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Abstract
In this paper we present some results on parametric identification for dynamical systems.
More specifically, we consider the general case of dynamics described by partial differential
equations (PDEs), which includes the special case of ordinary differential equations (ODEs).
We follow a stochastic approach and formulate the identification problem as a Gaussian
process optimization with respect to the unknown parameters of the PDE. We use proper
orthogonal decomposition (POD) model reduction theory together with a data-driven Gaus-
sian Process Upper Confidence Bound (GP-UCB), to solve the identification problem. The
proposed approach is validated on the coupled Burgers’ equation benchmark.
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Abstract: In this paper we present some results on parametric identification for dynamical
systems. More specifically, we consider the general case of dynamics described by partial
differential equations (PDEs), which includes the special case of ordinary differential equations
(ODEs). We follow a stochastic approach and formulate the identification problem as a Gaussian
process optimization with respect to the unknown parameters of the PDE. We use proper
orthogonal decomposition (POD) model reduction theory together with a data-driven Gaussian
Process Upper Confidence Bound (GP-UCB), to solve the identification problem. The proposed
approach is validated on the coupled Burgers’ equation benchmark.

1. INTRODUCTION

The aim of system identification (id) is to estimate the
best possible model of a system, given a set of noisy
experimental measurements. System identification can be
classified as system identification for linear vs. nonlinear
models, time-domain based vs. frequency-domain based,
open-loop vs. closed-loop identification, stochastic vs. de-
terministic identification algorithms, identification for con-
trol vs. identification for simulation and prediction, goal-
oriented based identification or co-design identification.
Due to this large ramification of system id, we cannot
present here an exhaustive review of the field, instead,
we refer the reader to some outstanding surveys, e.g.,
Astrom and Eykhoff [1971],Ljung and Vicino [2005],Gevers
[2006],Ljung [2010],Pillonetto et al. [2014].

We will focus here on one specific subarea of system id,
namely, identification for dynamical systems described by
partial differential equations (PDEs). In this subarea of
system identification, we will present some results on a
stochastic approach for open-loop parametric identifica-
tion in the time domain.

Indeed, PDEs are important mathematical models, which
are used to model complex dynamic systems in applied
sciences. For instance, PDEs used to model flexible beams
and ropes Montseny et al. [1997], Barkana [2014], crowd
dynamics Huges [2003], Colombo and Rosini [2005], or
fluid dynamics Rowley [2005], Li et al. [2013], MacKu-
nis et al. [2011], Cordier et al. [2013], Balajewicz et al.
[2013], etc. However, PDEs are infinite dimensional sys-
tems, which makes them hard to solve in closed-form, and
computationally demanding to solve numerically. For in-
stance, when using FEM discretization methods, one may
end-up with a large discretization space, which implies
large computation time. Because of this complexity, it
is often hard to use PDEs to analyze, predict or control
systems in real-time. Instead, one approach that is often
used in real applications, is to first reduce the PDE model
to an ordinary differential equation (ODE) model, which
has a finite dimension and then use this ODE to control
the system. This step of converting a PDE to a reduced

order model (ROM) ODE, while maintaining a small error
between the solutions of both models, is known as model
reduction. However, if the original PDE has unknown
physical parameters, then the associated ODE will inherit
the same unknown physical parameters, which need to be
identified based on real-time measurements.

Many results have been proposed for PDEs identification.
For example in Xun et al. [2013], two methods have
been proposed to estimate parameters of PDE models.
Indeed, the first method is based on a parameter cascading
approach, and the second method is a Bayesian approach
based on Markov chain Monte Carlo (MCMC) techniques.
Both methods rely on decomposing the PDE solutions in
a linear basis function and then solving an optimization
problem in the coefficients of the basis function, as well
as, the PDE parameters to be identified. In Muller and
Timmer [2004], two approaches have been investigated,
one classified as a regression-based method, where all
the terms of the PDE are computed based on measured
data, and then the unknown coefficients of the PDE are
obtained by solving an algebraic optimization problem,
equaling both sides of the PDE equation. The second
method is in the form of a dynamical approach, in the sense
that the unknown parameters of the PDE are obtained
by solving an optimization problem which minimizes the
distance between the measured data and the solutions of
the PDE solutions over time. Many other work on PDE
identification fall into one of these two categories, e.g., refer
to Parlitz and C.Merkwirth [2000], Voss et al. [1999] for
some regression-based identification techniques, and Baake
et al. [1992], Muller and Timmer [2002], Benosman [2016]
for a dynamical approach for PDEs identification.

In this paper, we propose an alternative stochastic method,
which can be classified as a dynamical approach. Indeed,
we follow here the stochastic identification formulation,
and use GP-UCB optimization methods to solve the PDE
id problem. We use POD model reduction theory together
with a data-driven stochastic optimization approach to
solve the identification problem. We formulate the iden-
tification problem as a minimization of performance cost
function modeled as a Gaussian Process (GP), and use the



GP-UCB to solve the optimization problem online, leading
to a simple real-time solution for open-loop parametric
identification for PDEs.

One of the main advantages of using GP-UCB to solve
the identification (stochastic) optimal problem, is that it
is a data-driven optimization algorithm which needs a
small amount of measurements to direct the search for
the optimal parameter. Moreover, GP-UCB algorithms are
well known to be robust to measurement noise, which
makes them a good candidate for solving identification
problems, where measurements are often contaminated
with noise, e.g., Ljung and Vicino [2005]. Another, non-
negligible, advantage of GP-UCB algorithms, is that they
are proven to converge to the global optimum, of a possibly
non-convex function, in a compact search space, e.g.,
Rasmussen and Williams [2006].

This paper is organized as follows: We first introduce
some notations and definitions in Section 2. Section 3 is
dedicated to the problem formulation and the presentation
of the proposed solution. The case of the coupled Burgers’
equation is studied in Section 4. Finally, a conclusion is
presented in Section 5.

2. BASIC NOTATIONS AND DEFINITIONS

Throughout the paper we will use ‖.‖ to denote the
Euclidean vector norm; i.e., for x ∈ R

n we have ‖x‖ =√
xT x. The Kronecker delta function is defined as: δij =

0, for i 6= j and δii = 1. We will use ḟ for the short
notation of time derivative of f , and xT for the transpose of
a vector x. A function is said to be analytic in a given set,
if it admits a convergent Taylor series approximation in
some neighborhood of every point of the set. We consider
the Hilbert space Z = L2([0, 1]), which is the space of
Lebesgue square integrable functions, i.e., f ∈ Z, iff
∫ 1

0
|f(x)|2dx <∞. We define on Z the inner product 〈·, ·〉Z

and the associated norm ‖.‖Z , as ‖f‖2Z =
∫ 1

0
|f(x)|2dx,

and 〈f, g〉Z =
∫ 1

0
f(x)g(x)dx, for f, g ∈ Z. A function

ω(t, x) is in L2([0, T ];Z) if for each 0 ≤ t ≤ T , ω(t, ·) ∈ Z,

and
∫ T

0
‖ω(t, ·)‖2Zdt ≤ ∞.

Definition 1. (Haddad and Chellaboina [2008]).
An autonomous system ẋ = f(t, x) is said to be Lagrange
stable if for every initial condition x0 associated with the
time instant t0, there exists ε(x0), such that ‖x(t)‖ <
ε, ∀t ≥ t0 ≥ 0.

3. IDENTIFICATION OF PDE MODELS BY
GAUSSIAN PROCESS OPTIMIZATION

3.1 GP-UCB-based parameters identification

Consider a stable dynamical system modelled by a nonlin-
ear PDE of the form

ż = F(z, p) ∈ Z, (1)

where Z is an infinite-dimension Hilbert space, and p ∈
P ⊂ R

m represents the vector of physical parameters to
be identified, in the compact domain P. While solutions
to this PDE can be obtained through numerical discretiza-
tion, e.g., finite elements, finite volumes, finite differences
etc., these computations are often very expensive and not
suitable for online applications. However, solutions of the
original PDE often exhibit low rank representations in an
‘optimal’ basis, which is exploited to reduce the PDE to a
finite dimension ODE.

The general idea is as follows: One first finds a set of
‘optimal’ (spatial) basis vectors φi ∈ R

n (the dimension
n is generally very large and comes form a ‘brute-force’
discretization of the PDE, e.g., finite element discretiza-
tion), and then approximates the PDE solution as

z(t) ≈ Φzr(t) =

r
∑

i=1

zri(t)φi, (2)

where Φ is a n× r matrix containing the basis vectors φi
as column vectors. Next, the PDE equation is projected
into the finite r-dimensional space via classical nonlinear
model reduction techniques, e.g., Galerkin projection, to
obtain a ROM of the form

żr(t) = F (zr(t), p) ∈ R
r, (3)

where F : R
r → R

r is obtained from the original PDE
structure, through the model reduction technique, e.g.,
the Galerkin projection. Clearly, the problem lies in the
selection of this ‘optimal’ basis matrix Φ. There are many
model reduction methods to find the projection basis func-
tions for nonlinear systems. For example proper orthogo-
nal decomposition (POD) Kunisch and Volkwein [2007],
Gunzburger et al. [2007], dynamic mode decomposition
(DMD) Williams et al. [2015], and reduced basis (RB)
Haasdonk et al. [2008], are some of the most used methods.
We will recall hereafter the POD method, however, the
GP-UCB-based identification results are independent of
the type of model reduction approach, and the id method
presented in this paper applies regardless of the selected
model reduction approach.

POD model reduction We give here a brief recall of
POD basis functions computation, the interested reader
can refer to Kunisch and Volkwein [2007], Gunzburger
et al. [2007] for a more complete presentation about POD
theory.

We consider here the case where the POD basis functions
are computed from (exact) solutions’ snapshots of the
PDE obtained by a discretization method, e.g. FEM.
The general idea behind POD is to select a set of basis
functions that capture an optimal amount of energy of the
original PDE. The POD basis functions are obtained from
a collection of snapshots over a finite time support of the
PDE solutions. In the context of this work, these snapshots
are obtained by solving an approximation (discretization)
of the PDE equation, e.g., using finite element method
(FEM). The POD basis functions computation steps are
presented below in more details.

First, the original PDE is discretized using any finite
element basis functions, e.g., piecewise linear functions or
spline functions, e.g., Sordalen [1997], Fletcher [1983]. Let
us denote the associated PDE solutions approximation by
zfem(t, x), where t stands for the scalar time variable, and
x stands for the space variable. We consider here (for
simplicity of the notations) the case of one dimension,
where x is a scalar in a finite interval, which we consider,
without loss of generality, to be [0, 1]. Next, we compute
a set of s snapshots of approximate solutions as

Sz = {zfem(t1, .), ..., zfem(ts, .)} ⊂ R
N , (4)

where N is the selected number of FEM basis functions.
Now we define the so called correlation matrix Kz elements
as

Kz
ij =

1

s
< zfem(ti, .), zfem(tj , .) >, i, j = 1, ..., s. (5)

We then compute the normalized eigenvalues and eigen-
vectors of Kz, denoted as λz, and vz. Eventually, the ith

POD basis function is given by



φpod
i (x) =

1√
s
√

λz
i

j=s
∑

j=1

vz
i (j)zfem(tj , x), i = 1, ..., Npod,

(6)
where Npod ≤ s is the number of retained POD basis
functions, which depends on the application.
One of the main properties of the POD basis functions
is orthonormality, which means that the basis function
satisfy the following equalities

< φpod
i , φpod

j >=

∫ 1

0

φpod
i (x)φpod

j (x)dx = δij , (7)

where δij denotes the Kronecker delta function. The solu-
tion of the PDE (1) can then be approximated as

zpod(t, x) =

i=Npod
∑

i=1

φpod
i (x)qpod

i (t), (8)

where qpod
i , i = 1, ..., Npod are the POD projection

coefficients (which play the role of the zr in the ROM
(3)). Finally, the PDE (1) is projected on the reduced
dimension POD space using a Galerkin projection, i.e.,
both sides of equation (1) are multiplied by the POD basis
functions, where z is substituted by zpod, and then both
sides are integrated over the space interval [0, 1], which
using the orthonormality constraints (7) and the boundary
constraints of the original PDE, leads to an ODE of the
form

q̇pod(t) = F (qpod(t), p) ∈ R
Npod , (9)

where the structure (in terms of nonlinearities) of the vec-
tor field F is related to the structure of the original PDE,
and where p ∈ R

m represents the vector of parametric
uncertainties to be identified. Note that due to (9), and
(8), zpod is implicitly function of p, as well.

We can now proceed with the GP-based identification of
the parametric uncertainties.

GP-UCB-based PDEs open-loop parameters estimation
We will use here a GP-UCB algorithm to estimate the
PDE’s parametric uncertainties, based on its reduced
order model; the POD ROM. First, we need to introduce
some basic stability assumptions.

Assumption A1 The solutions of the original PDE
model (1) are assumed to be in L2([0,∞);Z), and the
associated POD reduced order model (8), (9) is Lagrange
stable, ∀ p ∈ P ⊂ R

m.

Remark 1. Assumption A1 is needed to be able to perform
open-loop identification of the system.

Now, to be able to use the GP-UCB framework to identify
the parameters vector p, we define an identification cost
function as

Q(p̂) = H(ez(t, p̂)), t ∈ [0, T ], (10)

where p̂ denotes the estimate of p, H is a positive definite
function of ez, and ez represents the error between the
ROM model (8),(9) and the system’s measurements zm,
defined as

ez(t, p̂) = zpod(t, xm, p̂)− zm(t, xm, η), (11)

xm being the points in space where the measurements
are obtained, and η represents additive (Gaussian) mea-
surement noise. At this point, we need to formalize the
assumption that the true values of the parameters are
optimal for the identification cost function Q.

Assumption A2 The cost function Q is continuous and
has a minimum at p̂∗ = p.

Let us first recall that a Gaussian Process (GP) is a
stochastic process indexed by the set D ⊆ P that has
the property that for any finite subset of the evaluation
points, that is {p̂1, p̂2, . . . , p̂t} ⊂ D, the joint distribution

of (Q(p̂i))
t
i=1 is a multivariate Gaussian distribution. GP is

defined by a mean function µ(p̂) = E [Q(p̂)] and its covari-
ance function (or kernel) k(p̂, p̂′) = Cov(Q(p̂), Q(p̂′)) =

E

[

(Q(p̂)− µ(p̂)) (Q(p̂′)− µ(p̂′))
T
]

. The kernel k of a GP

determines the behavior of a typical function sampled from
the GP Rasmussen and Williams [2006]. For instance, if we
choose

k(p̂, p̂′) = exp

(

−‖p̂− p̂′‖2
2l2

)

, (12)

the squared exponential kernel with length scale l > 0, it
implies that the GP is mean square differentiable of all
orders.

Let us now briefly describe how we can find the posterior
distribution of a GP(0,k); a GP with zero prior mean.

Suppose that for p̂
t−1

, {p̂1, p̂2, . . . , p̂t−1} ⊂ D, we

have observed the noisy evaluation yi = Q(p̂i) + ηi with
ηi ∼ N(0, σ2) being i.i.d. Gaussian noise. We can find the
posterior mean and variance for a new point p̂∗ ∈ D as
follows: Denote the vector of observed values by yt−1 =
[y1, . . . , yt−1]

> ∈ R
t−1, and define the Grammian matrix

K ∈ R
t−1×t−1 with [K]i,j = k(p̂i, p̂j), and the vector k∗ =

[k(p̂
1
, p̂∗), . . . ,k(p̂

t−1
, p̂∗)]. The expected mean µt(p̂

∗) and

the variance σt(p̂
∗) of the posterior of the GP evaluated at

p̂∗ are (cf. Section 2.2 of Rasmussen and Williams [2006])

µt(p̂
∗) = k∗

[

K + σ2I
]−1

yt−1,

σ2
t (p̂∗) = k(p̂∗, p̂∗)− k

>
∗

[

K + σ2I
]−1

k∗.
(13)

At time t, the GP-UCB algorithm selects the next query
point p̂t by solving the following optimization problem:

p̂t ← argmin
p̂∈D

µt−1(p̂)− β
1/2
t σt−1(p̂), (14)

where we choose βt as 1

βt = 2 ‖Q‖Hk

+ 300γt log3(t/δ), (15)

where δ ∈ (0, 1), represents the confidence parameter, and
γt = log(t)c, c > 0.

Remark 2. The optimization problem (14) is often nonlin-
ear and non-convex. Nonetheless solving it only requires
querying the GP, which in general is much faster than
querying the original dynamical system. This is important
when the dynamical system is a real system and we would
like to minimize the number of interactions with it before
finding a p̂ with small Q(p̂). One practically way to ap-
proximately solve (14) is to restrict the search to a finite
subset D′ of D. The finite subset can be a uniform grid
structure over D, or it might consist of randomly selected
members of D.

Based on the above assumptions, we can summarize the
open-loop identification result in the following Lemma.

Lemma 1. Consider the system (1), then under Assump-
tions A1, A2, the uncertain parameters vector p, can be
estimated online using the algorithm

p̂(t) = pnom + ∆p(t), (16)

1 ‖.‖
Hk

denotes the norm associated with the reproducing kernel

Hilbert space (RKHS), e.g. Rasmussen and Williams [2006].



where pnom is the nominal value of p, ∆p = [δp1, ..., δpm]T

is computed using the GP-UCB algorithm (10), (11), (13),
(14), and (15). Then, the parameters vector p is estimated,

over [0, T ], with a cumulative regret RT =
∑T

t=0 rt, rt =
Q(p̂t)−Q(p), which admits the following upper-bound

RT ≤
√

8TβT γT

1 + log(1 + σ−2)
,

with probability at least 1−δ, where δ > 0 is the confidence
parameter.

Proof: Based on Assumption A1, we can ensure the exis-
tence and boundedness of the cost function given by (10),
and (11). Next, to provide an upper bound on the regret
of the method, we follow (Theorem 3, in Srinivas et al.
[2010]), and fix the confidence parameter δ > 0. If the
reproducing kernel Hilbert space (RKHS) Hk defined by
the kernel k is such that ‖Q‖Hk

<∞, we can choose

βt = 2 ‖Q‖Hk

+ 300γt log3(t/δ),

in which γt should depend on kernel k. For the exponential
kernel and D ⊂ R

d, we have γt = O((log t)d+1).

We define p̂∗ ← argminp̂∈D Q(p̂), the global minimizer of
the objective function. We define the regret at time t by
rt = Q(p̂t) − Q(p), which is a measure of sub-optimality
of the choice of p̂t according the cost function Q. The

cumulative regret over [0, T ] is defined as RT =
∑T

t=1 rt.
If we choose p̂t according to (14) with the aforementioned
parameters, we can write the cumulative regret’s upper-
bound Srinivas et al. [2010]

RT ≤
√

8TβT γT

1 + log(1 + σ−2)
,

with probability at least 1− δ.

4. THE COUPLED BURGERS’ PDE EQUATION

We consider here the case of the coupled Burgers’ equation,
e.g., Kramer [2011]











∂ω(t, x)

∂t
+ ω(t, x)

∂ω(t, x)

∂x
= µ

∂2ω(t, x)

∂x2 − κT (t, x),

∂T (t, x)

∂t
+ ω(t, x)

∂T (t, x)

∂x
= c

∂2T (t, x)

∂x2 + f(t, x),

(17)
where T represents the temperature, and ω represents the
velocity field. κ is the coefficient of the thermal expansion,
c the heat diffusion coefficient, µ the viscosity coefficient
(inverse of the Reynolds number Re), x is the one dimen-
sional space variable x ∈ [0, 1], t > 0, and f is the external
forcing term such that f ∈ L2((0,∞), X), X = L2([0, 1]).
The previous equation is associated with the following
boundary conditions

ω(t, 0) = δ1,
∂ω(t, 1)

∂x
= δ2,

T (t, 0) = T1, T (t, 1) = T2,
(18)

where δ1, δ2, T1, T2 ∈ R≥0.

We consider here the following general initial conditions

ω(0, x) = ω0(x) ∈ L2([0, 1]),
T (0, x) = T0(x) ∈ L2([0, 1]).

(19)

Following a Galerkin-type projection into POD basis func-
tions, e.g., Kramer [2011], the coupled Burgers equation is
reduced to a POD ROM with the following structure

(

q̇pod
ω

q̇pod
T

)

= B1 + µB2 + µ D qpod + D̃qpod + CqpodqpodT
,

ωROM (x, t) = ω0(x) +

i=Npodω
∑

i=1

φ(x)pod
ωi qpod

ωi (t),

TROM (x, t) = T0(x) +

i=NpodT
∑

i=1

φ(x)pod
Ti qpod

Ti (t),

(20)
where matrix B1 is due to the projection of the forcing
term f , matrix B2 is due to the projection of the bound-
ary conditions, matrix D is due to the projection of the

viscosity damping term µ ∂2ω(t,x)
∂x2 , matrix D̃ is due to the

projection of the thermal coupling and the heat diffusion

terms −κT (t, x), c∂2T (t,x)
∂x2 , and the matrix C is due to

the projection of the gradient-based terms ω ω(t,x)
∂x , and

ω ∂T (t,x)
∂x . The notations φpod

ωi (x), qpod
ωi (t) (i = 1, ..., Npodω),

φpod
Ti (x), qpod

Ti (t) (i = 1, ..., NpodT ), stand for the space
basis functions and the time projection coordinates, for the
velocity and the temperature, respectively. ω0(x), T0(x)
represent the mean values (over time) of ω and T , respec-
tively.

4.1 Burgers’ equation parameters estimation

- Test 1: First, we report the case with an uncertainty
on the Reynolds number Re. We consider the coupled
Burgers equation (17), with the parameters Re = 500, κ =
−1, c = 0.01, the boundary conditions δ1 = 0, δ2 =
5, T1 = 0, T2 = 0.1sin(0.5πt), the initial conditions
ω0(x) = 2(x2(0.5 − x)2), T0(x) = 0.5sin(πx)5, and a zero
forcing term f . We assume large uncertainties on both
Re, and κ. We consider that their assumed values are
Re−nom = 50, and κ − nom = −0.5. We apply the GP-
UCB-based estimation algorithm of Lemma 1, to estimate
both Re, and κ. We choose the identification cost function
as

Q =

t=T=50
∑

t=0

Q1‖eT (t)‖2 +

t=T=50
∑

t=0

Q2‖eω(t)‖2, (21)

with Q1, Q2 > 0, eT (t) = T (t)−TROM (t), eω(t) = ω(t)−
ωROM (t) define the errors at instant t, between the mea-
surements and the POD ROM solution for temperature
and velocity, respectively. We assume that the measure-
ments are corrupted with additive (Gaussian) white noise
with standard deviation σ = 10−2. We applied the GP-
UCB id algorithm (13), (14), and (15), with δ = 0.05, l =
10, γt = log(t)3, Q1 = Q2 = 1. We consider the case of
limited number of measurements, where we assume that
we only have 10 sensors for the velocity and 10 for the
temperature, uniformly located over the space [0, 1].

We first show in Figure 1, the plots of error between
the true solutions (obtained by solving the Burgers’ PDE
with finite elements method, with a uniform grid of 100
elements in time and space 2 ), and the velocity and tem-
perature profiles, obtained by the nominal POD ROM
with 10 POD modes for the velocity and 10 modes for
the temperature, considering the initial (incorrect) param-
eters’ values Re = 50, κ = −0.5. Now, we show the
GP-UCB-based identification of the uncertain parameters
Re, κ. We first report in Figure 2(a), the id cost function
over the identification iterations. We notice that the GP
2 We thank here Dr. Boris Krämer @MIT, for sharing his codes to
solve the Burgers’ equation.



(a) Error between the true velocity
and the nominal POD ROM veloc-
ity profile

(b) Error between the true temperature
and the nominal POD ROM tempera-
ture profile

Fig. 1. Errors between the nominal POD ROM and the
true solutions- Test 1

process exploration leads quickly, within 12 iteration, to
the neighborhood of the true value of Re, κ, as seen in
Figures 2(b), 2(c). The error between the POD ROM after
identification and the true solutions are depicted in Figure
3. By comparing Figure 1 and Figure 3, we can see that
the error between the POD ROM solutions and the true
solutions have been largely reduced with the identification
of the actual values of the parameters.

In a second set of tests, we compared the the perfor-
mance of the GP-UCB-based identification algorithm, to
the deterministic extremum seeking-based identification
algorithm, introduced in Benosman [2016]. The associated
numerical results could not be reported here to due to
the limitation on the number of pages. The tests showed
that the deterministic MES-based identification algorithm,
managed to converge to a small neighborhood of the true
parameters’ values. However, in comparison with the GP-
UCB stochastic id algorithm, the extremum-seeking-based
identification of the parameters was less precise, which is
due to the fact that the deterministic MES-based identi-
fication do not handle measurement noises as well as the
stochastic GP-based id algorithm.

5. CONCLUSION

In this work we have studied the problem of dynamical
systems parametric identification. More specifically, we
have considered the case of dynamical systems described
by PDEs (the case of ODEs being a sub-class which can
be deduced from this formulation). We have formulated
the problem as a stochastic optimization with respect
the unknown parameters, and have proposed to use data-
driven Gaussian processes GP-UCB theory to search for
the PDE parameters. We believe that one of the main
advantages of using GP-UCB theory for parametric iden-
tification is the fact that GP-UCB algorithms require a
minimal number of cost function probing, i.e., real-time
measurements. Furthermore, GP-UCB algorithms are well
known to converge to the global optimum within a com-
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Fig. 2. Identified parameters and id cost function- Test 1

pact search set. Finally, GP-UCB algorithms, due to their
stochastic nature, are robust to measurement noise. In
this context, we have proposed to merge together POD
model reduction theory and GP-UCB theory to propose a
solution for PDEs parametric identification. The proposed
approach showed a good performance when tested on the
Burger’s equation, however, its performance needs to be
validated with more complex nonlinear PDEs, which will
be the focus of our future research in this direction.
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