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Abstract
We present here some preliminary results on the problem of estimating pedestrian crowds
from limited measurements. More specifically, we focus on a data-driven operator-based
approach. We use the Koopman operator and its approximation with the kernel dynamic
mode decomposition kDMD, to design a dynamical observer, which allows us to estimate
the full crowd flow, based on a partial-view of a sensing camera. We explain the dynamical
observer design, discuss its limitations, and propose some numerical simulations to validate
the proposed approach.
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Abstract: We present here some preliminary results on the problem of estimating pedestrian
crowds from limited measurements. More specifically, we focus on a data-driven operator-based
approach. We use the Koopman operator and its approximation with the kernel dynamic mode
decomposition kDMD, to design a dynamical observer, which allows us to estimate the full
crowd flow, based on a partial-view of a sensing camera. We explain the dynamical observer
design, discuss its limitations, and propose some numerical simulations to validate the proposed
approach.

1. INTRODUCTION

Nowadays, the ubiquitous deployment of video surveillance
systems makes it important to optimize the usage of the
collected information from these systems. It is often the
case that a large number of surveillance cameras has to
be installed to monitor extended areas. In this context,
an important problem is the one focusing on reducing the
number of cameras needed to monitor crowd flows within
a given area. One way of achieving this goal is to design
flow estimators, which are capable of estimating the full
flow dynamics based on a partial spatial observation of the
flow, i.e. limited camera’s views.

While there has been extensive research in the field of
crowd analysis, little has been done in terms of crowd flow
estimation. The general focus has been on defining, based
on physics, relevant dynamical models which capture the
crowd flow. Indeed, the dynamics of a crowd can be
modeled at the micro and macro scales as the motion of
particles in a fluid flow, e.g., see Cao et al. [2015], Wadoo
and Kachroo [2010], Payne [1971], Colombo and Rosinin
[2005], Helbing and Molna [1997], Hughes [2002, 2003], and
references therein.

Alternatively, data-driven approaches in the form of dy-
namic mode decomposition (DMD) and its extensions
Rowley et al. [2009], Schmid [2010], Tu et al. [2014b],
Kutz et al. [2016], Brunton et al. [2016], Proctor et al.
[2016], for example, in the form of extended DMD Williams
et al. [2015a], and kDMD Williams et al. [2015b], have
been proposed recently, which allow for approximating
a system dynamics by approximating its infinite dimen-
sional Koopman operator Mezić and Banaszuk [2004]. This
type of data-driven approaches have been recently used
in different contexts, e.g., airflow dynamics modeling and
regime selection Brunton et al. [2014], Tu et al. [2014a],
Kramer et al. [2016], fluid dynamics Tu et al. [2014b],

smart-grid dynamics and power systems’ stability analysis
Susuki and Mezić [2014], etc.

In this paper, we propose a flow estimation framework
that utilizes the dynamics’ one-step ahead prediction ca-
pabilities of the Koopman operator. We first review a
mathematical formulation for a macroscopic pedestrian
flow model in Section 2. Note that, in this work, we only
use the PDE model to generate simulation data from which
we approximate the Koopman operator. We then describe
in Section 3 the data-driven kDMD method in Williams
et al. [2015b]. In Section 4 we develop our flow estimation
framework and propose an observer-based flow estimation
method, which builds upon the kDMD dynamics to design
a linear state observer, to dynamically estimate the crowd
flow. Finally, we present some numerical results to vali-
date our approach in Section 5, and give some concluding
remarks in Section 6.

2. MACROSCOPIC MODEL FOR PEDESTRIAN
FLOWS

The macroscopic model for crowd flow considers the crowd
as a flowing continuum and describes the average behavior
of pedestrians. The model parameters are the density of
the crowd ρ, and the horizontal and vertical velocities
(u,v) at each point in a given grid Ω. Macroscopic models
for crowd flow are similar to models of fluid dynamics and
are valid under the following assumptions Hughes [2003],
Bellomo and Dogbé [2008]:

H1. The speed of pedestrians at each point is determined
only by the density of the crowd around that point.

H2. Pedestrians have a common goal (potential).
H3. Pedestrians want to minimize the estimated travel

time, simultaneously avoiding the large density areas.



These assumptions lead to the following PDE model






∂tρ + ∂x(ρu) + ∂y(ρv) = 0,
ρ∂tu + ρ(u∂xu + v∂yu) + K2∂xρvx0

= ρA1[ρ,v],
ρ∂tv + ρ(u∂xv + v∂yv) + K2∂yρvy0

= ρA2[ρ,v],
(1)

where ρ(x, y) is the density, u(x, y), v(x, y), are the
horizontal, and vertical velocities at all points (x, y) ∈ Ω,
and

A1[ρ,v] = αû(ρ)(x0 − x),
A2[ρ,v] = αv̂(ρ)(y0 − y),

specify the goal of the pedestrians with (x0, y0) being the
target position, and (x, y) the current positions. α and
K are model parameters. The functions û(ρ) = uo(1 −
ρ/ρo) and v̂(ρ) = vo(1 − ρ/ρo), obey the Greenshield’s
model Greenshields [1935] which couples the magnitude of
the velocity to the density, where ρo > 0 is the maximum
density, uo, vo are the velocities corresponding to the ρo.

We note here that our full flow observer design remains
valid irrespective of the crowd flow model used to generate
the data.

3. KOOPMAN AND DYNAMIC MODE
DECOMPOSITION

3.1 The Koopman Operator

Let us consider a nonlinear discrete dynamics of the
general form

x(k + 1) = f(x(k)), k ≥ 0, (2)

where x ∈ M ⊆ R
N represents the state vector, and

F : M → M is the system evolution operator.

The Koopman operator K is defined on the space of scalar-
valued functions F , where F = {φ|φ : M → C}, as the
following linear operator:

(Kφ)(x) = φ(f(x)). (3)

The Koopman operator is infinite dimensional, and is
characterized by the triple; Koopman eigenvalues, Koop-
man eigenfunctions, and Koopman modes, e.g., Mezić
and Banaszuk [2004], Rowley et al. [2009], Mezić [2013].
These are defined next. First, the Koopman eigenvalues
λi, i = 1, 2, ..., and eigenfunctions ϕ satisfy the classical
equation

Kϕ = λϕ. (4)
Using (4), and the definition of Koopman operator (3), we
can derive a simple recursive equation on the Koopman
eigenfunctions, as follows

K(ϕ(x(k))) = ϕ(f(x(k))) = ϕ(x(k + 1)) = λϕ(x(k)). (5)

This recursive equation will be very useful later on to write
an observable form of the Koopman-based model for the
pedestrian crowd.

Let us now recall the last component of the Koopman
triples, i.e., the Koopman modes. For vector valued ob-
servables g : M → R

No , following Mezić [2005], under the
condition that g’s components belong to the space spanned
by the Koopman eigenfunctions ϕi, we can write

g(x) =

∞
∑

j=1

ϕj(x)ξg
j , (6)

where ξ
g
j ∈ C

No are complex valued vectors, representing
the Koopman modes for the observable g.

Without loss of generality, if we assume that the function
g(x) = x. Then, Williams et al. [2015a] shows that

g(x) = x =
∞
∑

k=1

ξx
kϕk(x) and the future state f(x) can

be estimated as

f(x) = (Kg)(x) =
∞
∑

j=1

ξx
j (Kϕj)(x) =

∞
∑

j=1

λjξ
x
j ϕj(x), (7)

where ξx
j are the Koopman modes associated with the full

state vector x.

3.2 Kernel Dynamic Mode Decomposition

Williams et al. [2015b] proposed the Kernel DMD (kDMD)
algorithm as a low complexity method for approximating

the Koopman operator. Let f̂ : M×M → R be a kernel
function, and define the following data matrices

Ĝij = f̂(xi,xj), Âij = f̂(yi,xj), (8)
where xi and yj are column vectors of the data sets X and
Y. A rank-r truncated singular value decomposition of the
symmetric matrix Ĝ results in the singular vector matrix
Q and the singular value matrix Σ. The kDMD operator
K̂ is then computed using

K̂ = (Σ†QT )Â(QΣ†). (9)

An eigenvalue decomposition of K̂ results in the eigen-
vector matrix V̂ and eigenvalue matrix Λ. It was shown
in Williams et al. [2015b] that Λ approximates the Koop-
man eigenvalues. Moreover, the Koopman eigenfunctions
are approximated by the matrix Φ = V T ΣT QT . Since
every data point xi =

∑

l λlξ
x
l ϕl, the Koopman modes

associated with the full state x are approximated by the

matrix Ξx = XΦ† = QΣ†V̂
†
, where X = [x1 . . . xT ].

For every new data point x∗, the corresponding prediction
y∗ ≈ f(x∗) can be approximated using kDMD by first
estimating the eigenfunction

ϕ(x∗) = Φ[f̂(x∗,x1), f̂(x∗,x2), . . . , f̂(x∗,xT )]T , (10)
and using the Koopman prediction relation

{

x∗ ≈ Ξxϕ(x∗),
y∗ ≈ ΞxΛϕ(x∗).

(11)

It is worth noting at this point that similar approximations
can be written for any (partial) observable g(x), by simply
substituting the Koopman modes associated with g, i.e.,
Ξg, for the one associated with x, i.e., Ξx.

4. KDMD-BASED LINEAR OBSERVER DESIGN FOR
CROWD FLOW ESTIMATION

In this section we present the observer design for crowd
(full) flow estimation, based on partial flow measurements.
To this end, we follow the formulation recently introduced
in Surana and Banaszuk [2016], which allows to find a
change of coordinates, that leads to a linear representation
of the crowd flow dynamics. Then, based on this linear
representation, we design a linear output-feedback based
observer for the crowd flow. We underline here that the
main difference between this work and Surana and Ba-
naszuk [2016], besides using kDMD instead of DMD, is
that we are not dealing here with simple academic prob-
lems, but rather a high dimensional system motivated by
real-world application, which further validates the results
of Surana and Banaszuk [2016].

Let us first recall the change of coordinates, a.k.a., the
Koopman observer form (Surana and Banaszuk [2016]).
Consider the system (2), associated with the output

y(k) = h(x(k)), k ≥ 0, (12)



where, h : M → R
m is the output mapping, which will

play the role of the vector valued observable g, defined in
Section 3.

We assume that there exists a finite set of basis functions
ϕi, ı = 1, 2, ..., n, such that x, h(x) can be written as

x(k) =
i=n
∑

i=1

ϕi(x(k))ξx
i , h(x(k)) =

i=n
∑

i=1

ϕi(x(k))ξh
i , (13)

where, ξx
i ∈ C

N , ξh
i ∈ C

m, are the Koopman modes
associated with x, and h, respectively.

Remark 1. With respect to the previous assumption of
existence of a finite set of basis functions which represent
all the states x, and the output h, we need to under-
line here that this assumption could be verified for very
simple academic examples, however, for large dimensional
systems, with large state and output spaces, it is likely
that the previous finite dimension projection is only an
approximation of the true states/output, i.e., x(k) '
∑i=n

i=1
ϕi(x(k))ξx

i , h(x(k)) '
∑i=n

i=1
ϕi(x(k))ξh

i . This fact
will play an important part later on, when we analyze the
numerical results for the crowd flow estimation.

We can now define the following change of variables
(Surana and Banaszuk [2016])

Π(x) = (π1(x), . . . , πn(x))T , (14)

where Π : R
N → R

n, is defined as
{

πi(x) = ϕi(x), if the ith Koopman function is real,
πi(x) = 2Re(ϕi(x)), πi+1(x) = 2Im(ϕi(x)) if the
ith/i + 1th Koopman functions are complex (conjugate).

(15)
Based on this change of coordinates, the system (2), under
the Koopman operator representation (13), can be re-
written as the linear system

{

π(k + 1) = Aπ(k),
h(x(k)) = Chπ(k),
x(k) = Cxπ(k),

(16)

where, the system matrices are defines as follows










πi(k + 1) = λiπi(k), if the ith Koopman function is real,
πi(k + 1) = |λi|(c(θi)πi(k) + s(θi)πi+1(k)), and,
πi+1(k + 1) = |λi|(−s(θi)πi(k) + c(θi)πi+1(k)) if the
ith/i + 1th Koopman functions are complex (conjugate),

(17)
where, θi = arg(λi), c(.) = cos(.), and s(.) = sin(.).

The columns of Cx, are defined as
{

Cx(:, i) = ξx
i , if the ith Koopman function is real,

Cx(:, i) = Re{ξx
i }, Cx(:, i + 1) = Im{ξx

i }, if the
ith/i + 1th Koopman functions are complex (conjugate).

(18)
The columns of Ch, are defined as






Ch(:, i) = ξh
i , if the ith Koopman function is real,

Ch(:, i) = Re{ξh
i }, Ch(:, i + 1) = Im{ξh

i }, if the
ith/i + 1th Koopman functions are complex (conjugate).

(19)

Now that we have defined the change of coordinates,
leading to the linear form (16), (17), (18), and (19), we
can write an output feedback-based linear observer, of the
luenberger form (Kailath [1980])

{

π̂(k + 1) = Aπ̂(k) + K(y(k) − ŷ(k)),
ŷ(k) = Chπ̂(k),

(20)

where, K is a feedback gain which is properly selected
to ensure the convergence of the observer. After the

convergence of the observer, one can compute an estimate
x̂ of the full state x by the simple algebraic mapping

x̂(k) = Cxπ̂(k). (21)

As we mentioned earlier, the choice of K is important to
guaranty the convergence of the observer (20). The exis-
tence of a stabilizing gain matrix K is contingent to the as-
sumption that the system (16) is observable, e.g., Kailath
[1980]. One way to check for the observability of linear
time invariant systems, is the following rank condition:
The system (16) is observable iff rank(O(A,Ch)) = n,
where O(A,Ch)) is the observability matrix, defined as

O =











Ch

Ch A
...

Ch An−1











.

Remark 2. The rank condition is a useful constructive
test to verify that the partial crowd flow observations are
‘sufficient’ to estimate the full flow state. It will be used in
the next section to find a proper feedback gain K insuring
the convergence of the full flow estimate, to the true flow.
However, beyond this sufficiency posteriori test, one can
use this rank condition to design the output. In other
words, it can be used to place the camera, in such a way
to make sure that the partial crowd view of the camera
is enough to reconstruct the full crowd flow. This is not
investigated in this paper, but it will be reported in a
longer journal version of this work.

Remark 3. At this point the reader might be wonder-
ing the following: To build the Koopman operator-based
model, one needs snapshots data of the full scene, which
might be generated off-line using some model of the crowd
flow. In which case, what are the real advantages of the
proposed method, comparatively to a more classical ap-
proach based on PDEs ’ model reduction techniques, for
example, POD-based Galerkin projection, e.g., Benosman
[2016]. The response is twofold; indeed, first, if one uses
a flow model with classical Galerkin projection, the final
finite dimensional model, will inherit all the nonlinear
terms of the original PDE. In other words, there will be
no guaranty that the finite dimensional model is linear.
In the contrary, in the approach of this paper, due to the
Koopman-based change of coordinates, the final model will
always be linear, regardless of the original PDE used to
generate the data.

Another argument, in favor of the approach introduced
here, is that in some real-time deployment of this method,
one could bypass the PDE-based data generation phase.
Indeed, in a scenario where we have cameras covering a
full region, and streaming online measurements of the full
flow, one can use these data to build the Koopman-based
linear model online, and use the observer-based estimation
of the full scene, in the case of faults occurring on some of
the cameras, rendering the measurement of the full region
impossible. In which case, one can revert to the use of the
observer-based flow estimation, to cover for the part of the
flow that cannot be directly measured anymore.

5. NUMERICAL RESULTS

We simulate a crowd scene scene Ω on a square grid of
size Nx × Ny = 51 × 51 pixels. The (partial) observed
section, a.k.a, the output, of the flow is represented by the
square labelled Γ in Fig. 1(a), and has a size of 20 × 20
pixels. Using the macroscopic pedestrian model presented
in Section 2, we generate a set of flow data, initialized
by the initial condition shown in Fig. 1(b). The generated
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Fig. 1. Scene/measurements setup and initial scene

flow is composed of 1000 time snapshots, covering a time
interval of [0 40] sec. We show in Figures 2(a-c) three
snapshots of the true flow.

Next, we show the performance of the observer (16), (17),
(18), and (19), when implemented with n = 10 Koopman
modes, while the full state space has a dimension N = 51×
51×2 = 5202 (i.e., the grid size multiplied by 2 to account
for the the two components of the flow velocity vectors),
and the output dimension is m = 20 × 20 × 2 = 800.
We want to reconstruct the full 5202 states, based on the
limited 800 measurements, obtained from a limited view
of a camera observing the area Γ.

As we discussed in Remark 2, the rank test is used here
to check that the camera view is sufficient to reconstruct
the full scene. In this case, the rank of the observation
matrix O is equal to n = 10, which means that we can find
a matrix K that stabilizes the observer. To compute the
stabilizing matrix K, we use a discreet pole placements, to
place the poles of the closed-loop observer error dynamics
π(k + 1)− π̂(k + 1) = e(k + 1) = (A−KCh)e(k), inside of
the unitary circle.

To test the observer in a challenging situation, we assume
that our initial guess of x̂, i.e., of π̂ via equation (21), is
equal to tenth of the true initial state.

Next, we run the observer and show in Figure 3 the
relative error of the output ‖ex‖F /‖x‖F = ‖x̂ − x‖/‖x‖F ,
where ‖, ‖F denotes the Frobenius norm. We see that the
estimation error decreases rapidly from its initial large
value.

As the reader can see in Figure 3, we stopped the simula-
tion at t = 35 sec, the reason is that around that time, all
the crowd has almost passed all the measurement region
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Fig. 2. Snapshots of the true flow
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Γ, as one can see in Figure 4. In other words, after 35 sec,
the camera, which can only observe the limited view of Γ,
does not see anything, and there is no point in evaluating
the full state observer beyond that point, because there is
no feedback information.

Another limitation of the proposed method, which is worth
discussing at this stage, is the fact that the linear model
(16), is only an approximation of the Koopman operator
representing the full data. In other words, the matrices
A, and Ch, are contaminated with residual errors. This
fact becomes clearer when one observes Figure 3, where
we can see that the error never cancels completely, as
expected theoretically, if the linear model (16) was perfect.
This point, however, can be improved by using tools from
robust observation theory, which takes into account model
uncertainties to design robust observers. We have not
reported on this here, but we will discuss this extension
in more details, in a longer version of this paper.

Finally, to end this section, we report in Figures 5, 6, some
flow snapshots obtained from the observer, and compare
them to the snapshots obtained from the true flow. We
can see that the velocities flow estimated from the limited
view Γ (represented by a box in these figures, for clarity),
overlaps the true flow in direction, and almost matches it
in magnitude in magnitude (please see our remarks above
about the model uncertainties, which can explain the small
differences in amplitudes).

6. CONCLUSION

We have presented here preliminary results on crowd
flow estimation from limited measurements. Indeed, the
goal of this work, is to estimate pedestrian flow over a
given region, form limited observation of a smaller region
in the scene. To do so, we have relied on a Koopman
operator formulation, which allows us, by using the kDMD
approximation, to write a linear model representing the
flow data. We then have used a linear output-feedback
observer to estimate the full flow state.

As discussed throughout the paper, the advantages of
this approach compared to other possible model-based ap-
proaches, is the linearity guarantee of the representation,
which allows for a simple observer design. Another ad-
vantage, is the data-driven nature of this approach, which
could be completely implemented model-free, as long as,
some initial full state data are available to extract the
Koopman operator approximation of the system dynamics.
For instance, one can think of a practical implementation,
where there are enough cameras to cover the full scene
flow, at first. These full data, can be used to extract online
the Koopman triples, characterizing the data. Then, some
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Fig. 5. Estimated flow from limited measurements

faults occur on one or multiple cameras, which forces the
system to revert to this observer-based estimation of the
full scene flow, from the remaining limited scene coverage.

However, the main limitation of the approach, as presented
here, is the fact that the uncertainties, introduced by
the Koopman operator kDMD approximation, have not
been taken into account in the observer design. Moreover,
measurement noise has not bee considered here. We will
report more on these issues, in a longer journal version of
this work, where we will also consider experimental data
validation of this method.

REFERENCES

N. Bellomo and C. Dogbé. On the modelling crowd dy-
namics from scaling to hyperbolic macroscopic models.
Mathematical Models and Methods in Applied Sciences,
18(supp01):1317–1345, 2008.

M. Benosman. Extremum seeking-based parametric iden-
tification for partial differential equations. In 2nd IFAC
Workshop on Control of Systems Governed by Partial
Differential Equations, pages 19–24, 2016.

S. L. Brunton, J. L. Proctor, and J. N. Kutz. Compressive
sampling and dynamic mode decomposition. Journal of
Computational Dynamics (to appear), 2016.

S. L. Brunton, J. H. Tu, I. Bright, and J. N. Kutz.
Compressive sensing and low-rank libraries for classifica-
tion and reconstruction of nonlinear dynamical systems.
SIAM Journal on Applied Dynamical Systems, 13(4):
1716–1732, 2014.

K. Cao, Y. Chen, D. Stuart, and D. Yue. Cyber-physical
modeling and control of crowd of pedestrians: A review
and new framework. IEEE/CAA Journal of Automatica
Sinica, 2(3):334, 2015.



−10 0 10 20 30 40 50 60
−10

0

10

20

30

40

50

60

N
x

N
y

Γ

(a) Estimated Snapshot at t = 33.5 sec

25 26 27 28 29 30 31 32 33 34

18

19

20

21

22

23

24

25

26

27

28

N
x

N
y

(b) Zoom of the estimated Snapshot at t = 33.5 sec:
Red line (estimated flow)-Blue line (true flow)

Fig. 6. Estimated flow from limited measurements

R. M. Colombo and M. D. Rosinin. Pedestrian flows and
non-classical shocks. Math. Mthods Appl. Sci., 28(13):
1553–1567, 2005.

B. D. Greenshields. A study in highway capacity. In
Highway Research Board, volume 14, 458, 1935.

D. Helbing and P. Molna. Self-organizing phenomena in
pedestrian crowds. ArXiv Condensed Matter e-prints,
pages 569–577, 1997.

R. L. Hughes. A continuum theory for the flow of pedes-
trians. Transportation Research Part B: Methodological,
36(6):507 – 535, 2002. ISSN 0191-2615.

Roger L Hughes. The flow of human crowds. Annual review
of fluid mechanics, 35(1):169–182, 2003.

T. Kailath. Linear systems. Prentice–Hall edition, 1980.
Boris Kramer, Piyush Grover, Petros Boufounos,

Mouhacine Benosman, and Saleh Nabi. Sparse sensing
and dmd based identification of flow regimes and
bifurcations in complex flows. Technical report,
arXiv:1510.02831 [cs.SY], 2016.

J. N. Kutz, X. Fu, and S. L. Brunton. Multiresolution dy-
namic mode decomposition. SIAM Journal on Applied
Dynamical Systems, 15(2):713–735, 2016.
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