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Abstract
In this paper, we address the problem of estimating the total flow of a crowd of pedestrians
from spatially limited observations. Our approach relies on identifying a dynamical system
regime that characterizes the observed flow in a limited spatial domain by solving for the
modes and eigenvalues of the corresponding Koopman operator. We develop a framework
where we first approximate the Koopman operator by computing the kernel dynamic mode
decomposition (DMD) operator for different flow regimes using fully observed training data.
We then pose flow completion as a least squares problem constrained by the one step evolution
of the kernel DMD operator. We present numerical experiments with simulated pedestrian
flows and demonstrate that the proposed approach succeeds in completing the flow from
limited spatial observations.
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Abstract—In this paper, we address the problem of
estimating the total flow of a crowd of pedestrians from
spatially limited observations. Our approach relies on
identifying a dynamical system regime that characterizes
the observed flow in a limited spatial domain by solving for
the modes and eigenvalues of the corresponding Koopman
operator. We develop a framework where we first approx-
imate the Koopman operator by computing the kernel
dynamic mode decomposition (DMD) operator for different
flow regimes using fully observed training data. We then
pose flow completion as a least squares problem constrained
by the one step evolution of the kernel DMD operator. We
present numerical experiments with simulated pedestrian
flows and demonstrate that the proposed approach succeeds
in completing the flow from limited spatial observations.

Index Terms—Dynamic flow completion, Koopman anal-
ysis, dynamic mode decomposition, crowd analysis.

I. INTRODUCTION

Dynamic flow completion from limited observation
data is a common problem that arises in many fields such
as crowd flow estimation, air flow sensing, and weather
and ocean current prediction. The problem entails esti-
mating temporally evolving flows on a spatial grid that
is not fully observed. The observations are limited since
it is infeasible or too costly to have enough sensors to
cover the entire grid.

In the context of crowd flow completion, the sen-
sors are cameras that monitor a portion Γ of a wide
surveillance area such as an exhibition hall or a large
public event, denoted by Ω, where Γ ⊂ Ω. The flows
can be the pedestrian velocities v and densities ρ at all
grid locations in Ω. Given partial observations of the
flows on Γ, we wish to estimate the complete flows.
More formally, let xt be the vector of complete flow
observables at time instance t ∈ {1 . . . T} defined over
all Ω, and let ot be the the observed entries of xt
restricted to the set Γ, i.e. ot = xt|Γ = Mxt, where
M : Ω → Γ is a spatial mask. Given prior information
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about the flow of crowds in Ω in the form of training data
or a function p(·) that estimates the temporal dynamics
xt+1 = p(xt) + et, we address the task of recovering
the complete flows xt from observations ot by casting
it as the following problem

min
xt...xT

T∑
t=1

1

2
‖ot −Mxt‖22 +

γ

2

T−1∑
t=1

‖xt+1 − p(xt)‖22,

(1)
where γ is a regularization parameter.

The above formulation relates to the inference prob-
lem from a partially observed Markov process [1],
[2]. In particular, problem (1) resembles a maximum a
posteriori (MAP) formulation of Kalman filtering under
nonlinear dynamics and Gaussian noise assumptions, see
e.g. [3]. However, when the function p(·) is not known,
data driven methods are needed to estimate the temporal
dynamics of the flow observables xt from training data.

While there has been extensive research in the field
of crowd analysis, little has been done in terms of
crowd flow completion. The general focus has involved
finding dynamical models that govern the flow of a
crowd [4]–[8]. Completing a partially observed flow
requires solving an inverse problem that identifies the
initial and boundary conditions of the partial differential
equation (PDE) that governs the flow, as well as the flow
parameters [9]. Alternatively, data-driven approaches in
the form of dynamic mode decomposition (DMD) and
its nonlinear extensions [10]–[13] have been proposed
recently, which allow for approximating a system dy-
namics by estimating its infinite dimensional Koopman
operator [14]. Finally, [15] proposed a related numerical
procedure to synthesize an observer form for discrete
time autonomous nonlinear systems based on Koopman
operator theoretic framework.

In this paper, we propose a flow completion frame-
work that utilizes the prediction capabilities of the
Koopman operator. We describe in Section II the data-
driven kernel DMD method of [13] that approximates



the Koopman operator which captures nonlinear system
dynamics. In Section III we develop our flow completion
framework and propose a method for estimating basis
coefficients of the flow. For a particular scene Ω, we first
simulate complete flow data using a macroscopic pedes-
trian flow model with different initializations. Next, we
use the simulated data to learn a kernel DMD operator
that captures the dynamics experienced in the scene. For
every new flow observed in the spatially limited region
Γ, we cast the flow completion problem as a least squares
inverse problem reguraized by the prediction equations
of the kernel DMD operator. More precisely, the kernel
DMD operator allows us to learn a basis representation
of the flows in Ω. Therefore, instead of estimating the
flow observables xt directly, our problem becomes that
of estimating the coefficients of the basis expansion of
xt from incomplete spatial observations ot. Finally, we
present numerical results that validate our approach in
Section IV and draw conclusions in Section V.

II. KOOPMAN AND DYNAMIC MODE DECOMPOSITION

A. The Koopman Operator

Let (M, n,F ) be a discrete time dynamical system,
where M ⊆ RN is the state space, n ∈ N is the time
parameter and F : M → M is the system evolution
operator. The Koopman operator K is defined on the
space of functions F , where F = {φ|φ : M→ C}, as
follows:

Kφ = φ ◦ F . (2)

The Koopman operator is linear and infinite dimensional,
and is characterized by the triple; eigenvalues, eigenvec-
tors, and eigenfunctions [10], [14]. For vector valued
observables g : M → RNo , the Koopman operator
also admits Koopman modes. The Koopman operator
specifies a new discrete time dynamical system on the
function space (F , n,K). Let ϕk(x), 1 ≤ k ≤ K
be the first K eigenfunctions of K. Without loss of
generality, let the system variable be x ∈M and assume
that the function g(x) = x. Then, [12] shows that

g(x) = x =
K∑
k=1

ξkϕk(x) and the future state F (x)

can be estimated as

F (x) = (Kg)(x) =

K∑
k=1

ξk(Kϕk)(x) =

K∑
k=1

λkξkϕk(x),

(3)
where ξk and λk are the Koopman modes and Koopman
eigenvalues, respectively.

B. Kernel Dynamic Mode Decomposition

Williams et al. [13] proposed the Kernel DMD
(KDMD) algorithm as a low complexity method for

approximating the Koopman operator. Let f :M×M→
R be a kernel function, and define the following data
matrices

Ĝij = f(xi,xj), Âij = f(yi,xj), (4)

where xi and yj are column vectors of the data sets X
and Y . A rank-r truncated singular value decomposition
of the symmetric matrix Ĝ results in the singular vector
matrix Q and the singular value matrix Σ. The KDMD
operator K̂ is then computed using

K̂ = (Σ†QT )Â(QΣ†). (5)

An eigenvalue decomposition of K̂ results in the eigen-
vector matrix V̂ and eigenvalue matrix Λ. It was shown
in [13] that Λ approximates the Koopman eigenvalues.
Moreover, the Koopman eigenfunctions are approxi-
mated by the matrix Ψ = V̂

T
ΣTQT . Since every

data point xi =
∑
k λkξkϕk, the Koopman modes are

approximated by the matrix Ξ = XΨ† = XQΣ†V̂
†
,

where X = [x1 . . .xT ].
Next consider the basis matrix Φ = V̂

T
Σ†QT . Then,

for every new data point x∗, [13] shows that the corre-
sponding prediction y∗ ≈ F (x∗) can be approximated
using KDMD by first estimating the eigenfunction

ϕ(x∗) = Φ[f(x∗,x1), f(x∗,x2), . . . , f(x∗,xT )]T ,
(6)

and using the Koopman prediction relation{
x∗ ≈ Ξϕ(x∗),

y∗ ≈ ΞΛϕ(x∗).
(7)

Consequently, the temporal dynamics of a time series
can be predicted starting from an initial observation x∗0
by first computing ϕ(x∗0), then driving the system using

x∗t = ΞΛtϕ(x∗0). (8)

III. CROWD FLOW COMPLETION

We propose a data-driven framework for flow com-
pletion where training data defined over the complete
scene Ω are available to learn a kernel DMD operator
that captures the dynamics of flows in the scene. Then,
for new test flows defined over a subset Γ ⊂ Ω, we
solve a least squares minimization problem constrained
by the one step prediction of kernel DMD operator.

A. Training data generation

The dynamics of a crowd can be modeled at the micro
and macro scales as the motion of particles in a fluid
flow. Alternatively, when real video surveillance data that
cover all of Ω are available, flow information can be
extracted by computing video motion vectors.
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We consider in this paper the macroscopic scale,
namely variations on the Hughes model [16]–[18] which
characterizes the flow in terms of the flow density and
velocity. We use the finite volume method proposed
in [19], [20] to numerically solve the corresponding
PDE. We run the model with L different initial con-
ditions for T + 1 time steps and collect the data as
follows. For the l-th initial condition, 1 ≤ l ≤ L, we
first form the data matrix Zl ∈ RD×(T+1) by vertically
stacking the horizontal and vertical velocities for each
spatial grid point in Ω, where the scene grid is of size
Nx × Ny and D = 2NxNy . Let Zl = [zl1, . . . ,z

l
T+1],

we rearrange the columns of Zl to construct current
and future training data matrices X l

tr and Y l
tr, such

that X l
tr = [zl1, . . . z

l
T ], Y l

tr = [zl2, . . . z
l
T+1]. The data

matrices associated with each of the L initial conditions
are then stacked to form the total training data matrices
Xtr = [X1

tr, . . . ,X
N
tr ] and Y tr = [Y 1

tr, . . . ,Y
N
tr ]. The

kernel DMD operator is then learned by computing the
matrices Ξ, Φ, and Λ as described in Section II.

B. Flow completion

Suppose that we observe the velocities of a new flow
X∗ = {x∗1, . . . ,x∗T ′} ∈ RD on the region Γ ⊂ Ω
that shares the dynamics of the training set. Denote by
O = {o1, . . .oT ′}, O ⊂ Rd, d < D the sequence of
observed velocities over T snapshots in time. Also let
M : RD → Rd be a masking operator that maps from Ω
to Γ. We represent the masking operator by the d ×D
matrix with the same name M . Then ∀ 1 ≤ t ≤ T ′,
ot = Mx∗t . Our goal is to estimate x∗t from the partial
observations ot and using the approximated Koopman
modes, eigenvalues, and eigenfunctions as shown in (7).

Since the vectors x∗t are not available to evaluate the
kernel functions f(x∗t ,xj), ∀j ∈ {1 . . . (T + 1)L}, we

model x∗t as

{
x∗t = Ξct,

x∗t+1 = ΞΛct,
where ct ∈ RK ap-

proximate the kernel synthesis coefficients of x∗t . Hence,
the flow completion problem becomes that of estimating
the coefficient matrix C = [c1 . . . cT ′ ] ∈ RK×T ′

from
the observations O.

Therefore, we propose the following optimization
problem to recover the matrix C:

min
C
‖O −MΞC‖2F + γ

2 ‖ΛCE1 −CE2‖2F , (9)

where E1 and E2 are restriction operators that select
columns 1 to T ′ − 1 and 2 to T ′ of C, respectively,
and γ is a regularization parameter. The regularization
term γ

2 ‖ΛCE1−CE2‖2F ensures that the coefficients ct
behave as the kernel synthesis coefficients by satisfying
the one step prediction relation ct+1 ≈ Λct.

Problem (9) can now be recast as a simple linear least

squares problem in terms of the vector c̄ =

 c1

...
cT ′

.

Denote by the matrix B = MΞ, and let I be the identity
matrix of dimension K. The matrix of coefficient vectors
C̃ := [c̃1 . . . c̃T ′ ] is then computed by solving

C̃ = arg min
c̄

∥∥∥∥[ ō0
]
−
[

B√
γD

]
c̄

∥∥∥∥2

2

, (10)

where ō is the vector formed by vertically stacking the
observations o1 . . .oT ′ , 0 is the vector of zeros, and the
matrices B and D are defined as follows

B =


B

B
. . .

B



D =


Λ −I

Λ −I
. . .
Λ −I


(11)

Finally, the completed flow x̃t can be recovered by
multiplying the computed C̃ with the Koopman mode
matrix Ξ, i.e. x̃t = Ξc̃t for all t ∈ {1 . . . T ′}.

IV. NUMERICAL RESULTS AND DISCUSSION

We evaluate the performance of our proposed flow
completion framework on simulated pedestrian flow
data. Let the scene Ω be a square grid of size 51 × 51
pixels. The observed section of the flow is represented
by the four squares labeled Γ in Fig. 1(a). Using the
macroscopic pedestrian model [19], [20], we generate
three sets of training flow data, each initialized by
the three different crowd density configurations shown
in Fig. 1(b)–(d). Each flow is composed of 200 time
snapshots. We also generate a fourth test flow initialized
by the flow distribution in Fig. 1(e). All the training
and test flows have the same target of moving to the
destination point marked by the red X in the top right
corner of the scene. The test data is also contaminated
with additive white Gaussian noise at 20% noise level
relative to the noise free signal.

Let M be the mask that selects the velocities in the
regions Γ. Using the training flows, we compute the
Kernel DMD matrices Ξ,Λ, and Φ using the Gaussian
kernel f(x, y) = e−‖x−y‖

2/‖x‖‖y‖, and apply our pro-
posed method with γ = 10 to complete the flows in
all of Ω. For performance comparison, we also present
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Fig. 1: (a) Simulation environment showing the total scene Ω and the observation regions Γ. (b)–(d) Initial conditions
for the training sequences showing the velocities of different groups of pedestrians. (e) Initial conditions of the test
sequence. The X in the top right corner marks the target destination of the crowd.

the flow completion result of linear approximation and
sparse approximation using the training data as the signal
dictionary. For that purpose, we organize the training
data into a matrix Z and label the noisy test data by
the matrix Z∗. With linear approximation and given
O := MZ∗, we wish to find the coefficient matrix C
that minimizes 1

2‖O−MZC‖
2
F , i.e. we want to compute

C = (MZ)−1O. The complete flow is then estimated
by Ẑ = ZC. To compute the matrix inverse (MZ)−1,
we use a truncated SVD with rank 30 since it produced
the best recovery performance for this method. For
sparse approximation, we find the coefficient matrix C
that minimizes the `1 regularized least squares problem:
min
C

1
2‖O − MZC‖2F + λ‖C‖1 with λ = 10−3. We

also plot the prediction error from applying the classical
KDMD prediction approach of [13] as described in (8).
Note that in the KDMD prediction, the initial condition
of the complete scene Ω is needed to evaluate ϕ(x∗0).
Otherwise, the method fails completely. We plot the
performance of the classical KDMD scheme to highlight
the best case scenario that can be achieved by this
approach. The flow completion performance is illustrated
in terms of the relative error ‖Z−Ẑ‖F /‖Z‖F , where Ẑ
is the predicted velocity matrix, and Z is the noise-free
true velocity matrix.

Fig. 2 shows the change in the relative error over time
for each of the above mentioned methods. For a visual
assessment, we also show the reconstructed flows at time
steps 20, 60, and 140 in Fig. 3. It can be seen that our
proposed method results in the smallest relative error
especially in the regions where the transient dynamics
are active, i.e. time steps 20 through 120. In some cases,
the linear and sparse approximations even reverse the
flow directions. It is also striking that our proposed
method outperforms the KDMD approach which used
the complete observation of the initial flow distribution.
Finally, we illustrate in Fig. 4 the effect of changing
the DMD rank on the reconstruction performance. For
comparison with linear approximation, we set the rank
of the truncated SVD used in the reconstruction equal
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Fig. 2: Relative error after flow completion where the
DMD rank is 100 and the observation noise level is 20%.

to the DMD rank. The figure shows that our proposed
scheme is less sensitive to the choice of the the DMD
rank compared to the KDMD approach once it exceeds
a certain level, in this case 80. On the other hand, setting
the rank too high for the linear approximation results in
numerical instability and inclusion of the noise subspace.

V. CONCLUSION

The flow completion framework proposed in this paper
is capable of predicting the transient and steady state
behavior of a dynamical system from partially observed
data. The proposed scheme relies on using complete
training data to learn the Koopman operator that captures
the dynamics of the system. Flow completion is then
performed by solving an inverse problem constrained by
the learned Koopman dynamics. While the numerical
experiments were limited to the macroscopic crowd
flow model, the proposed flow completion framework
is model independent and can be applied to a multitude
of flow models. Future work will experiment with more
complicated crowd flows and real surveillance video
data. We will also explore the use of observation control
theory using dynamical observers based on the Koopman
operator, similar to the investigations in [15].
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Fig. 3: Time snapshots 20, 60 and 140 (left to right)
of (a) the ground truth flow, (b) the observed flow, and
the completed flows using (c) linear approximation, (d)
sparse approximation, and (e) the proposed method.
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[14] I. Mezić and A. Banaszuk, “Comparison of systems with complex
behavior,” Physica D Nonlinear Phenomena, vol. 197, pp. 101–
133, Oct. 2004.

[15] Amit Surana and Andrzej Banaszuk, “Linear observer synthe-
sis for nonlinear systems using koopman operator framework,”
IFAC-PapersOnLine, vol. 49, no. 18, pp. 716 – 723, 2016.

[16] R. L. Hughes, “A continuum theory for the flow of pedestrians,”
Transportation Research Part B: Methodological, vol. 36, no. 6,
pp. 507 – 535, 2002.

[17] R. L Hughes, “The flow of human crowds,” Annual review of
fluid mechanics, vol. 35, no. 1, pp. 169–182, 2003.

[18] B. D. Greenshields, “A study in highway capacity,” in Highway
Research Board, 1935, vol. 14, 458.
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