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Abstract
Boundary and edge cues are highly beneficial in improving a wide variety of vision tasks
such as semantic segmentation, object recognition, stereo, and object proposal generation.
Recently, the problem of edge detection has been revisited and significant progress has been
made with deep learning. While classical edge detection is a challenging binary problem
in itself, the category-aware semantic edge detection by nature is an even more challenging
multi-label problem. We model the problem such that each edge pixel can be associated with
more than one class as they appear in contours or junctions belonging to two or more semantic
classes. To this end, we propose a novel end-to-end deep semantic edge learning architecture
based on ResNet and a new skip-layer architecture where category-wise edge activations at
the top convolution layer share and are fused with the same set of bottom layer features. We
then propose a multi-label loss function to supervise the fused activations. We show that our
proposed architecture benefits this problem with better performance, and we outperform the
current state-of-the-art semantic edge detection methods by a large margin on standard data
sets such as SBD and Cityscapes
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Abstract

Boundary and edge cues are highly beneficial in improv-
ing a wide variety of vision tasks such as semantic segmen-
tation, object recognition, stereo, and object proposal gen-
eration. Recently, the problem of edge detection has been
revisited and significant progress has been made with deep
learning. While classical edge detection is a challenging
binary problem in itself, the category-aware semantic edge
detection by nature is an even more challenging multi-label
problem. We model the problem such that each edge pixel
can be associated with more than one class as they appear
in contours or junctions belonging to two or more semantic
classes. To this end, we propose a novel end-to-end deep
semantic edge learning architecture based on ResNet and a
new skip-layer architecture where category-wise edge acti-
vations at the top convolution layer share and are fused with
the same set of bottom layer features. We then propose a
multi-label loss function to supervise the fused activations.
We show that our proposed architecture benefits this prob-
lem with better performance, and we outperform the current
state-of-the-art semantic edge detection methods by a large
margin on standard data sets such as SBD and Cityscapes.

1. Introduction
Figure 1 shows an image of a road scene from Cityscapes

dataset [7] with several object categories such as building,
ground, sky, and car. In particular, we study the problem of
simultaneously detecting edge pixels and classifying them
based on association to one or more of the object cate-
gories [17, 39]. For example, an edge pixel lying on the
contour separating building and pole can be associated with
both of these object categories. In Figure 1, we visualize the
boundaries and list the colors of typical category combina-
tions such as “building+pole” and “road+sidewalk”. In our
problem, every edge pixel is denoted by a vector whose in-
dividual elements denote the strength of pixel’s association
∗The authors contributed equally.
†This work was done during the affiliation with MERL.
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(a) Input image (b) Ground truth

(c) CASENet output

Figure 1. Edge detection and categorization with our approach.
Given a street view image, our goal is to simultaneously detect
the boundaries and assign each edge pixel with one or more se-
mantic categories. (b) and (c) are color coded by HSV where hue
and saturation together represent the composition and associated
strengths of categories. Best viewed in color.

with different semantic classes. While most edge pixels will
be associated with only two object categories, in the case of
junctions [34] one may expect the edge pixel to be associ-
ated with three or even more. We therefore do not restrict
the number of object categories a pixel can be associated
with, and formulate our task as a multi-label learning prob-
lem. In this paper, we propose CASENet, a deep network
able to detect category-aware semantic edges. Given K de-
fined semantic categories, the network essentially produces
K separate edge maps where each map indicates the edge
probability of a certain category. An example of separately
visualized edge maps on a test image is given in Figure 2.

The problem of edge detection has been shown to be
useful for a number of vision tasks such as semantic seg-



Figure 2. An example of a test image and zoomed edge maps corresponding to bounding box regions. The visualized edge maps belong to
the categories of person, car and road, respectively. Green and blue denote correctly detected and missed edge pixels.

mentation [2, 3, 5], object proposal [2], 3d shape recov-
ery [26], and 3d reconstruction [41]. By getting a better
understanding of the edge classes and using them as prior
or constraints, it is reasonable to expect some improvement
in these tasks. With a little extrapolation, it is not difficult
to see that a near-perfect semantic edge, without any addi-
tional information, can solve semantic segmentation, depth
estimation [20, 35], image-based localization [23], and ob-
ject detection [12]. We believe that it is important to im-
prove the accuracy of semantic edge detection to a certain
level for moving towards a holistic scene interpretation.

Early work tends to treat edge information as low-level
cues to enhance other applications. However, the availabil-
ity of large training data and the progress in deep learning
methods have allowed one to make significant progress for
the edge detection problem in the last few years. In particu-
lar, there have been newer data sets [17]. The availability of
large-scale semantic segmentation data sets [7] can also be
easily processed to obtain semantic edge data set as these
two problems can be seen as dual problems.

1.1. Related works

The definition of boundary or edge detection has evolved
over time from low-level to high-level features: simple edge
filters [4], depth edges [16], object boundaries [37], and se-
mantic contours [17]. In some sense, the evolution of edge
detection algorithms captures the progress in computer vi-
sion from simple convolutional filters such as Sobel [28] or
Canny [4] to fully developed deep neural networks.

Low-level edges Early edge detection methods used sim-
ple convolutional filters such as Sobel [28] or Canny [4].

Depth edges Some previous work focuses on labeling
contours into convex, concave, and occluding ones from
synthetic line drawings [35] and real world images under re-
stricted settings [13, 16]. Indoor layout estimation can also
be seen as the identification of concave boundaries (lines
folding walls, ceilings, and ground) [19]. By recovering
occluding boundaries [21], it was shown that the depth or-
dering of different layers in the scene can be obtained.

Perceptual edges A wide variety of methods are driven
towards the extraction of perceptual boundaries [37]. Dol-

lar et al. [8] used boosted decision trees on different patches
to extract edge maps. Lim et al. [31] computed sketch
tokens which are object boundary patches using random
forests. Several other edge detection methods include sta-
tistical edges [30], multi-scale boundary detection [40], and
point-wise mutual information (PMI) detector [24]. More
recently, Dollar and Zitnick [9] proposed a realtime fast
edge detection method using structured random forests.
Latest methods [2, 29, 45, 46] using deep neural networks
have pushed the detection performance to state-of-the-art.

Semantic edges The origin of semantic edge detection
can be possibly pinpointed to [39]. As a high level task, it
has also been used implicitly or explicitly in many problems
related to segmentation [44] and reconstruction [20]. In
some sense, all semantic segmentation methods [6,7,11,15,
33,38] can be loosely seen as semantic edge detection meth-
ods since one can easily obtain semantic edges, although
not necessarily an accurate one, from the segmentation re-
sults. There are papers that specifically formulate the prob-
lem statement as binary or category-aware semantic edge
detection [2, 3, 12, 17, 27, 36, 39, 46]. Hariharan et al. [17]
introduced the Semantic Boundaries Dataset (SBD) and
proposed inverse detector which combines both bottom-up
edge and top-down detector information to detect category-
aware semantic edges. HFL [2] first uses VGG [43] to lo-
cate binary semantic edges and then uses deep semantic seg-
mentation networks such as FCN [33] and DeepLab [6] to
obtain category labels. The framework, however, is not end-
to-end trainable due to the separated prediction process.

DNNs for edge detection Deep neural networks recently
became popular for edge detection. Related work includes
SCT based on sparse coding [34], N4 fields [14], deep con-
tour [42], deep edge [1], and CSCNN [22]. One notable
method is the holistically-nested edge detection (HED) [45]
which trains and predicts edges in an image-to-image fash-
ion and performs end-to-end training.

1.2. Contributions

Our work is related to HED in adopting a nested architec-
ture but we extend the work to the more difficult category-
aware semantic edge detection problem. Our main contri-
butions in this paper are summarized below:



• To address edge categorization, we propose a multi-
label learning framework which allows improved edge
learning than traditional multi-class framework.

• We propose a novel nested architecture without deep
supervision on ResNet [18], where bottom features are
only used to augment top classifications. We show that
deep supervision may not be beneficial in our problem.

• We outperform previous state-of-the-art methods by
significant margins on SBD and Cityscapes datasets.

2. Problem Formulation
Given an input image, our goal is to compute the seman-

tic edge maps corresponding to each pre-defined categories.
More formally, for an input image I and K defined seman-
tic categories, we are interested in obtaining K edge maps
{B1, · · · ,BK}, each having the same size as I. We denote
the Bk(p) ∈ [0, 1] as the computed edge probability on the
k-th semantic category at pixel p.

2.1. Multi-label loss function

Possibly driven by the multi-class nature of semantic
segmentation, several related works on category-aware se-
mantic edge detection have more or less looked into the
problem from the multi-class learning perspective. Our in-
tuition is that this problem by nature should allow one pixel
belonging to multiple categories simultaneously, and ad-
dressed by a multi-label learning framework.

We therefore propose a multi-label loss. Suppose each
image I has a set of label images {B̄1, · · · , B̄K}, where
B̄k is a binary image indicating the ground truth of the k-th
class semantic edge. The multi-label loss is formulated as:

L(W) =
∑
k

Lk(W) (1)

=
∑
k

∑
p

{−βB̄k(p) logBk(p|I;W)

− (1− β)(1− B̄k(p)) log(1−Bk(p|I;W))},

where W are all parameters of the CNN, and β is the
percentage of non-edge pixels in the image to account for
skewness of sample numbers, similar to [45].

3. Network Architecture
We propose CASENet, an end-to-end trainable con-

volutional neural network (CNN) architecture (shown in
Fig. 3(c)) to address category-aware semantic edge detec-
tion. Before describing CASENet, we first propose two
alternative network architectures which one may come up
straightforwardly given the abundant previous literature on
edge detection and semantic segmentation. Although both
architectures can also address our task, we will analyze

issues associated with them, and address these issues by
proposing the CASENet architecture.

3.1. Base network

We propose to address the edge detection problem with
a fully convolutional network. We adopt ResNet-101 by
removing the original average pooling and fully connected
layer, and keep the bottom convolution blocks. We further
modify the base network in order to better preserve low-
level edge information. We change the stride of the first
and fifth convolution blocks (“res1” and “res5” in Fig. 3)
in ResNet-101 from 2 to 1. We also introduce dilation fac-
tors to subsequent convolution layers to maintain the same
receptive field sizes as the original ResNet, similar to [18].

3.2. Basic architecture

A very natural architecture one may come up is the ba-
sic architecture shown in Fig. 3(a). On top of the base net-
work, we add the classification module (Fig. 3(d)) as a 1×1
convolution layer, followed by bilinear up-sampling (imple-
mented by a K-grouped deconvolution layer) to produce a
set of K activation maps {A1, · · · ,AK}, each having the
same size as the image. We then model the probability of
a pixel belonging to the k-th class edge using the sigmoid
unit given by Bk(p) = σ(Ak(p)), which is presented in
the Eq. (1). Note that Bk(p) is not mutually exclusive.

3.3. Deeply supervised architecture

One of the distinguishing features of the holistic nested
edge detection (HED) network [45] is the use of supervi-
sions for 5 side outputs in addition to final output. The basic
idea is to have additional loss functions on the 5 side outputs
in addition to the loss function at the final output. Each of
the 5 side classification activation maps has 1-channel each.
The final output is a 1-channel edge map.

We extended this architecture to handle K channels for
side outputs and K channels for the final output. We refer
to this as deeply supervised network (DSN), as depicted in
Fig. 3(b). In this network, we connect an above-mentioned
classification module to the output of each stack of resid-
ual blocks, producing 5 side classification activation maps
{A(1), . . . ,A(5)}, where each of them hasK-channels. We
then fuse these 5 activation maps through a sliced con-
catenation layer (the color denotes the channel index in
Fig. 3(g)) to produce a 5K-channel activation map:

Af = {A(1)
1 ,A

(2)
1 , . . . ,A

(5)
1 , . . . ,A

(1)
K , . . . ,A

(5)
K } (2)

This Af is fed into our fused classification layer which per-
forms K-grouped 1 × 1 convolution (Fig. 3(f)) to produce
a K-channel activation map A(6). Finally, 6 loss functions
are computed on {A(1), . . . ,A(6)} using the Equation 1 to
provide deep supervision to this network.
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(b) Deeply Supervised Network (DSN)
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Figure 3. Three CNN architectures designed in this paper are shown in (a)-(c). A solid rectangle represents a composite block of CNN
layers. Any change of its width indicates a drop of spatial resolution of this block’s output feature map by a factor of 2. A number besides
an arrow indicates the number of channels of the block’s output features. A blue solid rectangle is a stack of ResNet blocks. A purple solid
rectangle is our classification module. A dotted red outline indicates that block’s output is supervised by our loss function in equation 1.
A gray solid rectangle is our side feature extraction module. A dark green solid rectangle is our fused classification module performing
K-grouped 1 × 1 convolution. (d)-(h) depicts more details of various modules used in (a)-(c), where outlined rectangles illustrate input
and output feature maps. Best viewed in color.

Note that the reason we perform sliced concatenation in
conjunction with grouped convolution instead of the corre-
sponding conventional operations is as follows. Since the 5
side activations are supervised, we implicitly constrain each
channel of those side activations to carry information that is
most relevant to the corresponding class.

With sliced concatenation and grouped convolution, the
fused activation for a pixel p is given by:

A
(6)
k (p) =WT

k [A
(1)
k (p)T , · · · ,A(5)

k (p)T ] (3)

This essentially integrates corresponding class-specific acti-
vations from different scales as the finally fused activations.
Our experiments empirically support this design choice.

3.4. CASENet architecture

Our main proposed architecture is CASENet (Fig. 3(c)),
which can be seen as a modified and an extended version
of DSN network explained above. The modifications are
summarized below:

1. Replace the lower level blocks of side classification
module to blocks of side feature extraction module.

2. Add side classification modules with supervisions only
at higher level residual blocks with changes of output
spatial resolutions.

3. Perform shared concatenation (Fig. 3(h)) instead of
sliced concatenation.

The difference between side feature extraction module
and the above-mentioned side classification module is that
the former outputs only a single channel activation map
D(j), j = 1, 2, 3, without any direct supervision. The
shared concatenation replicates these single-channel activa-
tion maps K-times and then performs sliced concatenation
to produce a 4K-channel activation map:

Af = {D(1),D(2),D(3),A
(5)
1 ,D(1), . . . ,A

(5)
K }. (4)

The resulting 4K-channel activation map is then fed into
the aforementioned fused classification layer to produce a
K-channel activation map A(6).

The proposed CASENet architecture is motivated by the
following observations and reasons. First, the receptive
field of the bottom side is limited. It is therefore unreason-



able to require the network to perform semantic classifica-
tion at an early stage, given that context information plays
an important role in semantic classification. We believe that
semantic classification should happen on top where features
are encoded with high-level information.

Second, bottom side features are helpful in augmenting
top classifications and suppressing non-edge pixels. Hence,
they should be jointly considered in final classification.

In general, CASENet can be thought of as a joint seman-
tic edge detection and classification network by combining
lower level texture information directly with higher level
context information through a skip-layer architecture.

4. Experiments
In this paper, we compare CASENet1 with previous

state-of-the-art methods, including InvDet [17], HFL [2],
weakly supervised object boundaries [27], as well as sev-
eral baseline network architectures.

4.1. Datasets

We evaluate the methods on SBD [17], a standard dataset
for benchmarking semantic edge detection. Besides SBD,
we also extend our evaluation to Cityscapes [7], a popular
semantic segmentation dataset with pixel-level high quality
annotations and challenging street view scenarios. To the
best of our knowledge, our paper is the first work to for-
mally report semantic edge detection results on this dataset.

SBD The dataset consists of 11355 images from the PAS-
CAL VOC2011 [10] trainval set, divided into 8498 training
and 2857 test images2. This dataset has semantic bound-
aries labeled with one of 20 Pascal VOC classes.

Cityscapes The dataset contains 5000 images divided
into 2975 training, 500 validation and 1525 test images.
Since the labels of test images are currently not available,
we treat the validation images as test set in our experiment.

4.2. Evaluation protocol

On both SBD and Cityscapes, the edge detection accu-
racy for each class is evaluated using the official bench-
mark code and ground truth from [17]. We keep all set-
tings and parameters as default, and report the maximum
F-measure (MF) at optimal dataset scale (ODS), and aver-
age precision (AP) for each class. Note that for Citiscapes,
we follow [17] exactly to generate ground truth boundaries
with single pixel width for evaluation, and reduce the sizes
of both ground truth and predicted edge maps to half along
each dimension considering the speed of evaluation.

1Source code available at: http://www.merl.com/research/
license#CASENet.

2There has been a clean up of the dataset with a slightly changed image
number. We also report the accordingly updated InvDet results.

4.3. Implementation details

We trained and tested CASENet, HED [45], and the pro-
posed baseline architectures using the Caffe library [25].

Training labels Considering the misalignment between
human annotations and true edges, and the label ambigu-
ity of pixels near boundaries, we generate slightly thicker
ground truth edges for network training. This can be done
by looking into neighbors of a pixel and seeking any dif-
ference in segmentation labels. The pixel is regarded as an
edge pixel if such difference exists. In our paper, we set the
maximum range of neighborhood to be 2. Under the multi-
label framework, edges from different classes may overlap.

Baselines Since several main comparing methods such
as HFL and HED use VGG or VGG based architectures
for edge detection and categorization, we also adopt the
CASENet and other baseline architectures on VGG (de-
noted as CASENet-VGG). In particular, we remove the
max pooling layers after conv4, and keep the resolutions of
conv5, fc6 and fc7 the same as conv4 (1/8 of input). Simi-
lar to [6], both fc6 and fc7 are treated as convolution layers
with 3×3 and 1×1 convolution and dimensions set to 1024.
Dilation factors of 2 and 4 are applied to conv5 and fc6.

To compare our multi-label framework with multi-class,
we generate ground truth with non-overlapping edges of
each class, reweight the softmax loss similar to our paper,
and replace the top with a 21-class reweighted softmax loss.

Initialization In our experiment, we initialize the convo-
lution blocks of ResNet/VGG in CASENet and all compar-
ing baselines with models pre-trained on MS COCO [32].

Hyper-parameters We unify the hyper-parameters for all
comparing methods with the same base network, and set
most of them following HED. In particular, we perform
SGD with iteration size of 10, and fix loss weight to be
1, momentum 0.9, and weight decay 0.0005. For methods
with ResNet, we set the learning rate, step size, gamma and
crop size to 1e − 7 / 5e − 8, 10000 / 20000, 0.1 / 0.2 and
352×352 / 472×472 respectively for SBD and Cityscapes.
For VGG, the learning rate is set to 1e− 8 while others re-
main the same as ResNet on SBD. For baselines with soft-
max loss, the learning rate is set to 0.01 while other param-
eters remain the same. The iteration numbers on SBD and
Cityscapes are empirically set to 22000 and 40000.

Data augmentation During training, we enable random
mirroring and cropping on both SBD and Cityscapes. We
additionally augment the SBD data by resizing each image
with scaling factors {0.5, 0.75, 1.0, 1.25, 1.5}, while no
such augmentation is performed on Cityscapes.



4.4. Results on SBD

Table 1 shows the MF scores of different methods
performing category-wise edge detection on SBD, where
CASENet outperforms previous methods. Upon using the
benchmark code from [17], one thing we notice is that the
recall scores of the curves are not monotonically increasing,
mainly due to the fact post-processing is taken after thresh-
olding in measuring the precision and recall rates. This is
reasonable since we have not taken any postprocessing op-
erations on the obtained raw edge maps. We only report
the MF on SBD since AP is not well defined under such
situation. The readers may kindly refer to supplementary
materials for class-wise precision recall curves.

Multi-label or multi-class? We compare the proposed
multi-label loss with the reweighted softmax loss under the
basic architecture. One could see that using softmax leads
to significant performance degradation on both VGG and
ResNet, supporting our motivation in formulating the task
as a multi-label learning problem, in contrast to the well
accepted concept which addresses it in a multi-class way.

Is deep supervision necessary? We compare CASENet
with baselines network architectures including Basic and
DSN depicted in Fig. 3. The result empirically supports our
intuition that deep supervision on bottom sides may not be
necessary. In particular, CASENet wins frequently on per-
class MF as well as the final mean MF score. Our feeling
is that the annotation quality of SBD to some extent influ-
enced the network learning behavior and evaluation, leading
to less performance distinctions across different methods.

Is top supervision necessary? One might further ques-
tion the necessity of imposing supervision on Side-5 activa-
tion in CASENet. We use CASENet− to denote the same
CASENet architecture without Side-5 supervision during
training. The improvement upon adding Side-5 supervision
indicates that a supervision on higher level side activation is
helpful. Our intuition is that Side-5 supervision helps Side-
5 focusing more on the classification of semantic classes
with less influence from interacting with bottom layers.

Visualizing side activations We visualize the results of
CASENet, CASENet− and DSN on a test image in Fig. 5.
Overall, CASENet achieves better detection compared to
the other two. We further show the side activations of this
testing example in Fig. 6, from which one can see that
the activations of DSN on Side-1, Side-2 and Side-3 are
more blurry than CASENet features. This may be caused
by imposing classification requirements on those layers,
which seems a bit aggressive given limited receptive field
and information and may caused performance degradation.
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Figure 4. Training losses of different variants of CASENet on the
SBD dataset. The losses are respectively moving averaged by a
kernel length of 8000. All curves means the final fused losses, ex-
cept for CASENet-side5 which indicates the loss of Side-5’s out-
put. Note that CASENet loss is consistently the smallest.

Also one may notice the differences in “Side5-Person” and
“Side5-Boat” between CASENet− and CASENet, where
CASENet’s activations overall contain sharper edges, again
showing the benefit of Side-5 supervision.

From ResNet to VGG CASENet-VGG in Table 1 shows
comparable performance to HFL-FC8. HFL-CRF performs
slightly better with the help of CRF postprocessing. The
results to some extent shows the effectiveness our learn-
ing framework, given HFL uses two VGG networks sepa-
rately for edge localization and classification. Our method
also significantly outperforms the HED baselines from [27],
which gives 44 / 41 on MF / AP, and 49 / 45 with detection.

Other variants We also investigated several other archi-
tectures. For example, we kept the stride of 2 in “res1”.
This downgrades the performance for lower input resolu-
tion. Another variant is to use the same CASENet architec-
ture but impose binary edge losses (where a pixel is consid-
ered lying on an edge as long as it belongs to the edge of at
least one class) on Side-1-3 (denoted as CASENet-edge in
Fig. 4). However we found that such supervision seems to
be a divergence to the semantic classification at Side-5.

4.5. Results on Cityscapes

We also train and test both DSN and CASENet with
ResNet as base network on the Cityscapes. Compared to
SBD, Cityscapes has relatively higher annotation quality
but contains more challenging scenarios. The dataset con-
tains more overlapping objects, which leads to more cases
of multi-label semantic boundary pixels and thus may be
better to test the proposed method. In Table 1, we provide
both MF and AP of the comparing methods. To the best of



Metric Category Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

MF
(ODS)

InvDet 41.5 46.7 15.6 17.1 36.5 42.6 40.3 22.7 18.9 26.9 12.5 18.2 35.4 29.4 48.2 13.9 26.9 11.1 21.9 31.4 27.9
Baseline HFL-FC8 71.6 59.6 68.0 54.1 57.2 68.0 58.8 69.3 43.3 65.8 33.3 67.9 67.5 62.2 69.0 43.8 68.5 33.9 57.7 54.8 58.7

HFL-CRF 73.9 61.4 74.6 57.2 58.8 70.4 61.6 71.9 46.5 72.3 36.2 71.1 73.0 68.1 70.3 44.4 73.2 42.6 62.4 60.1 62.5
Basic-Softmax 67.6 55.3 50.4 44.9 42.3 64.6 61.0 63.9 37.4 43.1 25.3 57.9 57.1 60.0 72.0 33.0 53.5 30.9 54.4 47.7 51.1

VGG Basic 70.0 58.6 62.5 50.2 51.2 65.4 60.6 66.9 39.7 47.3 31.0 60.1 59.4 60.2 74.4 38.0 56.0 35.9 60.0 53.8 55.1
CASENet 72.5 61.5 63.8 54.5 52.3 65.4 62.6 67.2 42.6 51.8 31.4 62.0 61.9 62.8 75.4 41.7 59.8 35.8 59.7 50.7 56.8
Basic-Softmax 74.0 64.1 64.8 52.5 52.1 73.2 68.1 73.2 43.1 56.2 37.3 67.4 68.4 67.6 76.7 42.7 64.3 37.5 64.6 56.3 60.2
Basic 82.5 74.2 80.2 62.3 68.0 80.8 74.3 82.9 52.9 73.1 46.1 79.6 78.9 76.0 80.4 52.4 75.4 48.6 75.8 68.0 70.6

ResNet DSN 81.6 75.6 78.4 61.3 67.6 82.3 74.6 82.6 52.4 71.9 45.9 79.2 78.3 76.2 80.1 51.9 74.9 48.0 76.5 66.8 70.3
CASENet− 83.0 74.7 79.6 61.5 67.7 80.7 74.1 82.8 53.3 75.0 44.5 79.8 80.4 76.2 80.2 53.2 77.3 47.7 75.6 66.3 70.7
CASENet 83.3 76.0 80.7 63.4 69.2 81.3 74.9 83.2 54.3 74.8 46.4 80.3 80.2 76.6 80.8 53.3 77.2 50.1 75.9 66.8 71.4

Table 1. Results on the SBD benchmark. All MF scores are measured by %.

Metric Method road sidewalk building wall fence pole traffic lgt traffic sign vegetation terrain sky person rider car truck bus train motorcycle bike mean
MF

(ODS)
DSN 85.4 76.4 82.6 51.8 56.5 66.5 62.6 72.1 80.6 61.1 76.0 77.5 66.3 84.5 52.3 67.3 49.4 56.0 76.0 68.5
CASENet 86.6 78.8 85.1 51.5 58.9 70.1 70.8 74.6 83.5 62.9 79.4 81.5 71.3 86.9 50.4 69.5 52.0 61.3 80.2 71.3

AP DSN 78.0 76.0 83.9 47.9 53.1 67.9 57.9 75.9 79.9 60.2 75.0 75.4 61.0 85.8 50.6 67.8 42.5 51.4 72.0 66.4
CASENet 77.7 78.6 87.6 49.0 56.9 72.8 70.3 78.9 85.1 63.1 78.4 83.0 70.1 89.5 46.9 70.0 48.8 59.6 78.9 70.8

Table 2. Results on the Cityscapes dataset. All MF and AP scores are measured by %.

Person
Boat

Boat+Person

DSN CASENet− CASENet

Figure 5. Example results on the SBD dataset. First row: Input
and ground truth image and color codes of categories. Second
row: Results of different edge classes, where the same color code
is used as in Fig. 1. Third row: Results of person edge only. Last
row: Results of boat edge only. Green, blue, red and white respec-
tively denote true positive, false negative, false positive and true
negative pixels, at the threshold of 0.5. Best viewed in color.

our knowledge, this is the first paper quantitatively report-
ing the detection performance of category-wise semantic
edges on Cityscapes. One could see CASENet consistently
outperforms DSN in all classes with a significant margin.
Besides quantitative results, we also visualize some results
in Fig. 7 for qualitative comparisons.

5. Concluding Remarks
In this paper, we proposed an end-to-end deep network

for category-aware semantic edge detection. We show
that the proposed nested architecture, CASENet, shows

DSN-Boat DSN-Person CASENet− CASENet

Side1

Side2

Side3

Side4 Side5-Person

Side5 Side5-Boat

Figure 6. Side activations on the input image of Fig. 5. The first
two columns show the DSN’s side classification activations corre-
sponding to the class of Boat and Person, respectively. The last
two columns show the side features and classification activations
for CASENet− and CASENet, respectively. Note that the pixel
value range of each image is normalized to [0,255] individually
inside its corresponding side activation outputs for visualization.

improvements over some existing architectures popular in
edge detection and segmentation. We also show that the
proposed multi-label learning framework leads to better
learning behaviors on edge detection. Our proposed method
improves over previous state-of-the-art methods with sig-
nificant margins. In the future, we plan to apply our method
to other tasks such as stereo and semantic segmentation.



building+vegetation road road+traffic sign building building+pole road+sidewalk building+traffic sign pole vegetation building+person
sidewalk sidewalk+vegetation sidewalk+pole pole+vegetation vegetation+bicycle building+traffic light traffic sign sidewalk+person sidewalk+traffic sign road+bicycle
person rider+bicycle bicycle traffic sign+vegetation vegetation+rider building+bicycle building+rider pole+traffic sign person+bicycle sidewalk+bicycle

Figure 7. Cityscapes results. From left to right: Input, Ground Truth, result of DSN, and result of CASENet. Visually the result of
CASENet and ground truth are very similar. CASENet gets slightly more non-boundary edges and makes minor mistakes near challenging
objects like the stroller (2nd row). DSN gets slightly inferior results to CASENet, as observed on more non-boundary edges on the interiors
of buildings (e.g., 3rd and 7-th rows). Best viewed in color.
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