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Abstract

We present some results on the stabilization of reduced-order mod-
els (ROMs) for thermal fluids. The stabilization is achieved using robust
Lyapunov control theory to design a new closure model that is robust
to parametric uncertainties. Furthermore, the free parameters in the
proposed ROM stabilization method are optimized using a data-driven
multi-parametric extremum seeking (MES) algorithm. The 2D and 3D
Boussinesq equations provide challenging numerical test cases that are
used to demonstrate the advantages of the proposed method.
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1 Introduction

The stable model reduction problem is well-known in model reduction for partial
differential equations (PDEs). Here we consider model reduction by performing
Galerkin projection of the PDE onto a suitable low-dimensional set of modes
to approximate the PDE solutions using a small system of ordinary differential
equations (ODEs). However, using the low-dimensional basis necessitates the
truncation of modes that contain small-scale structures, and may be responsible
for retaining the main characteristics of the original PDE model, such as stability
and prediction precision. Thus additional modeling terms are usually necessary.

In this paper, we focus on reduced-order models (ROMs) where modes are
obtained using proper orthogonal decomposition (POD) [1], which has been
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widely used to obtain surrogate models of tractable size in fluid flow applications.
However, it has been observed, e.g., [2–6], that POD-ROMs can lose stability.
This loss of stability is due to the truncation of higher-order modes, which
are responsible for the dissipation of energy and thus have a stabilizing effect.
Maintaining stability is crucial for any ROM that is used for predictions over
long time intervals.

We address the stable model reduction problem by adding a closure model
term that takes the form of an additive viscosity. This term is added to the ROM
equations to ensure the stability and accuracy of solutions. Closure models have
classically been introduced based on physical intuition. Thus, their applicabil-
ity is limited to those applications where significant research in closure models
have been performed. In this work, we propose the use of robust control theory
to constructively design a new closure model that is robust to parametric un-
certainties. There are several closure models motivated from physical modeling
of fluids, e.g., constant eddy viscosity model, or time and space varying terms,
such as Smagorinsky or dynamic subgrid-scale models e.g., [14,15,21]. However,
there are two main conceptual differences with the closure model that we are
proposing here. First of all, we propose a closure model that explicitly accounts
for parametric uncertainties in the system. Indeed, we formulate the problem of
ROM stabilization at the design step, by considering uncertainties in the ROM
parameters, then using tools borrowed from robust control theory, we design
a closure model which stabilizes the ROM for a specified range of parametric
uncertainties. To our knowledge, this is the first class of closure model that is
designed to be robust with respect to parametric uncertainties. All previously
defined closure models, are either motivated from physics or simply add extra
dissipation in the model. They do not take parametric uncertainties into ac-
count, and thus their ability to stability the model is not robust to uncertainties
nor changes in the system’s parameters. Secondly, in this work we propose to
auto-tune the closure model using a data-driven optimization algorithm. This
auto-tuning can be used in simulations to find the best closure model by track-
ing the true behavior of the system, then automatically choosing among a class
of robust closure models obtained as described above. However, an important
observation is that this auto-tuning algorithm can be incorporated in real-time
simulations, by feeding actual measurements from the system into the closure
model, and adapting its coefficients. In this way, we always ensure that the
ROM is functioning at its optimal performance, regardless of changes or drifts
that the system may experience over time. In other words, most closure models
typically use static parameters, either chosen by intuition and experience, or
are optimally tuned off-line. However, they are unable to auto-tune themselves
on-line while the model is being evolved. In this work, the obtained closure
model has free parameters that are auto-tuned with a data-driven MES algo-
rithm to optimally match the predictions (or measurements) from the PDE
model. The idea of using extremum-seeking to auto-tune closure models has
been introduced by the authors in [7]. However, the difference with this work
lies in the new constructive formulation of robust closure models, based on ro-
bust Lyapunov control theory. Furthermore, contrary to [7] where the authors
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considered the simple case of the one-dimensional Burgers’ equation, here we
study a wide range of formulations of the Boussinesq equations. These models
are more challenging and more directly applicable to a number of important
real-world control problems [10]. Our Boussinesq formulations include different
equation scalings and primitive variable (velocity-temperature) vs. vorticity-
stream function-temperature formulations.

Our work extends existing results in the field. Indeed, stable model reduc-
tion of Navier-Stokes flow models by adding a nonlinear viscosity term to the
reduced-order model is considered in [11]. In [12, 13], incompressible flows are
stabilized by an iterative search of the projection modes that satisfy a local
Lyapunov stability condition. An optimization-based approach for the POD
modes of linear models, which solely focused on matching the outputs of the
models, is derived in [4,6]. Kalb and Deane [3] added error correction terms to
the reduced-order model for improved accuracy and stabilization. Moreover, the
authors in [2] calibrated the POD model by solving a quadratic optimization
problem based on three different weighted error norms. Stable model reduc-
tion for the Navier-Stokes and Boussinesq equations using turbulence closure
models was presented in [14, 15] and [21], respectively. These closure models
modify some stability-enhancing coefficients of the reduced-order ODE model
using either constant additive terms, such as the constant eddy viscosity model,
or time and space varying terms, such as Smagorinsky or dynamic subgrid-scale
models. The amplitudes of the additional terms are tuned in such a way to
accurately stabilize the reduced-order models to the data at hand.

However, such closure models do not take into account parametric uncer-
tainties in the model, and their tuning is not always straightforward. Our
work1 addresses these issues and proposes, using robust Lyapunov control the-
ory, a new closure model in Section 3 that addresses parametric uncertain-
ties. Furthermore, we achieve optimal auto-tuning of this closure model using a
learning-based approach. This is demonstrated using the 2D and 3D Boussinesq
equations in Section 4. To set the stage, the following section establishes our
notation.

2 Basic Notation and Definitions

For a vector q ∈ Rn, the transpose is denoted by q∗. The Euclidean vector norm
for q ∈ Rn is denoted by ‖ · ‖ so that ‖q‖ =

√
q∗q. The Frobenius norm of a

tensor A ∈ R⊗ini , with elements ai = ai1···ik
, is defined as ‖A‖F ,

√∑n
i=1 |ai|2.

The Kronecker delta function is defined as: δij = 0, for i 6= j and δii = 1. For
a symmetric matrix D ∈ Rn×n, λmax(D) denotes its maximum eigenvalue. The
2D and 3D Boussinesq equations are, respectively, solved on the rectangle x ∈
Ω = (0, 8)×(0, 1) or the unit cube x ∈ Ω = (0, 1)3 for the simulation time interval
t ∈ (0, tf ). We shall abbreviate the time derivative by ḟ(t, x) = ∂

∂tf(t, x), and
consider the following Hilbert spaces: H = L2(Ω), V = H1

div(Ω) ⊂ (H)d, d = 2, 3

1a preliminary version of this work has been posted on arXiv [8].
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for velocity and T = H1(Ω) ⊂ H for temperature. Thus, V is the space of
divergence-free vector fields on Ω with components in H1(Ω). Fixed Dirichlet
boundary conditions are also specified in the definition of the sets V and T . We
define the inner product 〈·, ·〉H and the associated norm ‖·‖H on H as 〈f, g〉H =∫
Ω
f(x)g(x)dx, for f, g ∈ H, and ‖f‖2H =

∫
Ω
|f(x)|2dx. A function T (t, x) is in

L2([0, tf ];H) if for each 0 ≤ t ≤ tf , T (t, ·) ∈ H, and
∫ tf

0
‖T (t, ·)‖2Hdt < ∞

with analogous definitions for the vector valued functions in (H)d, d = 2, 3.
To generalize the discussion below, we consider the abstract Hilbert space Z,
and later specialize to Z = V ⊕ T when considering our Boussinesq equation
examples. Finally, in the remainder of this paper we consider the stability of
dynamical systems in the sense of Lagrange, e.g., [23]: A system q̇ = f(t, q) is
said to be Lagrange stable if for every initial condition q0 associated with the
time instant t0, there exists ε(q0), such that ‖q(t)‖ < ε, ∀t ≥ t0 ≥ 0.

3 Lyapunov-based robust stable model reduc-
tion of PDEs

3.1 Reduced-order PDE Approximation

We consider a stable dynamical system modeled by a nonlinear partial differen-
tial equation of the form

ż(t) = F(z(t)), z(0) ∈ Z, (1)

where Z is an infinite-dimensional Hilbert space. Solutions to this PDE can
be approximated in a finite dimensional subspace Zn ⊂ Z through expensive
numerical discretization, which can be impractical for multi-query settings such
as analysis and design, and even more so for real-time applications such as
prediction and control. In many systems, including fluid flows, solutions of
the PDE may be well-approximated using only a few suitable (optimal) basis
functions [1].

This gives rise to reduced-order modeling through Galerkin projection, which
can be broken down into three main steps: One first discretizes the PDE using
a finite, but large, number of basis functions, such as piecewise quadratic (for fi-
nite element methods), higher-order polynomials (spectral methods), or splines.
In this paper we use the well-established finite element method (FEM), and
refer the reader to the large literature, e.g., [24], for details. We denote the ap-
proximation of the PDE solution by zn(t, ·) ∈ Zn, where Zn is an n-dimensional
finite element subspace of Z.

Secondly, one determines a small set of spatial basis vectors φi(·) ∈ Zn,
i = 1, . . . , r, r � n, that approximates the discretized PDE solution with respect
to a pre-specified criterion, i.e.,

Pnz(t, x) ≈ Φq(t) =
r∑

i=1

qi(t)φi(x). (2)
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Here, Pn is the projection of z(t, ·) onto Zn, and Φ is a matrix containing
the basis vectors φi(·) as column vectors. Note that the dimension n, coming
from the high-fidelity discretization of the PDE described above, is generally
very large, in contrast to the dimension r of the optimal basis set. Thirdly, a
Galerkin projection yields a ROM for the coefficient functions q(·) of the form

q̇(t) = F (q(t)), q(0) ∈ Rr. (3)

The function F : Rr → Rr is obtained using the weak form of the original PDE
and Galerkin projection.

One significant challenge in this approach lies in the selection of the ‘optimal’
basis matrix Φ, the criterion of optimality used, and selecting the dimension of
this basis. There are many approaches to compute those basis functions for
nonlinear systems. For example, some of the most common methods are proper
orthogonal decomposition (POD) [25], dynamic mode decomposition (DMD)
[26], and reduced-basis methods (RBM) [27]. Another challenge for nonlinear
problems, in particular, is to model the influence of the discarded basis functions
on the retained basis functions Φ in the dynamical system for q(t).

Remark 1 We present the idea of closure models in the framework of POD.
However, the derivation is not limited to a particular basis. Indeed, these closure
models can be applied to ROMs constructed from other basis functions, such
as, DMD. The motivation comes from the fact that any low-dimensional basis
necessarily removes the ability to represent the smallest scale structures in the
flow and these structures are responsible for energy dissipation. The missing
dissipation often must be accounted for with an additional modeling term to
ensure accuracy and stability of the ROM.

3.2 Proper Orthogonal Decomposition for ROMs

POD-based models are most known for retaining a maximal amount of energy
in the reduced-order model [1,25]. The POD basis is computed from a collection
of s time snapshots

S = {zn(t1, ·), ..., zn(ts, ·)} ⊂ Zn, (4)

of the dynamical system, usually obtained from a discretized approximation
of the PDE model in n dimensions. The {ti}s

i=1 are time instances at which
snapshots are recorded, and do not have to be uniform. The correlation matrix
K is then defined as

Kij =
1
s
〈zn(ti, ·), zn(tj , ·)〉H, i, j = 1, ..., s. (5)

The normalized eigenvalues and eigenvectors of K are denoted by λi and vi,
respectively. Note that the λi are also referred to as the POD eigenvalues. The
ith POD basis function is computed as

φi(x) =
1

√
s
√
λi

s∑
j=1

[vi]jzn(tj , x), i = 1, ..., r, (6)
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where r ≤ min{s, n} is the number of retained POD basis functions and depends
upon the application. The POD basis functions are orthonormal:

〈φi, φj〉H =
∫

Ω

φi(x)∗φj(x)dx = δij , (7)

where δij denotes the Kronecker delta function.
In this new basis, the solution of the PDE (1) can then be approximated by

zpod
n (t, ·) =

r∑
i=1

qi(t)φi(·) ∈ Zn, (8)

where qi, i = 1, ..., r are the POD projection coefficients. To find the coefficients
qi(t), the (weak form of the) model (1) is projected onto the rth-order POD
subspace Zr ⊆ Zn ⊂ Z using a Galerkin projection in H. In particular, both
sides of equation (1) are multiplied by the POD basis functions, where z(t) is
replaced by zpod

n (t) ∈ Zn, and then both sides are integrated over Ω. Using
the orthonormality of the POD basis (7) leads to an ODE of the form (3). A
projection of the initial condition for z(0) can be used to determine q(0). The
Galerkin projection preserves the structure of the nonlinearities of the original
PDE.

3.3 Closure Models for ROM Stabilization

We continue to present the problem of stable model reduction in its general
form, without specifying a particular type of PDE. However, we now assume an
affine dependence of the general PDE (1) on a single physical parameter µ,

ż(t) = F(z(t), µ), z(0) = z0 ∈ Z, µ ∈ R, (9)

as well as

Assumption 1 The solutions of the original PDE model (9) are assumed to be
in L2([0,∞);Z), ∀µ ∈ R.

We further assume that the parameter µ is critical for the stability and ac-
curacy of the model, i.e., changing the parameter can either make the model
unstable, or lead to inaccurate predictions. Since we are interested in fluid dy-
namics problems, we can consider µ as a viscosity coefficient. The corresponding
reduced-order POD model takes the form (3) and (8):

q̇(t) = F (q(t), µ). (10)

The issue with this Galerkin POD-ROM (denoted POD-ROM-G) is that the
norm of q, and hence zpod

n , might become unbounded at a finite time, even if
the solution of (9) is bounded (Lagrange stable).

The main idea behind the closure modeling approach is to replace the vis-
cosity coefficient µ in (10) by a virtual viscosity coefficient µcl, whose form is
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chosen to stabilize the solutions of the POD-ROM (10). Furthermore, a penalty
term H(·) is added to the original POD-ROM-G, as follows

q̇(t) = F (q(t), µ) +H(q(t)). (11)

The term H(·) is chosen depending on the structure of F (·, ·) to stabilize the
solutions of (11). To make the paper more self-contained, we give in the next
Section some examples of the most common closure models.

3.4 Closure Model Examples

We present here some existing closure models, often motivated from the physics
of the system. These examples illustrate the principles behind closure modelling,
and motivate our proposed method. Throughout, r denotes the total number
of modes retained in the ROM.

-ROM-H model: The first eddy viscosity model, known as the Heisenberg
ROM (ROM-H) is simply given by the constant viscosity coefficient

µcl = µ+ µe, (12)

where µ is the nominal value of the viscosity coefficient in (9), and µe is the
additional constant term added to compensate for the damping effect of the
truncated modes.

-ROM-R model: This model is a variation of the first one, introduced in [29].
In this model, µcl is dependent on the mode index, and the viscosity coefficients
for each mode are given by

µcl = µ+ µe
i

r
, (13)

with µe being the viscosity amplitude, and i the mode index.
-ROM-RQ model: This model proposed in [15], is a quadratic version of the

ROM-R, which we refer to as ROM-RQ. It is given by the coefficients

µcl = µ+ µe

(
i

r

)2

, (14)

where the variables are defined similarly to (13).
-ROM-RS model: This model proposed in [15], is a root-square version of

the ROM-R; we use ROM-RS to refer to it. It is given by

µcl = µ+ µe

√
i

r
, (15)

where the coefficients are defined as in (13).
-ROM-T model: Known as spectral vanishing viscosity model, is similar

to the ROM-R in the sense that the amount of induced damping changes as
function of the mode index. This concept has been introduced by Tadmor
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in [16], and so these closure models are referred to as ROM-T. These models
are given by

µcl = µ, for i ≤ m
µcl = µ+ µe, for i > m

(16)

where i denotes the mode index, and m ≤ r is the index of modes above which
a nonzero damping is introduced.

-ROM-SK model: Introduced by Sirisup and Karniadakis in [17], falls into
the class of vanishing viscosity models. We use ROM-SK to refer to it; it is
given by

µcl = µ+ µee
−(i−r)2

(i−m)2 , for i ≤ m
µcl = µ, for i > m, m ≤ r

(17)

-ROM-CLM model: This model has been introduced in [18,19], and is given
by

µcl = µ+ µeα
−1.5
0 (α1 + α2e

−α3r

i ), (18)

where i is the mode index, and α0, α1, α2, α3 are positive gains (see [18, 20]
for some insight about their tuning).

3.5 Main Result 1: Lyapunov-based Closure Model

Here we introduce the first main result of this paper, namely a Lyapunov-based
closure model that is robust to parametric uncertainties. We first rewrite the
right-hand side of the ROM model (10) to isolate the linear viscous term as
follows,

F (q(t), µ) = F̃ (q(t)) + µ Dq(t), (19)

where D ∈ Rr×r represents a constant, symmetric negative definite matrix, and
the function F̃ (·) represents the remainder of the ROM model, i.e., the part
without damping.

We now consider the case where F̃ (·) might be unknown, but bounded by a
known function. This includes the case of parametric uncertainties in (9) that
produce structured uncertainties in (19). To treat this case, we use Lyapunov
theory and propose a nonlinear closure model that robustly stabilizes the ROM
in the sense of Lagrange. Assume that F̃ (·) satisfies

Assumption 2 (Boundedness of F̃ ) The norm of the vector field F̃ (·) is
bounded by a known C1 function of q, i.e., ‖F̃ (q)‖ ≤ f̃(q).

Remark 2 Assumption 2 allows us to consider a general class of PDEs and
their associated ROMs. Indeed, all we require is that the right-hand side of (10)
can be decomposed as (19), where a linear damping term can be extracted and
the remaining nonlinear term F̃ is bounded. This could allow for more gen-
eral parametric dependencies and includes many structured uncertainties of the
ROM, e.g., a bounded parametric uncertainty can be formulated in this manner.

We now present our first main result.
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Theorem 1 Consider the PDE (9) under Assumption 1, together with its sta-
bilized ROM model

q̇(t) = F̃ (q(t)) + µcl Dq(t) +H(q(t)), (20)

where F̃ (·) satisfies Assumption 2, D ∈ Rr×r is symmetric negative definite,
and µcl is given by

µcl = µ+ µe. (21)

Here µ is the nominal value of the viscosity coefficient in (9), and µe is the
additional constant term. Then, the nonlinear closure model

H(q) = µnlf̃(q) diag(d11, ..., drr) q, µnl > 0 (22)

stabilizes the solutions of the ROM to the invariant set

S = {q ∈ Rr s.t. µcl
λmax(D)‖q‖

f̃(q)
+ µnl‖q‖max{d11, . . . , drr}+ 1 ≥ 0}.

Proof: First, we prove that the nonlinear closure model (22) stabilizes the ROM
(20) to an invariant set. To do so, we use the following energy-like Lyapunov
function

V (q) =
1
2
q∗q. (23)

We then evaluate the derivative of V along the solutions of (20), and use (22)
and Assumption 2 to write

V̇ = q∗(F̃ (q) + µcl Dq + µnlf̃(q) diag(d11, ..., drr) q)

≤ ‖q‖f̃(q) + µcl‖q‖2λmax(D) + µnlf̃(q)‖q‖2 max{d11, ..., drr}

≤ ‖q‖f̃(q)(1 + µcl
λmax(D)‖q‖

f̃(q)
+ µnl max{d11, ..., drr}‖q‖).

This shows convergence to the invariant set S. �

Remark 3 Note that λmax(D) and max{d11, ..., drr} are negative, thus the sizes
of µcl and µnl directly influence the size of S. It is also apparent how the use
of the term H offers robustness when the uncertainty in F (·, ·) is not precisely
known.

Remark 4 One can see that the closure model in (22) is written in terms of the
diagonal values of the damping matrix D, the reason for that is twofold: first,
we need a matrix term for dimensionality coherence with the vector q. Second,
we need a negative term to be able to upper-bound the norm q by a positive term,
and define the invariant set. Furthermore, using the natural diagonal damping
terms implies that the free parameter µnl will be naturally scaled as function of
the system’s damping, this allows us to use one tuning parameter instead of r
parameters, to optimally tune the closure model performance, as shown in the
next Section.
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3.6 Main Result 2: MES-based Closure Model Auto-tuning

As discussed in the introduction as well as in [21], tuning the closure model
amplitudes is important to achieve an optimal stabilization of the ROM. In this
study, we use model-free MES optimization algorithms to tune the coefficients
µe and µnl of the closure model presented in Section 3.5. An advantage of
using MES over other optimization approaches is the auto-tuning capability that
such algorithms allow for, as well as their ability to continually tune the closure
model, even during on-line operation of the system. Indeed, MES algorithms are
data-driven, therefor they can be used on-line, based on realtime measurements,
to update the closure model coefficients.

Note that MES-based closure model auto-tuning has many advantages. First
of all, the closure models can be valid for longer time intervals when compared
to standard closure models with constant coefficients that are identified off-line
over a (fixed) finite time interval. Secondly, the optimality of the closure model
ensures that the ROM obtains the most accuracy for a given low-dimensional
basis, leading to the smallest possible ROM for a given application.

We begin by defining a suitable learning cost function for the MES algorithm.
The goals of the learning (or tuning) are i.) to enforce Lagrange stability of
the ROM model (10), ensured by the proper design of the closure model (as
introduced in Theorem 1), and ii.) to ensure that the solutions of the ROM
(10) are close to those of the approximation zn(t, ·) to the original PDE (9).
The latter learning goal is important for the accuracy of the solution.

We define the learning cost as a positive definite function of the norm of the
error between the approximate solutions of (9) and the ROM (11),

Q(µ̂) = H̃(ez(t, µ̂)),

ez(t, µ̂) = zpod
n (t, x; µ̂)− zn(t, x;µ),

(24)

where µ̂ = [µ̂e, µ̂nl]∗ ∈ R2 denotes the learned parameters, and H̃(·) is a positive
definite function of ez. Note that the error ez could be computed off-line using
solutions of the ROM (8), (11) and exact (e.g., FEM-based) solutions of the
PDE (9). The error could be also computed on-line where the zpod

n (t, x; µ̂) is
obtained from solving the ROM model (8), (11) on-line, and the zn(t, x;µ) are
real measurements of the system at selected spatial locations {xi}. The latter
approach would circumvent the FEM model, and directly operate on the system,
making the reduced-order model more consistent with respect to the operating
plant.

A practical way to implement the MES-based tuning of µ̂, is to begin with an
off-line tuning of the closure model. One then uses the obtained ROM (with the
optimal values of µ̂, namely µopt) in the on-line operation of the system, e.g.,
control and estimation. We can then fine-tune the ROM on-line by continuously
learning the best value of µ̂ at any given time during the operation of the system.

To derive formal convergence results, we introduce some classical assump-
tions on the learning cost function.
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Assumption 3 The cost function Q(·) in (24) has a local minimum at µ̂ =
µopt.

Assumption 4 The cost function Q(·) in (24) is analytic and its variation with
respect to µ is bounded in the neighborhood of µopt, i.e., ‖∇µQ(µ̃)‖ ≤ ξ2, ξ2 >
0, for all µ̃ ∈ N (µopt), where N (µopt) denotes a compact neighborhood of µopt.

Under these assumptions the following lemma holds.

Lemma 1 Consider the PDE (9) under Assumption 1, together with its ROM
model (20), (21), and (22). Furthermore, suppose the closure model amplitudes
µ̂ = [µe, µnl]∗ are tuned using the MES algorithm

ẏ1(t) = a1 sin
(
ω1t+

π

2

)
Q(µ̂),

µ̂e(t) = y1 + a1 sin
(
ω1t−

π

2

)
,

ẏ2(t) = a2 sin
(
ω2t+

π

2

)
Q(µ̂),

µ̂nl(t) = y2 + a2 sin
(
ω2t−

π

2

)
,

(25)

where ωmax = max(ω1, ω2) > ωopt, ωopt large enough, and Q(·) is given by (24).
Let eµ(t) := [µe

opt − µ̂e(t),µnl
opt − µ̂nl(t)]∗ be the error between the current

tuned values, and the optimal values µopt
e , µopt

nl . Then, under Assumptions 3,
and 4, the norm of the distance to the optimal values admits the following bound

‖eµ(t)‖ ≤ ξ1
ωmax

+
√
a2
1 + a2

2, t→∞, (26)

where a1, a2 > 0, ξ1 > 0, and the learning cost function approaches its optimal
value within the following upper-bound

‖Q(µ̂)−Q(µopt)‖ ≤ ξ2( ξ1
ω +

√
a2
1 + a2

2), (27)

as t→∞, where ξ2 = maxµ∈N (µopt) ‖∇µQ(µ)‖.

Proof: Based on Assumptions 3, and 4, the extremum seeking nonlinear dy-
namics (25), can be approximated by a linearly averaged dynamic model (using
an averaging approximation over time, [32], p. 435, Definition 1). Furthermore,
∃ ξ1, ωopt, such that for all ω > ωopt, the solution of the averaged model µ̂aver(t)
is locally close to the solution of the original MES dynamics, and satisfies ( [32],
p. 436 )

‖µ̂(t)− d(t)− µ̂aver(t)‖ ≤ ξ1
ω , ξ1 > 0, ∀t ≥ 0,

with d(t) = [a1 sin(ω1t− π
2 ), a2 sin(ω2t− π

2 )]∗. Moreover, since Q(·) is analytic it
can be approximated locally in N (µopt) with a quadratic function, e.g., Taylor
series up to second-order, which leads to ( [32], p. 437 )

lim
t→∞

µ̂aver(t) = µopt.
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Based on the above, we can write

‖µ̂(t)− µopt‖ − ‖d(t)‖ ≤ ‖µ̂(t)− µopt − d(t)‖ ≤ ξ1
ω
,

so that
‖µ̂(t)− µopt‖ ≤ ξ1

ω
+ ‖d(t)‖, t→∞,

which implies

‖µ̂(t)− µopt‖ ≤ ξ1
ω

+
√
a2
1 + a2

2, ξ1 > 0, t→∞.

Next, the cost function upper-bound is easily obtained from the previous bound,
using the fact that Q(·) is locally Lipschitz, with Lipschitz constant
ξ2 = maxµ∈N (µopt) ‖∇µQ(µ)‖. �

Remark 5 At this point, the reader might be thinking that by merging together
the result of Theorem 1, and Lemma 1, the stability result of Theorem 1 might
be jeopardized. Indeed, it is well known that for the stability in the sense of
Lyapunov, switching between a sequence of stable models might lead to insta-
bility, e.g., [33], however, in this work we are using the concept of stability in
the sense of boundedness, i.e., Lagrange stability [9], in which case the switch-
ing between (Lagrange) stable models, will still maintain the boundedness, with
changing bounds. Indeed, the only thing that will change due to the change of
the parameters µcl, µnl is the upper-bound defining the invariant set S. This
concept is often used in modular learning adaptive control, where modularity is
achieved by imposing boundedness, e.g., in the sense of input-to-state stability
(ISS), and then complementing the ISS dynamics with a learning algorithm,
e.g., refer to [9] and references therein.

4 The Boussinesq equations

As an example to demonstrate our approach, we consider the incompressible
Boussinesq equations that describe the evolution of velocity v, pressure p, and
temperature T of a fluid. This system serves as a model for the flow of air in a
room. The coupled equations reflect the conservation of momentum, mass, and
energy, respectively

ρ

(
∂v
∂t

+ v · ∇v
)

= −∇p+∇ · τ(v) + ρg, (28)

∇ · v = 0, (29)

ρcp

(
∂T

∂t
+ v · ∇T

)
= ∇ (κ∇T ) , (30)

where the buoyancy force is driven by changes in density ρ = ρ0 + ∆ρ, and
is modeled as perturbations from the nominal temperature T0 using the per-
fect gas law ∆ρg ≈ −ρ0β (T − T0)g, β = 1/T0, and the term ρ0g is absorbed
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into the pressure. The viscous stress is τ(v) = ρν
(
∇v +∇vT

)
with kine-

matic viscosity ν and thermal conductivity κ, and the gravitational acceleration
is g = −gê3. One typically non-dimensionalizes these equations in different
ways depending on the application. For this study, we consider two different
non-dimensionalizations, one typically used in engineering applications and one
specific to free-convection studies that doesn’t involve a characteristic velocity.
We first present the standard engineering non-dimensionalization and introduce
the other with our numerical example. By introducing a characteristic length
L, characteristic velocity v0, wall temperature Tw, and defining x̃ = x

L , t̃ = tv0
L ,

ṽ = v
v0

, p̃ = p
ρv2

0
, and T̃ = T−T0

Tw−T0
we can reduce the number of free parame-

ters to three. These are the Reynolds number Re = v0L
ν , the Grashof number

Gr = gβ(Tw−T0)L
3

ν2 , and the Prandtl number Pr = ν
k/ρcp

. Thus,

∂v
∂t

+ v · ∇v = −∇p+∇ · τ(v) +
Gr
Re2T ê3, (31)

∇ · v = 0, (32)

∂T

∂t
+ v · ∇T = ∇ ·

(
1

RePr
∇T

)
, (33)

where τ(v) = 1
Re (∇v +∇vT ) and we have dropped the tilde notation.

Following a Galerkin projection onto the subspace spanned by the POD
basis functions, the Boussinesq equation is reduced to a POD-ROM with the
following structure (details included in an appendix),

q̇(t) = µ D q(t) + [Cq(t)]q(t), (34)

vpod(x, t) = v0(x) +
rv∑
i=1

qi(t)φv
i (x), (35)

T pod(x, t) = T0(x) +
rv+rT∑
i=rv+1

qi(t)φT
i (x), (36)

where µ > 0 is the viscosity, i.e., the inverse of the Reynolds number in (31)
or the Prandtl number in our second non-dimensionalization, D is a negative
definite diffusion matrix with diagonal blocks corresponding to the viscous stress
and thermal diffusion (scaled by Pr to extract the parameter µ) and C is a three-
dimensional tensor corresponding to the convection terms in (31) and (33).

Remark 6 For this Boussinesq example, we could maintain one set of POD
coefficients for both velocity and temperature [28]. This would be reasonable for
the class of free-convection problems considered here. However, to accommodate
forced- and mixed-convection problems, we apply the POD procedure below for
velocity and temperature data separately. We continue to use the framework
in (3) and consider separate basis functions for velocity, φi = [(φv

i )∗; 0∗]∗ for
i = 1, . . . , rv and temperature, φrv+i = [0∗; (φT

i )∗]∗ for i = 1, . . . , rT . The
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different groups of coefficient functions {qi}rv
i=1 and {qi}rv+rT

i=rv+1 (with r = rv+rT )
are associated with the independent variables v and T , respectively.

We notice that this POD-ROM has mainly a linear term and two quadratic
terms, so that it can be written in the form (19), with

F̃ (q) = [Cq]q.

If we consider bounded parametric uncertainties for the entries of C, we can
write

F̃ (q) = [(C + ∆C)q]q,

where ‖C + ∆C‖F ≤ cmax, we have the upper-bound

‖F̃ (q)‖ ≤ f̃(q) ≡ cmax‖q‖2.

In this case the nonlinear closure model (22) is

H(q) = µnlcmax‖q‖2diag(d11, ..., drr)q, (37)

for µnl > 0 with dii, i = 1, ..., r being the diagonal elements of D.

4.1 Numerical solvers for the Boussinesq equations

2D Boussinesq Solver

The numerical solution for the 2D Rayleigh-Benard convection problem follows
the scheme outlined in [22]. Compact fourth-order Padé finite difference schemes
are used for the spatial derivatives as in [34]. The first derivative is approximated
using the stencil

αf ′i−1 + f ′i + αf ′i+1 =
a

2h
(fi+1 − fi−1)

with α = 1/4 and a = 2
3 (α + 2). The second derivative is approximated using

the stencil
αf ′′i−1 + f ′′i + αf ′′i+1 =

a

h2
(fi+1 − 2fi + fi−1)

with α = 1/10 and a = 4
3 (1 − α). Time integration is performed using the op-

timal third-order total variation diminishing Runge-Kutta (TVDRK3) scheme
given in [Gottlieb and Shu, 1998]. The stream function ψ can be obtained from
the vorticity using the Poisson equation

∂2ψ

∂x2
+
∂2ψ

∂y2
= −ω.

This is solved using the Mehrstellen scheme [Wang and Zhang, 2009].
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3D Boussinesq Solver

For the 3D Rayleigh-Benard simulation data, we used a 3D finite element solver
using Taylor-Hood (quadratic-linear) elements with quadratic elements for the
temperature. This is solved using a penalty method, with penalty parameter
ε = 1×10−4/µ. A second-order Crank-Nicolson time integration scheme is used
for time discretization.

4.2 Boussinesq equation MES-based POD ROM stabiliza-
tion

Case one: We consider the Rayleigh-Bénard differential-heated cavity problem,
modeled with the 3D Boussinesq equations (31)–(33) with the following pa-
rameters and boundary conditions. The unit cube was discretized with 495k
quadratic tetrahedral elements with 611k nodes leading to 1.83M velocity de-
grees of freedom and 611k temperature degrees of freedom. Thus, n ≈ 2.4×106.
The velocity was taken as zero on the boundary and the temperature was speci-
fied at ±0.5 on the x-faces and taken as homogeneous Neumann on the remain-
ing faces. The non-dimensional parameters were taken as Re = 4.964 × 104,
Pr = 712 × 10−3, and Gr = 7.369 × 107, reasonable values in a quiet room.
The simulation was run from zero velocity and temperature and snapshots were
collected to tf = 78[sec] seconds.

We apply the results of Theorem 1 and Lemma 1 to this problem. In this case
we use 8 POD basis functions for each variable, for the POD model (POD-ROM-
G). The upper bounds on the uncertainties in the matrix and tensor entries are
assumed to be cmax = 10. The two closure model amplitudes µ̂ = [µe, µnl]∗ are
tuned using the discrete version of the MES algorithm (25), given by

y1(k + 1) = y1(k) + a1∆t sin
(
ω1k∆t+

π

2

)
Q(µ̂),

µ̂e(k + 1) = y1(k + 1) + a1 sin
(
ω1k∆t−

π

2

)
,

y2(k + 1) = y2(k) + a2∆t sin
(
ω2k∆t+

π

2

)
Q(µ̂),

µ̂nl(k + 1) = y2(k + 1) + a2 sin
(
ω2k∆t−

π

2

)
,

(38)

where y1(0) = y2(0) = 0, k = 0, 1, 2, ... is the number of learning iterations, and
∆t is the time increment. We use MES parameter values: a1 = 0.08 [−], ω1 =
10 [ radsec ], a2 = 10−7 [−], ω2 = 50 [ radsec ]. The learning cost function is chosen as

Q(µ) =
∫ tf

0

〈eT , eT 〉Hdt+
∫ tf

0

〈ev, ev〉(H)3dt. (39)

Moreover, eT = PrTn − T pod
n , ev = Prvn − vpod

n define the errors between the
projection of the true model solution onto the POD space Zr and the POD-
ROM solution for temperature and velocity, respectively.
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Figure 1: True solution profile (right-side: velocity, left-side: temperature)-
Case one

We first report in Figure 1 the true velocity and temperature solutions.
Figure 2 show the solutions obtained at t = 50[sec] with the nominal Galerkin
ROM, with no closure model. If we examine the two figures closely, we can for
instance notice that the nominal ROM-G velocity solutions, shown in Figure 2
(left), exhibits a red area at the bottom-right of the volume-clip which is at a
magnitude level of 0.07, this red area does not appear as pronounced on the clip
of the true solution shown in Figure 1 (left), where this area is at a magnitude
level of 0.06. Since it is hard to compare the two solutions visually, we also
report the errors between the true solutions and the POD-ROM-G solutions in
Figures 3 (left) and 4 (left). These errors will be compared later to the errors
obtained with the learning-based ROM-G model.

For better evaluation of the learning performance w.r.t. the model correc-
tion, we show the profile of the learning cost function over the learning iterations
in Figure 6. We can see a quick decrease of the cost function within the first 20
iterations. This means that the MES manages to improve the overall solutions
of the POD-ROM very quickly. We decide to stop the learning after 100 iter-
ations, since the cost function has clearly decreased by then. Furthermore, we
wanted to fairly evaluate the effect of the learning on all the examples, by stop-
ing the learning when the iterations reach the same threshold. The parameters
reach the minimizing values of µ̂e ' 8.5 × 10−1, and µ̂nl ' 1.25 × 10−6. The
solutions due to the ROM-G with learning are reported in Figure 5, where we
can see that the velocity solution is closer to the true velocity, shown in Figure
1 (left), where the red area is at a marginate level of 0.06.

We also show the effect of the learning on the POD-ROM solutions by plot-
ting the errors eT and ev in Figures 3 (right), and 4 (right), which by comparison
with Figures 3 (left), and 4 (left), show an improvement of the POD-ROM so-
lutions with the MES tuning of the closure model’s amplitudes.
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Figure 2: ROM-G solution profile (right-side: velocity, left-side: temperature)-
Case one

Figure 3: ROM-G velocity errors profile (right-side: ROM-G, left-side: ROM-
G-Learning)- Case one

Figure 4: ROM-G temperature errors profile (right-side: ROM-G, left-side:
ROM-G-Learning)- Case one
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Figure 5: ROM-G-Learning solution profile (right-side: velocity, left-side:
temperature)- Case one
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Figure 6: Learning cost function vs. number of learning iterations- Case one
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Case two: In the second test, we consider a more challenging 3D free con-
vection flow in a cube. Since there is no nominal velocity reference, the non-
dimensionalization is performed using thermal parameters as in other free con-
vection POD studies (cf. [30], [31], [28]):

x∗ =
x

L
, t∗ =

tα

L2
, v∗ =

vL
α
, p∗ =

pL2

ρα2
, and T ∗ =

T − T0

Tw − T0
.

The non-dimensionalized equations are

∂v
∂t

+ v · ∇v = −∇p+∇ · τ(v) + GrPr2T

∇ · v = 0
∂T

∂t
+ v · ∇T = ∆T,

where
τ(v) = Pr

(
∇v +∇vT

)
.

Note that the Rayleigh number is Ra = GrPr. For this test, we simulate
the full-order model with Rayleigh number Ra = 5 × 106 and Pr = 1. The
non-dimensionalized equations are solved on the unit cube with v = 0 on all
boundaries, T = 1 on the x = 0 boundary, T = 0 on the x = 1 boundary and
insulated (∇T · n̂ = 0) boundary conditions on the remaining surfaces. The
simulation was performed with time steps of ∆t = 1×10−5 collecting snapshots
every 10 time steps to tf = 72× 10−4[sec].

We again apply the results of Theorem 1 and Lemma 1 to this problem.
One difference with Case one, is that we use here two closure model coefficients
µnl−T , and µnl−V , one for the temperature dynamics and one for the velocity
dynamics. This gives us more degrees of freedom to improve the nominal ROM-
G in this challenging case, where the flows are exhibit more nonlinear behavior
compared to the first set of tests. We also make the model reduction task
more challenging by using only 5 POD basis functions for each variable in the
POD model (POD-ROM-G). The upper bounds on the uncertainties in the
matrix and tensor entries are assumed to be cmax = 10. The parameters µ̂ =
[µe, µnl−T , µnl−V ]∗ are tuned using the discrete MES algorithm

y1(k + 1) = y1(k) + a1∆t sin
(
ω1k∆t+

π

2

)
Q(µ̂),

µ̂e(k + 1) = y1(k + 1) + a1 sin
(
ω1k∆t−

π

2

)
,

y2(k + 1) = y2(k) + a2∆t sin
(
ω2k∆t+

π

2

)
Q(µ̂),

µ̂nl−T (k + 1) = y2(k + 1) + a2 sin
(
ω2k∆t−

π

2

)
,

y3(k + 1) = y3(k) + a3∆t sin
(
ω3k∆t+

π

2

)
Q(µ̂),

µ̂nl−V (k + 1) = y3(k + 1) + a3 sin
(
ω3k∆t−

π

2

)
,

(40)
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Figure 7: True solution profile (right-side: velocity, left-side: temperature)-
Case two

where y1(0) = y2(0) = 0, k = 0, 1, 2, ... is the number of learning iterations, and
∆t is the time increment. We use the following coefficients: a1 = 0.08 [−], ω1 =
10 [ radsec ], a2 = 10−7 [−], ω2 = 50 [ radsec ], a3 = 8×10−7 [−], ω3 = 12 [ radsec ]. We use
the same learning cost function (39). As a reference, we first report in Figures
7 a snapshot of the exact solutions at t = 3.9 × 10−3[sec]. One can observe in
Figure 7 (left), that the velocity amplitudes are much higher than in previous
case. Next, we show the solution profiles at the same snapshot time, obtained
by using the nominal POD ROM-G (without closure model), in Figure 8. We
can see a difference between the true velocity which has a maximum amplitude
of 1020, and the ROM-G velocity with a maximum amplitude of 1244. The
temperature solution also shows a slight difference in amplitude’s range and
color’s intensity. To better see the difference between the true solutions and the
ROM-G solutions, we report the corresponding error plots in Figure 9, which
will be later compared to the error plots of the learning-based ROM-G.

We then add the closure model to the nominal ROM-G and tune its pa-
rameters using the MES algorithm. The learning-based ROM-G solutions are
reported in Figure 10, and the corresponding errors are shown in Figure 11.
Where we can see that the range of the velocity and temperature ROM-G-
learning solutions are closer to the true values than the ROM-G solutions. This
is even clearer on the error plots, where the maximum magnitude of velocity er-
ror is about 235.5 comparatively to 271.36 for the ROM-G, and an excursion of
the temperature error magnitude of 0.35, comparatively to 0.6 for the ROM-G.

Finally, the learning cost function is reported in Figure 12, where we can see
the convergence trend on the cost function decrease, after which, the parameters
reach the minimizing values of µ̂e ' 3×10−1, µ̂nl−T ' 3.6×10−7, and µ̂nl−V '
3 × 10−6. One can underline here that the observed convergence trend can
be accelerated by improving the MES algorithm, for instance by choosing an
algorithm with time-varying dither amplitudes ai’s, however, it is not the goal of
this paper to focus on the extremum seeking algorithm, we invite the interested
reader to see e.g., [9], and references therein for more details on the MES tuning
for performance improvement.
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Figure 8: ROM-G solution profile (right-side: velocity, left-side: temperature)-
Case two

Figure 9: ROM-G errors profile (right-side: velocity error, left-side: temperature
error)- Case two

Figure 10: ROM-G-Learning solution profile (right-side: velocity, left-side:
temperature)- Case two

Figure 11: ROM-G-Learning errors profile (right-side: velocity error, left-side:
temperature error)- Case two
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Figure 12: Learning cost function vs. number of learning iterations- Case two

Case three:
We finally consider the case of 2D incompressible Boussinesq equation mod-

eling the unsteady lock-exchange flow problem. This case exhibits a strong shear
flow induced by temperature jump which results in the Kelvin-Helmholtz insta-
bility [22]. Instead of the original formulation in the velocity and temperature
variables, here we follow [22] and re-write the Boussinesq equation in terms of
vorticity ω = (∇× v) · k̂, stream function ψ, and temperature T . In this case,
the equations can be written as the two coupled scalar transport equations

∂ω

∂t
+
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
=

1
Re

∆ω +
Gr
Re2

∂T

∂x
, (41)

∂T

∂t
+
∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
=

1
RePr

∆T, (42)

along with the kinematic relationship between vorticity and stream function
given by

∂2ψ

∂x2
+
∂2ψ

∂y2
= −ω. (43)

The desired flow velocity components can be recovered from

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (44)
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Figure 13: True solution profile snapshot at 0.02[sec] (top: temperature, bot-
tom: vorticity)- Case three

In this numerical tests, we use the following parameters: Re = 104, Gr =
4 × 108, Pr = 1. The PDE is solved over the time interval [0 8], with a time
discretization step ∆t = 0.0005. The (x, y) space defined over [0 8] × [0 1] has
been discretized using a compact finite difference scheme as described in [22]
grid of 4096×512. For the nominal (without closure model) POD model (POD-
ROM-G), we use 10 POD basis functions for the vorticity and 10 POD basis
functions for the temperature variables computed from snapshots taken every
∆t = 2 × 10−2 [sec]. In Figures 13, and 14, we present the direct numerical
simulation (DNS) of (41)-(42). We cannot show all the snapshots of the solution,
instead we choose to show the initial and final snapshots. The first snapshot,
shown in Figure 13, is taken at the initial instant t = 2 × 10−2 [sec] (to avoid
the trivial snapshot corresponding to t = 0 sec showing the static boundary
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Figure 14: True solution profile snapshot at 8[sec] (top: temperature, bottom:
vorticity)- Case three

conditions), the second snapshot, shown in Figure 14, corresponds to t = 8[sec].
We see in Figure 13 the setup of this experiment, where two fluids of different
temperatures (or equivalently, different densities) are separated by a vertical
barrier at x = 4. On the right side of the barrier we have low temperature
(equivalently, high fluid density), whereas, on the left side of the barrier we
have high temperature (equivalently, low fluid density). Based on this setup,
when we remove the barrier between the two fluids, we expect the low density,
warmer fluid to rise, while the high density, cooler fluid sinks, as seen in Figure
14. Vortices are generated, then diffuse as these fluids slide past one another.
Next, we show in Figure 15, the solutions obtained by POD-ROM-G (without
a closure model) at t = 8 sec. One observes that they are significantly different
from the exact snapshot solution displayed in Figure 14. The error is due to the
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Figure 15: POD-ROM-G (no closure) solution profile snapshot at 8[sec] (top:
temperature, bottom: vorticity)- Case three

truncation of the higher POD modes, since we used only the first 10 POD modes
to build the ROM model. To see these error more quantitatively, the errors
between the exact and the POD-ROM-G solutions are plotted in Figure 16. By
examining the legend in Figure 16, one can see that the error in temperature
appears to be mainly between −2.6 and 1.5. The error in vorticity shown in
Figure 15, varies between −100 and 20.

To reduce these errors, we use the closure model proposed in Theorem 1, and
complement it with the learning-based tuning of Lemma 1. Note, that here we
have two closure model parameters to tune, the linear gain µe, and the nonlinear
gain µnl. To tune these parameters we use similar learning cost function as in
the two previous cases, and the extremum seeking algorithm (38), where we
select: a1 = 10−5 [−], ω1 = 15 [ radsec ], a2 = 10−12 [−], ω2 = 4 [ radsec ]. We run the
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Figure 16: POD-ROM-G (no closure) error profile snapshot at 8[sec] (top: tem-
perature, bottom: vorticity)- Case three
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Figure 17: Learning cost function vs. number of learning iterations- Case three

extremum seeking algorithm for 100 iterations. The corresponding cost function
is shown in Figure 17. We see that the cost function drops below 1000 (tenth
of the initial cost) after only 14 iterations, however, we decided to continue the
learning until 100 to be consistent with the other tests. The associated closure
model optimal coefficients obtained are µ̂e ' 5.4 × 10−5, and µ̂nl ' 4 × 10−8.
Notice that the obtained optimal values for the closure model coefficients are
small, which indicates that in this challenging example, fine-tuning the closure
model is challenging, and the use of extremum seekers is even more justified,
especially considering the fact that they can be implemented in realtime to
fine-tune the ROM, by comparing the ROM solutions to real measurements.

Although, it is clear from the plot of the cost function that the errors between
the solutions of ROM-G-Learning (with tuned closure model) and the exact
solutions decrease, we show, for the purpose of comparison, the solutions of the
ROM-G-Learning at t = 8[sec] in Figure 18, as well as the associated errors
compared with the full-order simulation, in Figure 19. One can see that the
error in temperature mainly falls between −0.4 and 0.2, whereas the error in
vorticity, varies between −30 and 0, which shows a clear improvement of the
closure model quality.
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Figure 18: ROM-G-Learning solution profile snapshot at 8[sec] (top: tempera-
ture, bottom: vorticity)- Case three

5 Conclusion

In this work we have proposed a new closure model for ROMs that provide
robust stabilization when applied to PDEs with parametric uncertainties. We
have also proposed the use of a data-driven multi-parametric extremum seeking
(MES) algorithm to auto-tune the closure model coefficients that optimize the
POD-ROM solution predictions. One main feature of the proposed approach
w.r.t. available stabilizing closure models is the fact that the closure model pro-
posed here takes into account model uncertainties in it’s formulation. Moreover,
the fact that we are using a data-driven optimization algorithm, motivated by
the control theory of extremum seeking, allows us to continuously update our
closure model, on-line, based on real-data measurements. We have validated
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Figure 19: ROM-G-Learning error profile snapshot at 8[sec] (top: temperature,
bottom: vorticity)- Case three

the proposed method on a challenging 2D, and 3D Boussinesq test-case by con-
sidering the unsteady lock-exchange flow problem, and the Rayleigh-Bénard
differentially-heated cavity problem. The proposed closure model has shown
encouraging performance in terms of improving solution precision in the lami-
nar flow cases considered here.

Although the proposed method performs well in the case of simulated lam-
inar flow, we still need to test it on more challenging flows and real-world ex-
periments, therefor, future investigations will be conducted on more challenging
turbulent flows, and on-line experimental tests using a water-tank test-bed.
Another point that will be investigated in our future work is the comparison
between the robust closure model with its on-line auto-tuning, and classical clo-
sure models (non robust- non adaptive), to see how the robust closure model
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performs comparatively to classical closure models in real-world test-beds, where
uncertainties and systems’ drifts over time, are unequivocal, and where robust-
ness and adaptability can help improve the model performance.

6 Appendix

Here we provide details on the derivation of equation (34). Recall the Boussinesq
equations

∂v
∂t

+ v · ∇v = −∇p+∇ · τ(v) +
Gr
Re2T ê3, (31)

∇ · v = 0, (32)

∂T

∂t
+ v · ∇T = ∇ ·

(
1

RePr
∇T

)
(33)

that are solved in flow domain Ω. Let v0 and T0 be steady-state solutions to
(31)–(33), and let {φv

i }
rv
i=1 and {φT

i }
rv+rT
i=rv+1 be POD basis functions that well

represent differences between representative simulation data (vsim, Tsim) and
(v0, T0). Then we introduce the POD approximations to v and T as

vpod(x, t) = v0(x) +
rv∑

j=1

qj(t)φv
j (x), (35)

T pod(x, t) = T0(x) +
rv+rT∑
j=rv+1

qj(t)φT
j (x). (36)

These two equations serve as the reduced-order model for solutions to (31)–(33)
once we derive a dynamical system for the coefficients {qi(t)}rv+rT

i=1 below. First
of all, note that the POD procedure constructs orthonormal basis functions for
the velocity and basis functions can be written as

φv
i (x) =

1
tf

∫ tf

0

(vsim(x, t)− v0(x))wi(t) dt,

where the weight functions wi(t) are orthogonal, i.e.
∫ tf

0
wi(t)wj(t)dt = 0, if i 6=

j. To summarize, POD basis functions accurately represent the discrepancy
between our solution and a given steady-state solution and satisfy the orthogo-
nality conditions∫

Ω

φv
i (x)φv

j (x)dx = δij and
∫

Ω

φT
i (x)φT

j (x)dx = δij , (45)

where δij is 1 if i = j and 0 otherwise. Since our simulation data vsim and
steady-state solution v0 each satisfy (32), we know that ∇ · φv

i (x) = 0 for each
i = 1, . . . , rv. Therefore, (32) is trivially satisfied with our approximation (35).

To perform Galerkin projection, we take the dot product of (31) with φv
i

and multiply (33) by φT
i , integrate these equations over the fluid domain Ω,

30



and perform integration by parts on the terms involving −∇p, ∇ · τ(v) and
∇ ·

(
1

RePr∇T
)
. Beginning with (31), we have∫

Ω

∂v
∂t

· φv
i dx = −

∫
Ω

(v · ∇)v · φv
i + τ(v) : ε(φv

i )− Gr
Re2T ê3 · φv

i dx, (46)

for i = 1, . . . , rv, where we have introduced εij(v) = 1
2

(
∂vi

∂xj
+ ∂vj

∂xi

)
, τ(v) =

2
Reε(v), and used the fact that φv

i is divergence-free to eliminate the pressure
term. There may be boundary integral terms that arise in the integration by
parts. In our examples, we consider problems where the φv

i functions are either
zero on the boundary (an important motivation for subtracting v0) or have zero
stress (a linear property that the basis inherits from the zero stress boundary
conditions on v and v0). In fact, our numerical examples have zero velocity
boundary conditions and we take v0 = 0. However, to maintain generality,
we consider non-trivial steady-state solutions but ignore the boundary integral
terms.

Performing the calculation with (33), we find∫
Ω

∂T

∂t
φT

i dx = −
∫

Ω

(v · ∇)TφT
i +

(
1

RePr
∇T

)
· ∇φT

i dx, (47)

for i = rv + 1, . . . , rv + rT . Now we replace the v and T in (46) and (47)
with our expressions for vpod and T pod in (35) and (36), respectively. Using the
orthogonality properties (45), equation (46) becomes

q̇i(t) = bi +
1

Re

rv∑
j=1

Dijqj(t) +
rv∑

j=1

rv∑
k=1

Cijkqk(t)qj(t) (48)

where

bi = −
∫

Ω

(v0(x) · ∇v0(x))·φv
i (x)+τ(v0(x)) : ε(φv

i (x))− Gr
Re2T0(x) ê3 ·φv

i (x) dx,

Dij = −
∫

Ω

Re
(
v0(x) · ∇φv

j (x) · φv
i (x) +∇v0(x)φv

j (x) · φv
i (x)

)
+2ε(φv

j (x)) : ε(φv
i (x))

for j = 1, . . . , rv, and

Dij = −Gr
Re

∫
Ω

φT
j (x) ê3 · φv

i (x) dx

for j = rv + 1, . . . , rv + rT , and

Cijk = −
∫

Ω

(
φv

j (x) · ∇φv
k(x)

)
· φv

i (x) dx,

for i = 1, . . . , rv.
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Performing the substitution for (47) and again using (45) leads to

q̇i(t) = bi +
1

Re

rT∑
j=1

Dijqj(t) +
rv+rT∑
j=rv+1

rv∑
k=1

Cijkqk(t)qj(t) (49)

where

bi = −
∫

Ω

(v0(x) · ∇T0(x))φT
i (x) +

1
RePr

∇T0(x) · ∇φT
i (x) dx,

Dij = −
∫

Ω

Re
(
φv

j · ∇T0(x)
)
φT

i (x) dx

for j = 1, . . . , rv, and

Dij = −
∫

Ω

Re
(
v0(x) · ∇φT

j (x)
)
φT

i (x) +
1
Pr
∇φT

j (x) · ∇φT
i (x) dx

for j = rv + 1, . . . , rv + rT , and

Cijk = −
∫

Ω

(
φv

k(x) · ∇φT
j (x)

)
φT

i (x) dx

for j = rv + 1, . . . , rv + rT , k = 1, . . . , rv, and i = rv + 1, . . . , rv + rT .
Combining (48) and (49) leads to a dynamical system for the POD coeffi-

cients of the form
q̇(t) = b+

1
Re
Dq(t) + [Cq(t)] q(t).

Initial conditions for the model can be obtained by projecting the difference
between the initial conditions for (31)–(33) and the steady-state solutions v0

and T0 onto the POD basis

qi(0) =
∫

Ω

(v(x, 0)− v0(x)) · φv
i (x) dx, i = 1, . . . , rv (50)

qi(0) =
∫

Ω

(T (x, 0)− T0(x))φT
i (x) dx, i = rv + 1, . . . , rv + rT . (51)

Finally, for cases where we can choose trivial values of v0 and T0, the right
hand side simplifies considerably. The b term vanishes and D simply contains
diagonal blocks of −2

∫
Ω
ε(φv

j ) : ε(φv
i ) dx and −

∫
Ω
∇φT

j · ∇φT
i /Pr dx and the

off-diagonal buoyancy term.
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