2
|C − 2 L+S+R+L-, L-S-R-L+, R+S+L+R-, R-S-L-R+

C|Cπ
2
SCπ

2
|C L+R-S-L-R+, L-R+S+L+R-,

R+L-S-R-L+, R-L+S+R+L-

2.4 Clothoid Turns
We utilizes the same clothoids [9] to ensure the continu-

ity of curvature along sub-optimal CC paths. A clothoid
is a curve whose curvature is an affine function of the arc
length s, i.e., κ(s) = κ(0) + σs, where σ is termed as
the sharpness of the clothoid. A clothoid turn (CT ) from
q0 = (x0, y0, θ0, 0) to an endpoint qg(xg, yg, θg, 0) is char-
acterized by its deflection δ = (θg − θ0) mod 2π. Without
loss of generality, we consider the robot (1) moving along a
forward and left clothoid turn with deflection 0 ≤ δ < 2π
from q0 = (0, 0, 0, 0). Let δc = κ2

max/(2σmax). For the
case where 2δc ≤ δ ≤ 2δc + π, the robot first follows a
clothoid with σmax until the curvature κ = κmax. The con-
figuration q of the robot at distance s from the initial config-
uration is given by

q(s) =


x(s)
y(s)
θ(s)
κ(s)

 =


√
π/σmaxCf

(
s/
√
π/σmax

)
√
π/σmaxSf

(
s/
√
π/σmax

)
σmaxs

2/2
σmaxs

 ,

where Cf (s) =
∫ s

0
cos π2 τ

2dτ and Sf (s) =
∫ s

0
sin π

2 τ
2dτ

are the Fresnel cosine and sine integrals, respectively. This
clothoid ends at

q1 :=


x1

y1

θ1

κ1

 =


√
π/σmaxCf

(√
κ2
max/(πσmax)

)
√
π/σmaxSf

(√
κ2
max/(πσmax)

)
δc

κmax

 .

From q1, the robot enters a circular arc of radius κ−1
max

and of an angular value θ = δ − 2δc. The center Ω of the
underlying circle is(

xΩ

yΩ

)
=

(
x1 − κ−1

max sin θ1

y1 + κ−1
max cos θ1

)
.

The circular arc ends at q2 = (x2, y2, δ−δc, κmax) for some
x2 and y2. We define radius RΩ and angle µ between the
orientation of qi and the tangent to the circle of center Ω
(henceforth called a CC Circle C+

l of a forward left turn), as
follows,

RΩ =
√
x2

Ω + y2
Ω, µ = arctan(xΩ/yΩ).



After the robot leaves the circular arc, it follows another
clothoid with sharpness −σmax until the curvature reduces
to zero. The clothoid turn CT of deflection 2δc ≤ δ ≤
2δc + π is then formed by: (i) a clothoid starting at q0 with
sharpness κmax and of length κmax/σmax; (ii) a circular arc
of radius κ−1

max and of angle δ − 2δc; (iii) a second clothoid
with sharpness −κmax and of length κmax/σmax.

For the case where 0 < δ < 2δc, a clothoid of sharpness
σ ≤ σmax and a symmetric clothoid arc of sharpness−σ are
used to reach the deflection. To purse computationally con-
venient path planning in the following sections, we require
that (xg, yg) be also located at C+

l (q0). Toward this end, the
desired sharpness σ is given by [9]

σ =
π
[
cos(δ/2)Cf (

√
δ/π) + sin(δ/2)Sf (

√
δ/π)

]2
R2

Ω sin2(δ/2 + µ)

and the arc length of each clothoid arc is
√
δ/σ.

Finally, for the case δ = 0, the clothoid turn reduces to a
straight line segment of length 2RΩ sinµ, so as to ensure that
qg belongs to C+

l (q0). It is worth pointing out that although
backward motion is allowed for the robot (1), we require that
the direction of motion remain unchanged within a single
clothoid turn, for the sake of clarity of presentation. This
additional restriction eliminates the clothoid turn case in [9]
where 2δc + π ≤ δ < 2π.

2.5 µ-Tangency Conditions
The µ-tangency conditions between clothoid turns and

line segments are first presented. Recall that in the RS path
planning paradigm, a connection between a circular arc and
a line segment is needed at a configuration q if and only if the
line segment is tangent to the circle associated with q. For
CC paths, the line segment must cross the CC circle associ-
ated with the configuration q and make an angle of µ. The
idea is illustrated in Fig. 2.

Fig. 2: µ-tangency between line segments and CC circles.

The µ−tangency conditions between clothoid turns are
derived as follows. We take a path of the form L + R+
that connects two configurations q1 and q2 as an example
to explain µ-tangency conditions when the direction of mo-
tion does not change. As shown in Fig. 3, the µ-tangency
conditions suggest that the CC circle C+

l (q1) be tangent to
C−
r (q2). The intermediate configuration q3 serves not only

the final configuration of the left clothoid turn from q1 but
the initial configuration of the right clothoid turn ending at
q2. Specifically, angles between the orientation of q3 and
tangent vectors of both C+

l (q1) and C−
r (q2) are µ. The cor-

responding µ-tangency condition is

L(Ω1Ω2) = 2RΩ,

where L(Ω1Ω2) is the distance between the centers of the
two CC circles.

Fig. 3: µ-tangency between CC circles (with no cusp).

Moreover, we take a path of the formL+R− that connects
two configurations q1 and q2 as an example to explain µ-
tangency conditions when the direction of motion changes.
This case is illustrated by Fig. 4, where a cusp emerges on
the path. Let q3 be the configuration of the cusp, and q3

must be located at one of the intersection points of the CC
circles C+

l (q1) and C+
r (q2). The µ-tangency condition re-

quires that the orientation of q3 makes an angle of µ with
respect to both CC circles. This type of µ-tangency condi-
tion validates if and only if both of the following conditions
hold simultaneously:

1) L(Ω1Ω2) = 2RΩ cosµ;
2) The orientation of q3 is vertical to Ω1Ω2.

Fig. 4: µ-tangency between CC circles (with a cusp).

3 Main Results

This section derives existence conditions of the CC paths
that admit the RS path classes in Table. 1. Due to space
limitation, we only consider the CC paths starting with the
word L+ that connect the null-curvature initial and final
configurations q0 = (0, 0, 0, 0) and qf = (xf , yf , θf , 0)
(henceforth deemed as canonical paths). Since the CSC−1
and CSC − 2 classes have been investigated in [9] and
the two CSCπ

2
|C classes can be constructed similarly to

the C|Cπ
2
SC classes, we present here the existence con-

ditions for 8 classes: C|C|C, C|CC, CC|C, CCu|CuC,
C|CuCu|C, C|Cπ

2
SC−1, C|Cπ

2
SC−2 andC|Cπ

2
SCπ

2
|C.

We introduce the validity of paths to simplify computation.

Definition 1 (Valid Paths). A canonical continuous-
curvature path is said to be valid if: (i) for all clothoid turns
that are admitted by the path, 0 ≤ δ < 2δc + π holds for
a positive deflection and −2δc − π ≤ δ < 0 for a negative
deflection; (ii) the total length of the path L > 0.

3.1 C|C|C Paths
The L + R − L+ path suggests that the two forward and

left clothoid turns be connected by a right and backward
clothoid turn. The geometric scenario is demonstrated in



Fig. 5. The CC circles C+
l (q0) for q0 and C−

l (qf ) for qf
are employed to characterize the final configuration q1 of the
first left clothoid turn, and the initial configuration q2 of the
second left clothoid turn.

Fig. 5: Geometric setup of C|C|C paths

The CC circle C−
r (q1) must coincide with C+

r (q2). Let
Ω3 denote the center of the third CC circle, and α denote
the angle between Ω1Ω2 and Ω1Ω3. The µ-tangency condi-
tions betweenC+

l (q0) andC−
r (q1) and betweenC−

r (q1) and
C−
l (qf ) suggest

L(Ω1Ω3) = L(Ω2Ω3) = 2RΩ cosµ. (6)

Applying law of cosines in the triangle Ω1Ω2Ω3 yields

cosα =
L2(Ω1Ω2) + (2RΩ cosµ)2 − (2RΩ cosµ)2

2 · L(Ω1Ω2) · 2RΩ cosµ

=
L(Ω1Ω2)

4RΩ cosµ
.

(7)

Therefore the coordinate of Ω3 can be given by

Ω3 =

(
xΩ3

yΩ3

)
=

(
xΩ1

+ 2RΩ cosµ cos(θ + α)
yΩ1 + 2RΩ cosµ sin(θ + α)

)
. (8)

Let θ1 denote the angle between Ω2Ω3 and the positive
x-axis. The path L+R− L+ is therefore composed of

1) A left clothoid turn CT1: the µ-tangency between
C+
l (q0) and C−

r (q1) asserts that the orientation of q1

is θ + α+ π
2 , which is exactly the deflection δ1;

2) A backward and right clothoid turn CT2: since the ori-
entation of q2 is θ1 − π

2 according to the µ-tangency
between C−

l (qf ) and C−
r (q1), the deflection of CT2 is

δ2 = θ1 − θ − α− π;
3) A second left clothoid turn CT3 with deflection δ3 =

θf − θ1 + π
2 .

Existence conditions: (i) δ1, δ2 and δ3 all satisfy Def-
inition 1; (ii) the triangle Ω1Ω2Ω3 should be valid, i.e.,
0 ≤ L(Ω1Ω2) ≤ 4RΩ cosµ.

3.2 C|CC Paths
The C|CC path, L + R − L−, can be processed in the

same way as the C|C|C path. As shown in Fig. 6, after
computing the center Ω1 of C+

l (q0) and Ω2 of C+
l (qf ), we

aim to determine the intermediate configurations q1, q2, and
the center, denoted as Ω3, of the CC circle C−

r (q1).
The µ-tangency between C+

l (q0) and C−
r (q1), and be-

tween C−
r (q1) and C+

l (qf ), implies

L(Ω1Ω3) = 2RΩ cosµ,L(Ω2Ω3) = 2RΩ.

Fig. 6: Geometric setup of C|CC paths

Let α denote the angle between Ω1Ω2 and Ω1Ω3. The law
of cosines suggests that, in the triangle Ω1Ω2Ω3,

cosα =
L2(Ω1Ω2) + (2RΩ cosµ)2 − (2RΩ)2

2 · L(Ω1Ω2) · 2RΩ cosµ

=
L2(Ω1Ω2)− (2RΩ sinµ)2

4L(Ω1Ω2)RΩ cosµ
.

(9)

The coordinates of Ω3 can be represented by (8), with α
computed by (9). Let θ1 denote the angle between Ω2Ω3 and
the positive x-axis. Thus the path L+R− L− consists of

1) A left clothoid turnCT1 with deflection δ1 = θ+α+ π
2 ;

2) A backward and right clothoid turn CT2: since the ori-
entation of q2 is θ1 − π

2 − µ, the deflection of CT2 is
δ2 = θ1 − θ − α− µ− π;

3) A backward and left clothoid turn CT3 with deflection,
δ2 = θf − θ1 + π

2 + µ, which guarantees that the final
configuration of CT3 is identical to qf .

Existence conditions: (i) δ1, δ2 and δ3 satisfy Defini-
tion 1; (ii) the triangle Ω1Ω2Ω3 should be valid, i.e.,

2RΩ(1− cosµ) ≤ L(Ω1Ω2) ≤ 2RΩ(1 + cosµ).

3.3 CC|C Paths
The geometric setup is illustrated in Fig. 7, where the cen-

ter of C+
l (q0) is Ω1 and the center of C+

l (qf ) is Ω2. Let

Fig. 7: Geometric setup of CC|C paths

q1 and q2 be the two intermediate configurations. To deter-
mine the center Ω3 of the CC circle C−

r (q1), we apply law
of cosines in the triangle Ω1Ω3Ω2 to obtain the angle α:

cosα =
L2(Ω1Ω2) + (2RΩ)2 − (2RΩ cosµ)2

2 · L(Ω1Ω2) · 2RΩ

=
L2(Ω1Ω2) + (2RΩ sinµ)2

4L(Ω1Ω2)RΩ
,

(10)



which yields the coordinate of Ω3

Ω3 =

(
xΩ3

yΩ3

)
=

(
xΩ1

+ 2RΩ cos(θ − α)
yΩ1 + 2RΩ sin(θ − α)

)
. (11)

Let θ1 denote the angle between Ω2Ω3 and the positive
x-axis. The path L+R+ L− is the concatenation of

1) A left clothoid turn CT1: the µ-tangency between
C+
l (q0) and C+

r (q1) implies that the orientation of q1

is θ − α+ π
2 − µ, i.e, δ1 = θ − α+ π

2 − µ;
2) A forward and right clothoid turn CT2: since the µ-

tangency between C+
r (q1) and C+

l (qf ) implies that the
orientation of q2 is θ1− π

2 , thus δ2 = θ1−θ+α−µ−π;
3) A backward and left clothoid turn CT3 with deflection

δ3 = θf − θ1 + π
2 .

Existence conditions: (i) δ1, δ2 and δ3 all satisfy Defini-
tion 1; (ii) the triangle Ω1Ω3Ω2 be valid, i.e.,

2RΩ(1− cosµ) ≤ L(Ω1Ω2) ≤ 2RΩ(1 + cosµ). (12)

3.4 CCu|CuC Paths
Taking into account the symmetry of CCu|CuC and the

µ−tangency, one can derive total four feasible geometric se-
tups of CCu|CuC paths. Due to space limitation, Fig. 8 il-
lustrates one feasible geometric setup to solve theCCu|CuC
path. One can see that, the computation of such a CCu|CuC
is reduced to the determination of the intermediate configu-
rations q1, q2, q3 or centers of the associated CC circles.

Fig. 8: Geometric setup of CCu|CuC paths

Let Ω1 and Ω2 denote the center of the CC circles C+
l (q0)

andC+
r (qf ), respectively; and let θ denote the angle between

Ω1Ω2 and the positive x-axis. We let the centers of C+
r (q1)

and C−
l (q2) be Ω3 and Ω4, respectively. The µ-tangency

conditions imply that

L(Ω1Ω3) = L(Ω2Ω4) = 2RΩ cosµ

L(Ω3Ω4) = 2RΩ.
(13)

To determine the coordinates of Ω3 and Ω4, we exploit
the symmetry of CCu|CuC to establish that Ω3Ω4 must be
parallel to Ω1Ω2. This fact implies that Ω1Ω3Ω4Ω2 is an
isosceles trapezoid. Let α denote the angle between Ω1Ω2

and Ω1Ω3, a straightforward geometric analysis implies that

cosα =
1
2 (L(Ω1Ω2)− L(Ω3Ω4))

L(Ω1Ω3)

=
L(Ω1Ω2)− 2RΩ cosµ

4RΩ
.

(14)

Based on (14) and Fig. 8, the coordinates of Ω3 and Ω4

are respectively given by

Ω3 =

(
xΩ3

yΩ3

)
=

(
xΩ1

+ 2RΩ cos(θ − α)
yΩ1

+ 2RΩ sin(θ − α)

)
Ω4 =

(
xΩ4

yΩ4

)
=

(
xΩ3 + 2RΩ cosµ cos θ
yΩ3

+ 2RΩ cosµ sin θ

)
.

(15)

Let θ1 represent the angle between Ω2Ω4 and the positive
x-axis, the L+Ru + Lu −R− path can then be formed by
sequentially composing

1) A forward and left clothoid turn CT1: the µ-tangency
condition between C+

l (q0) and C+
r (q1) implies that the

orientation of q1 is θ − α − µ + π
2 , thus the deflection

of CT1 is δ1 = θ − α− µ+ π
2 ;

2) A forward and right clothoid turn CT2: the µ-tangency
condition between C+

r (q1) and C−
l (q2) implies that the

orientation of q2 is θ − π
2 , thus the deflection of CT2 is

u = α+ µ− π;
3) A backward and left clothoid turn CT3 with the same

deflection u = α+ µ− π;
4) A backward and right clothoid turn CT4: the µ-

tangency condition between C−
l (q2) and C+

r (qf ) im-
plies that the orientation of q3 is θ1 − π

2 + µ, thus the
deflection of CT4 is δ2 = θf − θ1 − µ+ π

2 .
Existence conditions: (i) δ1, δ2 and u all satisfy Defini-

tion 1; (ii) the angle α is well defined, thus

2RΩ ≤ L(Ω1Ω2) ≤ 2RΩ cosµ+ 4RΩ.

3.5 C|CuCu|C Paths
To appropriately generate the C|CuCu|C path, namely

L+Ru−Lu−R+, we need to determine three intermediate
configurations q1, q2, q3, as shown in Fig. 9. Denote Ω1 and

Fig. 9: Geometric setup of C|CuCu|C paths

Ω2 the centers of the CC circles C+
l (q0) and C−

r (qf ) associ-
ated with q0 and qf , respectively. Let θ be the angle between
Ω1Ω2 and the positive x-axis. As shown in Fig. 9, Ω3 and
Ω4 are the centers of the CC circles C−

r (q1) and C−
l (q2),

respectively. The µ-tangency between C+
l (q0) and C−

r (q1),
and between C−

l (q2) and C−
r (qf ) implies that

L(Ω1Ω3) = L(Ω2Ω4) = 2RΩ cosµ.

The µ-tangency between C−
r (q1) and C−

l (q2) implies that

L(Ω3Ω4) = 2RΩ.



Proposition 1. Ω1Ω3 is parallel to Ω2Ω4.

Proof. Let θ1 denote the angle between Ω1Ω3 and the pos-
itive x-axis, and let θ2 denote the angle between Ω4Ω2 and
the positive x-axis. The µ-tangency between C+

l (q0) and
C−
r (q1) enforces the orientation of q1 to be θ1 + π

2 . Thus,
after a backward and right clothoid turn with deflection u,
the orientation of q2 is θ1 + π

2 +u and similarly, the orienta-
tion of q3 is θ1 + π

2 + u− u = θ1 + π
2 .

On the other hand, serving as the initial configuration of
the final backward and right clothoid turn connecting q3 and
qf , the µ-tangency between C−

l (q2) and C−
r (qf ) assures the

orientation of q3 to be θ2 + π
2 . Thus θ1 = θ2, which suffices

to prove that Ω1Ω3 is parallel to Ω2Ω4.

It follows immediately from Proposition 1 that Ω1Ω4-
Ω2Ω3 is a parallelogram. Let α denote the angle between
Ω1Ω2 and Ω1Ω3. Applying law of cosines in the triangle
Ω1q2Ω3 yields

cosα =
( 1

2L(Ω1Ω2))2 + L2(Ω1Ω3))− ( 1
2L(Ω3Ω4))2

2L(Ω1Ω3) 1
2L(Ω1Ω2)

=
1
4L

2(Ω1Ω2) + (2RΩ cosµ)2 −R2
Ω

2L(Ω1Ω2)RΩ cosµ
.

The coordinates of Ω3 and Ω4 are obtained as:

Ω3 =

(
xΩ3

yΩ3

)
=

(
xΩ1

+ 2RΩ cosµ cos(θ + α)
yΩ1

+ 2RΩ cosµ sin(θ + α)

)
Ω4 =

(
xΩ4

yΩ4

)
=

(
xΩ1 + xΩ2 − xΩ3

yΩ1
+ yΩ2

− yΩ3

)
.

(16)

As illustrated in Fig. 9 and Proposition 1, the path L +
Ru − Lu −R+ is the sequential concatenation of

1) A left clothoid turnCT1 with deflection δ1 = θ+α+ π
2 ;

2) A backward and right clothoid turnCT2 with deflection
u = θ1 − θ − α− µ;

3) A backward and left clothoid turn CT3 with deflection
−u.

4) A forward and right clothoid turn CT4 with deflection
δ2 = θf − θ − α− π

2 .
Existence conditions: (i) δ1, δ2 and u all satisfy Defini-

tion 1; (ii) the triangle Ω1q2Ω3 be valid, i.e.,

|2RΩ − 4RΩ cosµ| ≤ L(Ω1Ω2) ≤ 2RΩ + 4RΩ cosµ.

3.6 C|Cπ
2
SC − 1 Paths

To build up an L+R−S−R− path that connects q0 and
qf , we need to determine the intermediate configurations q1,
q2 and q3, which represents the initial configuration of the
first backward right clothoid turn, the line segment and the
second backward right clothoid turn, respectively. Toward
this end, we use the CC circles C+

l (q0) with center Ω1 for
q0 and C+

t (qf ) with center Ω2 for qf . Let θ denote the angle
between Ω1Ω2 and the positive x-axis. The geometric setup
is shown in Fig. 10, where Ω3 is the the center of the CC
circle C−

r (q1). The coordinates of Ω3 can be determined
according to the following proposition.

Proposition 2. Ω1, Ω2 and Ω3 are collinear.

Proof. Let θ1 denote the angle between Ω1Ω3 and the posi-
tive x-axis, and θ2 the angle between Ω3Ω2 and the positive

Fig. 10: Geometric setup of C|CSC − 1 paths

x-axis. The µ-tangency between C+
l (q0) and C−

r (q1) indi-
cates that the orientation of q1 is θ1 + π

2 , thus the orientation
of q2 is θ1 + π. On the other hand, based on the µ-tangency
between q2q3 and C+

t (qf ), q2q3 is parallel to Ω2Ω3, and the
orientation of q3 is θ2 + π, thus we have

θ1 + π = θ2 + π ⇒ θ1 = θ2,

indicating the collinearity of Ω1, Ω2 and Ω3.

Given Proposition 2, the L + R − S − R− path can be
computed immediately

1) A forward and left clothoid turn CT1 with deflection
δ1 = θ + π

2 ;
2) A backward and right clothoid turnCT2 with deflection

δ2 = π
2

3) A straight line segment q2q3 of length

L(q2q3) = L(Ω2Ω3)− 2RΩ sinµ

= L(Ω1Ω2)− 2RΩ cosµ− 2RΩ sinµ;

4) A second backward and right clothoid turn CT3 with
deflection δ3 = θf − θ − π.

Existence conditions: (i) δ1, δ2 and δ3 satisfies Definition
1; (ii) L(q2q3) ≥ 0, that is

L(Ω1Ω2) ≥ 2RΩ(cosµ+ sinµ).

3.7 C|Cπ
2
SC − 2 Paths

The construction of C|CSC − 2 class of the CC paths re-
quires a slightly different geometric analysis procedure. The
L + R − S − L− path involves two CC circle C+

l (q0) and
C+
l (qf ), with centers Ω1 and Ω2, respectively. Let θ denote

the angle between Ω1Ω2 and the positive x-axis. The geo-
metric setting is illustrated in Fig. 11.

Let q1, q2 and q3 represent the initial configuration of the
first backward right clothoid turn, the line segment and the
second backward right clothoid turn, respectively. Let Ω3 be
the center of the CC circle C−

r (q1), and α the angle between
Ω1Ω3 and Ω1Ω2. We extend Ω1Ω3 to Ω0 such that Ω2Ω0 is
perpendicular to Ω1Ω0. Let Ω3A be perpendicular to q2q3,
and B the intersecting point of Ω2Ω0 and q2q3. Based on
the µ-tangency betweenC+

l (q0) andC−
r (q1), the orientation

of both q2 and q3 is θ + α + π, which implies that q2q3 is
parallel to Ω1Ω0 and is perpendicular to Ω0Ω2, indicating



Fig. 11: Geometric setup of C|CSC − 2 paths

that Ω3ABΩ0 is a rectangle. The µ-tangency between q2q3

and C−
r (q1), and between q2q3 and C+

l (qf ) suggests

L(Ω3A) = L(Ω2B) = L(Ω0B) = RΩ cosµ,

which implies that, in the right triangle Ω0Ω1Ω2,

sinα =
L(Ω0Ω2)

L(Ω1Ω2)
=

2RΩ cosµ

L(Ω1Ω2)
. (17)

It immediately follows from (17) that the L+R−S−L−
CC path consists of

1) A forward and left clothoid turn CT1 with deflection
δ1 = θ + α+ π

2 ;
2) A backward and right clothoid turnCT2 with deflection

δ2 = π
2

3) A straight line segment q2q3 of length

L(q2q3) = L(AB)− 2RΩ sinµ

= L(Ω3Ω0)− 2RΩ sinµ

= L(Ω1Ω2) cosα− 2RΩ cosµ− 2RΩ sinµ;

4) A second backward and right clothoid turn CT3 with
deflection δ3 = θf − θ − π.

Existence conditions: (i) δ1, δ2 and δ3 satisfies Definition
1; (ii) L(q2q3) ≥ 0, that is

L(Ω1Ω2) ≥ 2RΩ cosµ√
L2(Ω1Ω2)− (2RΩ cosµ)2 ≥ 2RΩ(cosµ+ sinµ).

3.8 C|Cπ
2
SCπ

2
|C Paths

Finally, we derive existence conditions of the C|CSC|C
path, L+R−S−L−R+. Let C+

l (q0) and C−
r (qf ) be the

CC circles associated with q0 and qf , whose centers are Ω1

and Ω2, respectively. Let θ denote the angle between Ω1Ω2

and the positive x-axis. The geometric setup of L+R−S−
L−R+ is depicted in Fig. 12.

As shown in Fig. 12, to appropriately determine the inter-
mediate configurations q1, q2, q3 and q4, one needs to take
advantage of the CC circlesC−

r (q1) andC−
l (q3), whose cen-

ters are Ω3 and Ω4, respectively.

Proposition 3. Ω1Ω3 is parallel to Ω4Ω2.

Proof. Let θ1 and θ2 be the angle between Ω1Ω3, Ω4Ω2

and the positive x-axis, respectively. The µ-tangency be-
tween C+

l (q0) and C−
r (q1) enforces the orientation of q1 to

Fig. 12: Geometric setup of C|CSC|C paths

be θ1 + π
2 , and the π

2 deflection of the backward and right
clothoid turn suggests the orientation of q2 and q3 be θ1 +π.
Therefore, after the backward and left clothoid turn with de-
flection −π2 , the orientation of q4 shall be θ1 + π

2 . On the
other hand, the µ-tangency betweenC−

l (q3) andC−
r (qf ) im-

plies that the orientation of q4 is θ2 + π
2 . Thus θ1 = θ2, i.e.,

Ω1Ω3 is parallel to Ω4Ω2.

Let Ω4Ω0 be perpendicular to Ω1Ω3. Since q0q1q2q3q4

forms a L + R − S − L− path from q0 to q4, it follows
from the previous reasoning that L(Ω4Ω0) = 2RΩ cosµ.
Moreover, let Ω5 be a point on the straight line Ω1Ω3 such
that Ω2Ω5 is perpendicular to Ω1Ω5. From Proposition
3, Ω4Ω2 = 2RΩ cosµ and is parallel to Ω1Ω5, making
Ω0Ω4Ω2Ω5 a square. Therefore, the auxillary angle α can
be determined in the right triangle Ω1Ω2Ω5:

sinα =
L(Ω2Ω5)

L(Ω1Ω2)
=

2RΩ cosµ

L(Ω1Ω2)
. (18)

It follows immediately from (18) that the L + R − S −
L−R+ CC path is formed by

1) A forward and left clothoid turn CT1 with deflection
δ1 = θ + α+ π

2 ;
2) A backward and right clothoid turnCT2 with deflection

δ2 = π
2 ;

3) A backward line segment q2q3 of length

L(q2q3) = L(Ω3Ω0)− 2RΩ sinµ

=
√
L2(Ω1Ω2)− (2RΩ cosµ)2

− 4RΩ cosµ− 2RΩ sinµ

4) A backward and left clothoid turn CT3 with deflection
δ3 = −π2 ;

5) A forward and right clothoid turn CT4 with deflection
δ3 = θf − θ − α− π

2 .
Existence conditions: (i) δ1 and δ4 satisfies Definition 1;

(ii) L(q2q3) ≥ 0, that is

L(Ω1Ω2) ≥ 2RΩ cosµ,√
L2(Ω1Ω2)− (2RΩ cosµ)2 ≥ 4RΩ cosµ+ 2RΩ sinµ,



4 Simulation

The effectiveness of existence conditions and the resultant
CC steering algorithm are validated through simulation. We
check the feasibility of constructing an RS and a CC path
connecting q0 = (0, 0, 0, 0) and 1000 different qf ’s, where
each qf is randomly generated in qf ∈ [−4, 4] × [−4, 4] ×
(−π, π)× {0}. Table 2 shows that the resultant CC steering
algorithm can find feasible CC paths for all cases. In terms of
computation efficiency, the construction of the shortest CC
path takes about 20 times longer than that of the RS path.

Table 2: RS vs. CC Feasibility
Paths RS Paths CC Paths Ratio

Feasible Classes (Avg.) 24.3200 8.6280 2.8187
Planning Time (Avg.) 0.5579 ms 10.4220 ms 25.7414

Computation Time(Avg.) 0.1260 ms 2.8193 ms 21.9234

Next, we show that, as the σmax increases, CC paths
converge to corresponding RS paths. This is illustrated
by designing an L + R − L− path from (0, 0, 0, 0) to
(−2,−2,−0, 0) with σmax varies from 0.5 to 50. As shown
in Figs. 13-14, the length of the CC path converges to the
length of the RS path, as σmax increases, while the path it-
self converges to the RS path.

Fig. 13: Reeds-Shepp and continuous-curvature paths

Fig. 14: Reeds-Shepp and continuous-curvature paths

5 Conclusion

This paper explored methods to efficiently construct a
class of sub-optimal continuous curvature paths for car-like
robots. Based on the established µ−tangency, existence con-
ditions of continuous-curvature paths, having the same pat-
terns as the Reeds-Shepp paths, were derived via geometric
analysis. The effectiveness of the proposed approach was
demonstrated by simulation.
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“Nonholonomic distance to polygonal obstacles for a car-like
robot of polygonal shape,” IEEE Trans. Robot., 22(5): 1040–
1047, 2006.

[5] L. E. Dubins, “On curves of minimal length with a constraint
on average curvature, and with prescribed initial and termi-
nal positions and tangents,” American Journal of Mathematics,
79(3): 497–516, 1957.

[6] J. A. Reeds and L. A. Shepp, “Optimal paths for a car that goes
both forwards and backwards,” Pacific Journal of Mathematics,
145(2): 367–393, 1990.

[7] J-P. Laumond, P. E. Jacobs, M. Taix and R. M. Murray, “A
motion planner for nonholonomic mobile robots,” IEEE Trans.
Robot. Automat., 10(5): 577–593, 1994.

[8] H. Vorobieva, S. Glaser, N. Minoiu-Enache and S. Mammar,
“Automatic parallel parking in tiny spots: path planning and
control,” IEEE Trans. Intell. Transp. Syst., 16(1): 396–410,
2015.

[9] T. Fraichard and A. Scheuer, “From Reeds and Shepp’s to
continuous-curvature paths,” IEEE Trans. Robot., 20(6): 1025–
1035, 2004.

[10] J-D. Boissonnat, A. Cerezo and J. Leblond, “A note on short-
est paths in the plane subject to a constraint on the derivative
of the curvature,” Research Report, RR-2160, INRIA, France,
1994.

[11] H. J. Sussmann, “The Markov-Dubins problem with angu-
lar acceleration control,” Proc. of the 1997 ICRA, 2639–2643,
1997.

[12] A. Scheuer and C. Laugier, “Planning sub-optimal and
continuous-curvature paths for car-like robots,” Proc. of the
1998 IROS, 25–31, 1998.

[13] K. Yang and S. Sukkarieh, “An analytical continuous-
curvature path-smoothing algorithm,” IEEE Trans. Robot.,
26(3): 561-568, 2010.

[14] E. Bakolas and P. Tsiotras, “On the generation of nearly opti-
mal, planar paths of bounded curvature and bounded curvature
gradient,” Proc. of the 2009 ACC, 385–390, 2009.


	Title Page
	page 2

	/projects/www/html/publications/docs/TR2017-102.pdf
	Existence Conditions of A Class of Continuous Curvature Paths
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8



