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Abstract

An algorithm for solving nearly-separable quadratic optimization problems (QPs) is presented.
The approach is based on applying a semismooth Newton method to solve the implicit complemen-
tarity problem arising as the first-order stationarity conditions of such a QP. An important feature
of the approach is that, as in dual decomposition methods, separability of the dual function of the
QP can be exploited in the search direction computation. Global convergence of the method is
promoted by enforcing decrease in component(s) of a Fischer-Burmeister formulation of the com-
plementarity conditions, either via a merit function or through a filter mechanism. The results of
numerical experiments when solving convex and nonconvex instances are provided to illustrate the
efficacy of the method.

1 Introduction

We consider the numerical solution of the quadratic optimization problem

min
x

N∑
i=1

(
1

2
xTi Qixi + qTi xi

)
(1a)

s.t.

N∑
i=1

Aixi ≤ b (1b)

xi ∈ Xi for all i ∈ {1, . . . , N}, (1c)
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where x := (x1, . . . , xN ) ∈ RnN , b ∈ Rm, and, for all i ∈ {1, . . . , N}, xi ∈ Rn, Qi ∈ Rn×n is symmetric,
qi ∈ Rn, Ai ∈ Rm×n, and Xi ⊆ Rn is nonempty, closed, and convex. The set Xi may include affine
equality and inequality constraints, such as bounds or polyhedral constraints. The critical feature of
(1) is that it is separable, except for the coupling constraint (1b). (These coupling constraints might
also include affine equalities, but for ease of exposition we consider the formulation (1) in our algorithm
development.) Such problems arise in a number of important applications including network utility
maximization, nonlinear network flow analysis, and two-stage stochastic optimization; see §6 for further
details.

Several algorithmic approaches have been proposed that are able to exploit the nearly-separable
structure present in (1). Broadly speaking, these algorithms can be characterized as being part of either
of two classes:

• Linear Algebra Decomposition-Based Algorithms. This refers to algorithms in which the problem
structure is exploited at the level of the linear algebra in the step computations. Implementations
of such techniques require access to the internal routines of the optimization algorithm. A prime
example of such an approach is the Schur complement decomposition employed in interior point
algorithms for convex [21] and nonconvex [52] optimization. On the other hand, employing such
an approach in an active-set algorithm can be less effective.

• Problem Decomposition-Based Algorithms. This refers to algorithms in which the optimization
problem is decomposed into smaller problems by relaxing the coupling constraint (1b), along
with which coordination of the subproblem solutions is performed to promote convergence to the
solution of the original problem. The dual decomposition approach [2] that dualizes the coupling
constraints is such an example. An attractive feature of such approaches is that they do not
require access to internal routines of the optimization algorithm(s) for solving the subproblems.
Hence, they are not restricted by the type of algorithms (e.g., active-set or interior point) used to
solve the subproblems. The algorithms in this class typically rely on convex duality and, hence,
have been restricted in their applicability to convex problems.

Our work falls among the latter class of algorithms. Hence, it is worthwhile to review briefly the
dual decomposition approach [2], as we do next.

1.1 Dual Decomposition

The dual decomposition approach (see [2]) solves (1) by dualizing the coupling constraint (1b). Defining
Lagrange multipliers λ ∈ Rm for these constraints, one obtains from (1) the dual function g : Rm → R
defined by

g(λ) = min
x

N∑
i=1

(
1

2
xTi Qixi + qTi xi

)
+ λT

(
N∑
i=1

Aixi − b

)
s.t. xi ∈ Xi for all i ∈ {1, . . . , N}.

(2)

We denote a solution of (2) as x(λ) = (x1(λ), . . . , xN (λ)) to emphasize its dependence on λ. One of
the attractive features of this dual function is that the optimization problem on the right-hand side
of (2) is separable in the xi’s. That is, the solution x(λ) to (2) can be obtained by solving quadratic
optimization subproblems to obtain, for each i ∈ {1, . . . , N},

xi(λ) ∈ arg min
xi

1
2x

T
i Qixi + (qi +ATi λ)Txi

s.t. xi ∈ Xi.
(2i)
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Consequently, for any λ ∈ Rm, the dual function value is given by

g(λ) =

N∑
i=1

(
1

2
xi(λ)TQixi(λ) + (qi +ATi λ)Txi(λ)

)
− λT b. (3)

If Qi � 0 for all i ∈ {1, . . . , N}, then, by convex duality, the optimal solution to (1) can be obtained by
maximizing the dual function subject to nonnegativity constraints on the multipliers, as in

max
λ≥0

g(λ). (4)

The dual function g is concave [3]. In addition, it might be nonsmooth; e.g., this might occur due to
non-uniqueness of the solution x(λ) for a given λ. Moreover, the subproblem solution x(λ) might be
nonsmooth due to inequality constraints implicit in the Xi’s. In all such cases, (4) is nonsmooth, in
which case nonsmooth optimization methods such as subgradient and bundle methods can be employed
to solve it [46]. However, these algorithms often require many iterations to converge to a solution and
suffer from poor local convergence properties. The typical iteration complexity of these methods to
obtain a point with an objective value within ε > 0 of the minimal value is O( 1

ε2 ) [46].
A variety of other dual decomposition methods for solving smooth convex problems have also been

proposed. A number of first-order algorithms have combined the smoothing technique pioneered by
Nesterov [36] and the fast gradient method [34] to obtain O( 1

ε ) iteration complexity. Necoara and
Suykens [31] use proximal-center-based smoothing and the fast gradient method. Dinh, Savorgnan, and
Diehl [10] also use a proximal-center-based smoothing technique, but use the excessive gap technique
of Nesterov [35] to obtain an identical iteration complexity. In numerical experiments, the excessive
gap technique of [10] outperformed the algorithm in [31]. Dinh, Necoara, and Savorgnan [9] extended
this algorithm to allow for inexact solutions of the subproblems. Dinh, Necoara, and Diehl [8] employ a
logarithmic barrier to smooth the dual function and employ a gradient-based path-following algorithm.
Necoara and Patrascu [30] propose a first-order dual-decomposition method that allows for the pres-
ence of a general conic constraint; Lagrangian relaxation is used to relax this constraint, after which a
first-order dual method is applied. Second-order algorithms have also been investigated in the context
of dual decomposition. Necoara and Suykens [33] employ a logarithmic barrier to smooth the dual func-
tion and use a standard interior-point algorithm [37] for self-concordant functions. Frasch, Sager, and
Diehl [20] consider strictly convex quadratic optimization problems with coupling equality constrains.
They propose a semismooth Newton method for maximizing the dual function.

It is worthwhile to note that all of the papers cited above (except [30]) only consider coupling
equality constraints and recommend handling coupling inequalities by introducing slack variables. Such
a transformation turns a strictly convex problem into a (not strictly) convex one. Further, all of these
approaches do not consider nonconvex problems and are all based on maximizing the dual function.

1.2 Our Approach

In this paper, we are interested in the development of problem decomposition-based algorithms that
possess superlinear local convergence properties. In contrast to existing approaches that employ dual
maximization as in (4), we consider solving the implicit complementarity problem (ICP) given by

0 ≤ F (λ) ⊥ λ ≥ 0, where F (λ) = b−
N∑
i=1

Aixi(λ). (5)

Essentially, we want to find a Lagrange multiplier vector λ ≥ 0 and an associated x(λ) such that the
dualized constraint (1b) is satisfied. It is easy to show that if such a solution exists, then it satisfies
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the first-order stationarity conditions of (1). More importantly, this consequence does not rely on
convex duality, which is an important observation when (1) is not convex. Consequently, our approach
bridges between the problem decomposition-based class and methods for solving nonconvex optimization
problems, where in nonconvex settings our definition of x(λ) may vary depending on whether the
elements xi(λ) satisfy first and/or second order necessary and/or sufficient conditions corresponding to
(2i).

An importance consequence of solving the ICP is that we readily obtain the primal solution to
problem (1) as x(λ∗) where λ∗ solves (5). By contrast, dual gradient and subgradient approaches only
recover the optimal primal solution as an ergodic average of the corresponding primal iterate sequence.
The convergence rate of such an average is typically sublinear, which can be exceeding slow in practice.
We have observed this in our numerical experiments. The ICP formulation is advocated for applications
where recovery of the optimal primal solution is important, not just the optimal dual objective value.

Readers familiar with the literature on nonlinear complementarity problems (NCPs) will recognize
that (5) has the same form as a typical NCP. However, the literature on NCP typically assumes that the
function F is continuously differentiable (C1) or continuously differentiable with Lipschitz continuous
derivatives (LC1). Such an assumption is not guaranteed for (5) in general; the differentiability of F
depends on the differentiability of xi(·). We rely on the theory of sensitivity analysis of parametric non-
linear optimization problems to derive differentiability properties of xi(·). Under appropriate regularity
assumptions at a solution of (1), the function xi(·) can at least be shown to be piecewise continuous
(PC1). It is known that PC1 functions are semismooth [25, 41]. Further, semismooth functions are
closed under the composition operation [41]. We focus on these properties to show that a semismooth
Newton approach for solving (5) can achieve a fast local convergence rate [25]. This work builds on and
generalizes the preliminary work of the second author and a collaborator in [1].

1.3 Notation

We use N := {0, 1, 2, . . . } to denote the set of nonnegative integers, R to denote the set of real numbers
(scalars), and Rn to denote the set of real n× 1 vectors. Given a vector x ∈ Rn, its i-th component is
denoted by x[i], and, given a set of indices α ⊆ {1, . . . , n}, we write x[α] to denote the subvector of x
formed from the x[i]’s with i ∈ α. Similarly, given a matrix M ∈ Rn×m, its (i, j) entry is denoted by
M[ij], its ith row is denoted by M[i·], and the transpose of its ith row is denoted by MT

[i·]. Moreover,

given sets of indices α ⊆ {1, . . . , n} and β ⊆ {1, . . . ,m}, we write M[αβ] to refer to the submatrix formed
from the M[ij]’s with i ∈ α and j ∈ β. For a directionally differentiable function f : Rn → Rm, we
denote by f ′(x; d) the directional derivative of f at x along d. If such an f is C1, then we denote by
∇f(x) ∈ Rm×n the Jacobian of the function f at the point x.

We assume throughout the remainder of the paper that, for all i ∈ {1, . . . , N},

Xi := {x ∈ Rn : Bix ≤ ci} for some Bi ∈ Rpi×n and ci ∈ Rpi .

We also assume that each of these sets is nonempty. For ease of exposition, let

Q :=

Q1

. . .

QN

 , A :=
[
A1 · · · AN

]
, and B :=

B1

. . .

BN

 ,
along with q :=

[
qT1 · · · qTN

]T
and c :=

[
cT1 · · · cTN

]T
.
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1.4 Organization

The rest of the paper is organized as follows. To put into context opportunities for solving (1) by solving
(5), §2 overviews relationships between solutions of these problems, then discusses superlinear local
convergence opportunities when solving (5). A complete algorithm for solving strictly convex instances of
(5) is presented in §3 (see Algorithm 1 on page 13), and an algorithm for solving convex or even indefinite
instances is presented in §4 (see Algorithm 2 on page 15). An implementation and numerical results on
some randomly generated problems are discussed in §5 while a discussion of important applications and
corresponding numerical experiments are given in §6. Concluding remarks are provided in §7.

2 Solving QPs and ICPs as Semismooth Equations

Our proposed algorithms for solving problem (1) are based on the idea that, under certain assumptions,
a solution can be obtained by solving (5). Understanding relationships between solutions of these
problems requires knowledge of stationarity conditions, differentiability concepts, regularity properties
of complementarity constraints, and parametric sensitivity analysis. For a summary of this background,
see Appendix A. In short, the conclusion of this investigation reveals that solving (5) is only guaranteed
to yield a second-order KKT point of (1) when the corresponding subproblem solutions are second-order
KKT points and, with respect to a critical cone defined by the subproblem solutions, the matrix Q is
positive semidefinite. This is all guaranteed to hold when Q � 0, but might not all hold if Qi 6� 0 for
some i ∈ {1, . . . , N}. Overall, in nonconvex settings, solving (5) does not necessarily yield a second-order
KKT point of (1), but it does in certain cases of interest even when Q 6� 0.

Let us now proceed with our preliminary ideas for solving (5), which in particular are based on
solving reformulations using two semismooth operators, namely the Minimum and Fischer operators.
With min{·, ·} defined componentwise, the Minimum and Fischer operators in our context are given
respectively by

Φmin(λ) :=

 min{λ[1], F[1](λ)}
...

min{λ[m], F[m](λ)}

 and ΦFB(λ) =

 φ(λ[1], F[1](λ))
...

φ(λ[m], F[m](λ))

 , (6)

where, given scalars a and b, the Fischer-Burmeister function [15] has the form

φ(a, b) =
√
a2 + b2 − a− b. (7)

It is easily verified that this latter function satisfies

φ(a, b) = 0⇐⇒ {a ≥ 0, b ≥ 0, and ab = 0}. (8)

The articles [11, 29] discuss regularity properties and sophisticated implementations of semismooth
Newton algorithms for complementarity problems using the Fischer-Burmeister function. However, our
formulation here is different in the sense that, in our context, the complementarity components λ and
F (λ) are both functions of λ; hence, our formulation is somewhat more straightforward.

Using Φ ∈ {Φmin,ΦFB}, the conditions in (5) can be generically posed as

Φ(λ) = 0. (9)

If Φ ∈ PC1, then Φ is semismooth [25]. Further, if Φ and Ψ are semismooth, then the composite Φ ◦Ψ
is also semismooth by closedness of semismooth functions under the composition operation [41]. This
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is a crucial property for our purposes since, under suitable conditions, we can show that xi(·) ∈ PC1;
see Lemma 5.

Motivated by these facts, a semismooth Newton iteration for solving (9) is

λk+1 ← λk − (Hk)−1Φ(λk) for k ∈ N, (10)

where Hk ∈ ∂BΦ(λk), i.e., the B-subdifferential of Φ at λk; see (40). In order for this iteration to be
well-defined in the neighborhood of λ∗ satisfying Φ(λ∗) = 0, nonsingularity of Hk is required at λk near
λ∗. Qi [40] formalized a condition under which this occurs by introducing the notion of BD-regularity,
as we do now.

Definition 1 (BD-regularity). A solution λ∗ ∈ Rm of (9) is BD-regular if all elements of ∂BΦ(λ∗) are
nonsingular.

Under BD-regularity, (10) converges locally superlinearly; see [40].

Theorem 1. Suppose Φ(·) : Rm → Rm is semismooth and λ∗ ∈ Rm is a BD-regular solution of (9).
Then, for any λ0 sufficiently close to λ∗, the iteration (10) is well-defined and generates a sequence {λk}
which converges to λ∗ Q-superlinearly.

BD-regularity for the Minimum and Fischer operators have been characterized in various situations
when F ∈ C1. The following is a result related to such a characterization; see [47, Props. 2.8 and 2.9].
The result uses notions of b- and R-regularity; see Definition 2.

Lemma 1. Suppose F ∈ C1 and λ∗ solves (5). Then,

1. λ∗ is a BD-regular solution of Φmin(λ) = 0 if λ∗ is a b-regular solution of (5).

2. λ∗ is a BD-regular solution of ΦFB(λ) = 0 if λ∗ is an R-regular solution of (5).

We now establish conditions that may hold at a solution to (1) that ensure that BD-regularity holds
at a solution to (5). We begin by proving, in the following lemma, nonsingularity of some matrices which
will be essential in showing b-regularity and R-regularity of a solution to (5). Here, and throughout
the remainder of this section, we refer to certain constraint index sets at solutions of (1) and (2i);
see (α, β, γ) for (1) defined in (32) and (αi, βi, γi) defined for (2i) defined in (33). We also refer to
constraint qualifications and second-order sufficiency conditions for these problems, which we define in
Appendix A.4.

Lemma 2. Suppose that x∗ is a second-order KKT point of (1) in that there exist multipliers (λ∗, ξ∗)
such that (30) and (36) hold. Moreover, suppose the following:

• βi(x∗i , ξ∗i ) = ∅ for all i ∈ {1, . . . , N},

• the (1)-LICQ holds at (x∗, λ∗, ξ∗) in that
A1[α∪β] · · · AN [α∪β]

B1[αi·] · · · 0
...

. . .
...

0 · · · BN [αN ·]


has full row rank, and

• the (2i)-SSOSC holds at (x∗i , ξ
∗
i ) for all i ∈ {1, . . . , N}.
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Then, defining

Bα :=

B1[αi·] · · · 0
...

. . .
...

0 · · · BN [αN ·]

 and

Aσ :=
[
A1[σ·] · · ·AN [σ·]

]
for all α(x∗, λ∗) ⊆ σ ⊆ α(x∗, λ∗) ∪ β(x∗, λ∗),

(11)

the following matrices are nonsingular:

(i)

 Q BT
α AT

σ

Bα 0 0
Aσ 0 0

 for all α(x∗, λ∗) ⊆ σ ⊆ α(x∗, λ∗) ∪ β(x∗, λ∗),

(ii)

[
Q BT

α

Bα 0

]
, and

(iii)
[
Aσ 0

] [ Q BT
α

Bα 0

]−1 [
AT
σ

0

]
for all α(x∗, λ∗) ⊆ σ ⊆ α(x∗, λ∗) ∪ β(x∗, λ∗).

Proof. For the sake of brevity, we suppress the dependence of α and β on (x∗, λ∗) in the following.
Given σ satisfying α ⊆ σ ⊆ α∪β, suppose that the matrix in (i) is singular. Then, there exists a vector
(u, v, w) 6= 0 such that

Qu + BT
αv + AT

σw = 0
Bαu = 0
Aσu = 0.

(12)

Left-multiplying the first equation by uT , we have uT (Qu+BT
αv +AT

σw) = 0 which, from the second
and third equations, implies that uTQu = 0. However, from our assumption that the (2i)-SSOSC holds
for all i ∈ {1, . . . , N}, we have that uTQu > 0 for all u such that Bαu = 0. Hence, along with the
second equation in (12), we may conclude that u = 0. Substituting u = 0 into the first equation of
(12), we obtain that BT

αv+AT
σw = 0. From our assumption that the LICQ for (1) holds, we have that

(BT
α A

T
σ ) has full column rank, from which we may conclude that (v, w) = 0. Overall, we have shown

that (u, v, w) = 0, which contradicts the fact that this was defined to be a nonzero vector. Hence, it
follows that the matrix in (i) is nonsingular. The proof for the matrix in (ii) is similar.

Now, given σ satisfying α ⊆ σ ⊆ α∪β, suppose that the matrix in statement (iii) is singular. If this
were true, then there would exist w 6= 0 such that[

Aσ 0
] [u
v

]
= 0, where

[
u
v

]
=

[
Q BT

α

Bα 0

]−1 [
AT
σ

0

]
w.

However, this means that we have constructed (u, v, w) 6= 0 satisfying (12). This is a contradiction to
the nonsingularity of the matrix in (i); hence, we may conclude that the matrix in (iii) is nonsingular.

We now establish an expression for a submatrix of the Jacobian of the function F under similar
conditions.

Lemma 3. Suppose that x∗ is a second-order KKT point of (1) in that there exist multipliers (λ∗, ξ∗)
such that (30) and (36) hold. Moreover, suppose that the assumptions of Lemma 2 hold. Then,

∇F[σσ](λ
∗) =

[
Aσ 0

] [ Q BT
α

Bα 0

]−1 [
AT
σ

0

]
for all α(x∗, λ∗) ⊆ σ ⊆ α(x∗, λ∗) ∪ β(x∗, λ∗).

(13)
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Proof. Observe that the conditions of Lemma 2 imply that, for each i ∈ {1, . . . , N}, the conditions of
Lemma 4 hold. Thus, from Lemma 4, we have xi(·) ∈ C1 as a function of λ in Wi and that ∇xi(λ) is
given by (44). Utilizing the separability of ∇x[σσ](λ) into the components ∇xi(λ) for all i ∈ {1, . . . , N}
and rearranging, one can verify (with I representing an identity matrix) that

∇x[σσ](λ) =
[
I 0

] [ Q BT
α

Bα 0

]−1 [−AT
σ

0

]
.

The fact that ∇F[σσ](λ) = −Aσ∇x[σσ](λ) then yields the desired result.

We now state our main result on the BD-regularity of the operators of interest.

Theorem 2. Suppose that x∗ is a second-order KKT point of (1) in that there exist multipliers (λ∗, ξ∗)
such that (30) and (36) hold. Moreover, suppose that the assumptions of Lemma 2 hold. Then:

(i) λ∗ is a BD-regular solution of Φmin(λ) = 0 and the iteration (10) applied with Φ = Φmin converges
Q-superlinearly.

(ii) λ∗ is a BD-regular solution of ΦFB(λ) = 0 and the iteration (10) applied with Φ = ΦFB converges
Q-superlinearly.

Proof. From Lemma 3, we have that for all σ satisfying α ⊆ σ ⊆ α∪ β, the Jacobian ∇F[σσ] is given by
the matrix in Lemma 2(iii). Thus, by Lemmas 2 and 3, ∇F[σσ] is nonsingular, which establishes that
λ∗ is a b-regular solution of (5). Hence, by Lemma 1, λ∗ is a BD-regular solution of Φmin(λ) = 0, from
which Theorem 1 establishes the convergence rate of (10).

We have from Lemmas 3 and 2(iii) that ∇F[αα] is nonsingular. We will show in the following that
∇F[ββ]/∇F[αα](λ

∗) is positive definite, which implies that it is a P-matrix since it is symmetric. This
establishes that λ∗ is an R-regular solution of (5). Hence, by Lemma 1, λ∗ is a BD-regular solution of
ΦFB(λ) = 0, from which Theorem 1 establishes the convergence rate of (10).

To prove positive definiteness of ∇F[ββ]/∇F[αα](λ
∗), observe that

0 < wTβ
(
∇F[ββ]/∇F[αα](λ

∗)
)
wβ for all wβ ∈ R|β| \ {0}

⇐⇒ 0 < wTβ
(
∇F[ββ](λ

∗)wβ +∇F[βα](λ
∗)wα

)
for all wβ ∈ R|β| \ {0}, wα ∈ R|α| such that

∇F[αα](λ
∗)wα = −∇F[αβ](λ

∗)wβ .
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Using ∇F[σσ](λ
∗) from Lemma 3, this latter property holds if and only if

0 < wTβ
[
Aβ 0

] [ Q BT
α

Bα 0

]−1 [
AT
αwα AT

βwβ
0 0

]


for all wβ ∈ R|β| \ {0}, wα ∈ R|α| such that[
Aα 0

] [ Q BT
α

Bα 0

]−1 [
AT
α

0

]
wα = −

[
Aα 0

] [ Q BT
α

Bα 0

]−1 [
AT
β

0

]
wβ

≡


for all wβ ∈ R|β| \ {0}, wα ∈ R|α| such that[
Aα 0

] [ Q BT
α

Bα 0

]−1 [
AT
α AT

β

0 0

] [
wα
wβ

]
= 0

≡


for all wβ ∈ R|β| \ {0}, wα ∈ R|α|, (u, v) ∈ RN+|α|such that[
Aα 0

] [u
v

]
= 0 where

[
Q BT

α

Bα 0

] [
u
v

]
= −

[
AT
α AT

β

0 0

] [
wα
wβ

]
⇐⇒ 0 < wTβ

[
Aβ 0

] [−u
−v

]


for all wβ ∈ R|β|, (u, v, wα) ∈ RN+|α|+|α| such that Q BT
α AT

α

Bα 0 0
Aα 0 0

 u
v
wα

 =

−AT
β

0
0

wβ
⇐⇒ 0 < − wTβAβu = uTQu for all u ∈ RN with Bαu = 0 and Aαu = 0.

Here, the last equality follows from the required properties of (u, v, wα), namely, multiplying the first
equation

Qu+BT
αv +AT

αwα = −AT
βwβ (14)

by uT and using that u lies in the null spaces of Bα and Aα, which follows from the second and third
equations in the properties of (u, v, wα). Since the (2i)-SSOSC holds at λ = λ∗, we have that uTQu > 0
for all such u 6= 0. To show that u 6= 0 whenever wβ 6= 0, suppose that the contrary u = 0 for some

wβ 6= 0 holds. Then (14) reduces to BT
αv + AT

αwα = −AT
βwβ for (v, wα, wβ) 6= 0 contradicting the

assumption of (1)-LICQ. Hence, u 6= 0 whenever wβ 6= 0. This proves the positive definiteness of
∇F[ββ]/∇F[αα](λ

∗).

The key assumptions in Theorem 2 are: (1)-LICQ, βi = ∅, and (2i)-SSOSC. In other words, the
result requires that the subproblems satisfy strict complementarity and strong second order sufficient
conditions, but the coupling constraints are allowed to have non-strict complementarity components.
From the above results, it is clear that by employing either the Minimum operator or the Fischer
operator, one may establish a fast local rate of convergence for (10).

In the rest of the paper, we will restrict our development to the Fischer operator formulation. We
make this choice since the step computation from this formulation only requires solving a linear equation,
whereas for the Minimum operator formulation the step computation requires solving an optimization
problem.

3 An Algorithm for Solving Strictly Convex QPs

In this section, we describe a complete algorithm for solving (5) using the iteration (10) applied with the
Fischer formulation (i.e., Φ = ΦFB) when Q � 0. The positive definiteness of Qi for all i ∈ {1, . . . , N}
ensures that each subproblem (2i) is solvable and has a unique solution xi(λ) for any λ ∈ Rm.
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3.1 Step Computation

For all k, we compute a step dλk as a solution of ΦFB(λk)+Hkdλk = 0 where Hk ∈ ∂BΦFB(λk). We will
assume that xi(λ) ∈ C1 in a neighborhood around λk. From Lemma 4, this will hold for (2i) provided
that the (2i)-LICQ, βi = ∅, and (2i)-SSOSC hold. De Luca, Facchinei, and Kanzow [27, Sec. 7] show
that an element of the subdifferential ∂BΦFB(λk) can be computed as

Hk = Dk
λ +Dk

F∇F (λk) = Dk
λ +Dk

FA∇x(λk), (15)

where Dk
F and Dk

λ are diagonal matrices defined, respectively, by

Dk
λ[jj] =



(
λk[j]

‖(λk[j], F
k
[j])‖

− 1

)
for all j /∈ βk(

z[j]

‖(z[j], zT∇F k[j])‖
− 1

)
for all j ∈ βk

and Dk
F [jj] =



(
F k[j]

‖(λk[j], F
k
[j])‖

− 1

)
for all j /∈ βk(

zT∇F k[j]
‖(z[j], zT∇F k[j])‖

− 1

)
for all j ∈ βk

with βk := {j : λk[j] = 0 = F[j](λ
k)}, F k[j] := F[j](λ

k), ∇F k[j] := ∇F k[j](λ
k), and z ∈ Rm chosen such that

z[βk] 6= 0. The choice z[j] = 1 for j ∈ βk is recommended [27].

Using (15) and the expression for ∇xi(λk) in (44), the step is obtained from Q BT
αk AT

Bαk 0 0
−Dk

FA 0 Dk
λ

 dx
dξ[αk]

dλ

 =

 0
0

−ΦFB(λk)

 (16)

where Bk
αk is defined as in (11) with αki = {j : Bi[j·]xi(λ

k) = c[j]} replacing αi.

3.2 Promoting Global Convergence

In order to promote progress by the algorithm from any initial point towards obtaining a solution to (5),
we propose two approaches. The first is to employ a merit function, such as has been widely used in the
context of semismooth equations [12, 23]. The second is to employ a multidimensional filter mechanism
[17, 18, 22]. We note at the outset that global convergence guarantees based on these mechanisms are not
straightforward to obtain, since in our context the function F is only semismooth, as opposed to being
C1 as is commonly assumed in order to prove such guarantees. Still, we claim that, under reasonable
conditions, these mechanisms should offer such guarantees. We comment on this further along with our
descriptions of each mechanism in the following two subsections.

3.2.1 Merit Function Globalization

Solving the semismooth equation ΦFB(λ) = 0 is equivalent to solving the following unconstrained opti-
mization problem, assuming its optimal value is zero:

min
λ

ΨFB(λ), where ΨFB(λ) := 1
2‖Φ

FB(λ)‖22. (17)
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For the Fischer function, it has been shown that, if F ∈ C1, then ΨFB(λ) is continuously differentiable,
and that, if F is a P0-function, then stationary points of ΨFB(λ) correspond to zeros of ΦFB(λ) [27].
However, in our case, F is itself only semismooth. Still, one can use the function ΨFB as a merit
function. In particular, progress towards satisfaction of ΦFB(λ) = 0 can be gauged by reductions in
ΨFB. We propose that, once a direction dλk has been computed, one should aim to choose a steplength
by determining the smallest r ∈ N such that, for some σ ∈ (0, 1),

ΨFB(λk + ρrdλk) ≤ (1− σρr)ΨFB(λk). (18)

In terms of guaranteeing global convergence, it is easily seen that if ΨFB(λk) > 0 for all k, yet there
exists an infinite subsequence of iterations in which the steplength is bounded away from zero, then (18)
ensures that {ΨFB(λk)} → 0.

3.2.2 Multidimensional Filter Globalization

The notion of a filter was introduced by Fletcher and Leyffer [17] as an alternative to a merit function
for ensuring global convergence of an algorithm for solving constrained optimization problems. In this
context, the filter was defined as a two-dimensional object with entries corresponding to the objective
function value and a measure of constraint violation. The filter monitors progress toward a solution of the
optimization problem by requiring that each iterate offers an objective or constraint violation value that
is sufficiently small compared to those at previous iterates. Subsequently, several studies [16, 19, 48, 49]
have introduced filter mechanisms into various algorithmic frameworks for constrained optimization.

Concurrently, Fletcher and Leyffer [18] and Gould et al. [22] extended the filter idea to algorithms for
solving nonlinear equations. Kanzow and Petra [24] applied a multidimensional filter for the globalization
of a projected trust region method for a semismooth least squares formulation of mixed complementarity
problems. In particular, they observed that the filter allowed for full Newton steps to be accepted on
most iterations. Our motivation for applying such a filter similarly stems from a desire to reduce the
number of evaluations of F , since each of these calls is expensive, requiring the solution of several
optimization problems, i.e., (2i) for all i ∈ {1, . . . , N}. Here, we adapt the multidimensional filter
approach from [22] for the globalization of the semismooth formulation (9) of (5).

Following [22], we define the function θ : Rm → Rq as

θ(λ) :=

‖Φ[p1](λ)‖
...

‖Φ[pq ](λ)‖

 (19)

where Φ is as defined in (9) and {p1, . . . , pq} is a set of mutually exclusive and exhaustive subsets of
{1, . . . ,m}. We say that a vector λ ∈ Rm dominates another vector λ′ ∈ Rm if θ[pi](λ) ≤ θ[pi](λ

′) for all
i ∈ {1, . . . , q}. A filter at the k-th iteration is a subset

Fk ⊆ {θ(λ0), θ(λ1), . . . , θ(λk)} (20)

such that λj does not dominate λl for any l 6= j such that {θ(λj), θ(λl)} ⊆ Fk.
Given a filter Fk and a trial point λ, we say that λ is acceptable to the filter if θ[pi](λ) is sufficiently

smaller than θ[pi](λ
l) for some i ∈ {1, . . . , q} for all λl ∈ Fk. In particular, λ is acceptable to the filter

Fk if there exists γθ > 0 such that for each θ(λl) ∈ Fk there exists an index i ∈ {1, . . . , q} such that

θ[i](λ) ≤ θ[i](λ
l)− γθ‖θ(λ)‖. (21)
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If such a λ is obtained, then one sets the new filter as

Fk+1 := (Fk \ Fk,d(λ)) ∪ {θ(λ)}, (22)

where Fk,d(λ) ⊆ Fk is the set of entries in Fk that are dominated by λ, i.e.,

Fk,d(λ) := {θ(λl) ∈ Fk | θ[i](λ) ≤ θ[i](λ
l) for all i ∈ {1, . . . , q}}.

Most methods for optimization and solving systems of equations that employ filters and enjoy global
convergence guarantees are based on trust region methodologies. However, there have been a few
examples of filter-line-search methods for such problems as well [39, 49]. For such a method, if there
exists an infinite subsequence of iterations in which the steplength is bounded away from zero, then (21)
in combination with the filter update (22) ensures convergence of the method.

3.3 Line Search Algorithm

Using the globalization mechanisms defined in §3.2, we propose a line search algorithm that is applicable
to merit function and filter based strategies; see Algorithm 1 below. For each k, the algorithm computes
the Newton step dλkN (see Step 7) as defined in (10), provided that (Hk)−1 exists. If so, then a
backtracking line search is performed along the Newton direction dλkN to compute the smallest rN ∈ N
that yields acceptance for the globalization mechanism: (i) if a merit function is used, then rN is
chosen such that (18) holds, while (ii) if a filter is used, then rN is chosen such that the trial point is
acceptable to the filter Fk according to the criterion in (21). If the Newton step is not computable or
the steplength for the Newton step to be accepted is smaller than a user-defined constant ρsmall > 0,
then the algorithm resorts to a different search direction. In particular, the algorithm computes dλkG =
−HkΦ(λk)/‖HkΦ(λk)‖, which is an approximation for the steepest descent direction of the function
1
2‖Φ(λ)‖2 at the point λk. Similar to the Newton step, a backtracking line search is used to determine
the smallest rG ∈ N such that the trial point (λk + ρrGdλkG) is acceptable. Using the appropriate step
and steplength, the iterate λk+1 is then set, and, in the case that a filter strategy is used, the new
filter Fk+1 is obtained. The algorithm terminates when either the norm of the most recent iterate
displacement or the residual of the semismooth equation is below a user-defined tolerance ε > 0.

4 An Algorithm for Solving Convex or Indefinite QPs

If (1) is (not strictly) convex or indefinite, then the subproblem solutions for a given λ, namely {xi(λ)},
might not be unique. Further, in such cases, it is possible that (2i) is unbounded. We handle this
through the addition of a penalized proximal term to (2i). Our resulting algorithm updates the penalty
parameter and the proximal parameter dynamically, as described in the following subsections.

4.1 Proximal-Point Subproblems

Given a proximal point x̂i for all i ∈ {1, . . . , N} and a penalty parameter µ > 0, we consider modifying
the subproblem (2i) as

xi(λ) = arg min
xi

1
2x

T
i Qixi + (qi +ATi λ)Txi +

µ

2
‖xi − x̂i‖22

s.t. xi ∈ Xi.
(2′i)

For sufficiently large µ > 0, the proximal term in the objective function of this subproblem ensures
that (2′i) is solvable and xi(λ) is unique.
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Algorithm 1: Semismooth Newton Method (SNM) for Strictly Convex QP

1 Let ε ∈ (0, 1) be a desired convergence tolerance and let λ0 be an initial iterate.

2 Choose {ρ, γθ, ρsmall} ⊂ (0, 1).
3 Set k = 0 (and F0 = {θ(λ0)}, if using a filter).

4 repeat
5 Compute Hk ∈ ∂BΦ(λk).

/* Compute Newton Step */

6 if the linear system (10) solvable then
7 Set dλkN = −(Hk)−1Φ(λk).

8 Find the smallest rN ∈ N such that (λk + ρrNdλkN ) is acceptable (or set rN =∞ if no such

value is found such that ρrN ≥ ρsmall).

9 Set dλk = ρrNdλkN .

10 else
11 Set rN =∞.
12 end

/* Compute Gradient Step if Newton Step fails */

13 if ρrN < ρsmall then
14 Set dλkG = −HkΦ(λk)/‖HkΦ(λk)‖.
15 Find smallest rG ∈ N such that (λk + ρrGdλkG) is acceptable.

16 Set dλk = ρrGdλkG.

17 end
/* Update iterate */

18 Set λk+1 = λk + dλk.
/* --- Filter strategy only --- Update filter */

19 Update the filter using (22).
20 Set k = k + 1.

21 until ‖λk − λk−1‖∞ ≤ ε or ‖Φ(λk)‖∞ ≤ ε

4.2 Penalty Parameter and Proximal-Point Update

For a fixed penalty parameter µ and proximal-point x̂, Algorithm 1 with subproblems defined by (2′i)
can be applied to obtain a point that solves (1) with the objective augmented by the proximal term
(µ/2)‖x − x̂‖22. However, a solution to (1) is only attained when µ‖x − x̂‖ → 0. Since attaining this
by having µ → 0 will likely result in numerical difficulties, we propose Algorithm 2 (see page 15) for
gradually reducing the contribution from the penalized proximal-point term.

The strategy contained in Algorithm 2 can be motivated as follows. In iteration k, the algorithm
has proximal parameters (µk, x̂k). Given this pair, a point λk+1 that is acceptable for the globalization
strategy is computed as described in Algorithm 1; see Step 5 of Algorithm 2. Given the proximal-point
modifications of the subproblems, this means that the algorithm produces λk+1 and associated {xk+1

i }
satisfying the first order stationary conditions of (2′i), namely,

Qix
k+1
i + qi +ATi λ

k+1 + µk(xk+1
i − x̂ki ) = 0 (23a)

0 ≤ ci −Bixk+1
i ⊥ ξk+1

i ≥ 0. (23b)

If there is reason to believe that {µk‖xk+1 − x̂k‖} → 0 while {Φ(λk+1)} → 0, then one might consider
leaving the proximal parameters unchanged so that the algorithm may continue to iterate and behave as
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Algorithm 1. Otherwise, it is imperative that the parameters are updated so that {µk‖xk+1−x̂k‖} → 0.
Our update strategy for these parameters is inspired by the Fiacco-McCormick-type barrier parameter
update strategy [14] and the proximal point update strategy used in proximal-point algorithms [45]. We
consider the satisfaction of two conditions in Step 6 in order to update the parameters.

(i) If µk‖xk+1 − x̂k‖∞ ≤ ε, then the influence of the proximal term may be considered negligible
and (23a)–(23b) imply that xk+1 is close to solving (2i). Therefore, we choose not to update the
proximal parameters when this holds, which is the first condition in Step 6.

(ii) If ‖Φ(λk+1)‖∞ � 0, then the algorithm has not yet neared a solution of (9). If the proximal terms
were updated in such an iteration, then the algorithm runs the risk of updating these parameters
too often based on information from points that are far from solutions of the semismooth equations.
Therefore, we choose not to update the parameters at such points, and instead only update them
when ‖Φ(λk+1)‖∞ ≤ κkµk, where the right-hand side represents a tolerance that converges to zero
along with the proximal parameters {µk}.

Thus, if the conditions in (i)–(ii) hold, then the algorithm updates the proximal point x̂ and either µk

or κk according to the following strategy.

• If the problem is convex, then the penalty parameter is decreased, but no smaller than µsmall; see
Step 8. The lower bound of µsmall is imposed to ensure that the procedure for solving (2′i) does not
encounter numerical difficulties. This reduction in the penalty parameter has the desired effect of
reducing the possible influence of the proximal term.

• If the problem is indefinite, then we choose µ0 > −mini∈{1,...,N}{σmin(Qi)}, where σmin(Qi) de-
notes the left-most eigenvalue of Qi. This ensures that (2′i) is strictly convex for all i ∈ {1, . . . , N},
so that the subproblems are well-posed and have unique solutions. To maintain this feature, when
(i)–(ii) hold, we do not reduce the penalty parameter, but rather reduce the factor κ, though
not below κsmall. This ensures that the semismooth equations have to be satisfied to a tighter
tolerance before the proximal parameters are updated again.

In either case, the decrease in µ or κ has the effect of tightening the tolerance to which the semismooth
equations must be satisfied before the proximal parameters are updated. If the filter globalization
strategy is employed, then the algorithm clears the current filter and adds the entry corresponding to
the residual evaluated using the updated parameters; see Step 19. The algorithm continues until the
proximal and residual terms are both below the required tolerance; see Step 22.

5 Implementation and Numerical Experiments

We implemented Algorithms 1 and 2 in MATLAB. We used the QP solver MINQ [38] developed by
Neumaier. MINQ can handle both convex and indefinite bound constrained QPs. General equalities and
inequalities can be handled in the case of strictly convex QPs since MINQ works on the dual QP, which is
bound-constrained. The parameters in Algorithm 1 were set as ρ = 0.9, γθ = 10−4, and ρsmall = 10−8.
The additional parameters in Algorithm 2 were set as µsmall = κsmall = 10−4 and δµ = δκ = 0.5. The
initial proximal parameters were set as µ0 = 10−1 + 10−4, κ0 = 1, and x̂ = 0. In all our experiments,
the initial multipliers were set as λ0 = 0.

For comparison purposes, we also implemented in MATLAB a standard subgradient algorithm with
normalized steps and diminishing stepsizes [46].

14



Algorithm 2: SNM for Convex and Indefinite QP

1 Let ε ∈ (0, 1) be a desired convergence tolerance, µ0 > 0 an initial penalty parameter, κ0 an

initial convergence factor, λ0 an initial iterate, and x̂0 an initial proximal point.

2 Choose (ρ, γθ, ρ
small, µsmall, δµ, κ

small, δκ) ∈ (0, 1).
3 Set k = 0 (and F0 = {θ(λ0)}, if using a filter).

4 repeat

5 Compute λk+1 as in Algorithm 1 with subproblems (2′i) with (µ, x̂) = (µk, x̂k), letting {xk+1
i }

denote the corresponding solutions of (2′i).

6 if µk‖xk+1 − x̂k‖∞ > ε and ‖Φ(λk+1)‖∞ ≤ κkµk then
/* Reduce µ or κ, update x̂ */

7 if (1) is convex then
8 Set µk+1 = max{µsmall, δµµ

k}.
9 else

10 Set κk+1 = max{κsmall, δκκ
k}.

11 end

12 Set x̂k+1 = xk+1.

13 Compute (λk+1, {xk+1
i }) as in Step 5 with (µ, x̂) = (µk+1, x̂k+1).

14 else
/* Do not update proximal parameters */

15 Set µk+1 = µk, κk+1 = κk, x̂k+1 = x̂k.

16 end
/* --- Filter strategy only --- Update filter */

17 if ρk+1 or x̂k+1 has been updated then
18 Set Fk = ∅.
19 Update the filter using (22).

20 end
21 Set k = k + 1.

22 until µk‖xk − x̂k‖∞ ≤ ε and ‖Φ(λk)‖∞ ≤ ε

5.1 Structured Random QP Generator

We randomly generated QPs with the structure of problem (1) at least satisfying the desirable properties
of (2i)-LICQ, (2i)-SSOSC and (2i)-SC. The procedures for generating the QPs can be described as
follows. In all cases, we simultaneously generated a primal-dual solution vector (x∗, ξ∗) and problem
data so that at least (x∗, ξ∗) corresponds to a stationary point of the resulting problem.

For simplicity, the inequalities in (2i) were simply chosen as the nonnegativity constraints xi ≥ 0.
This implies the satisfaction of (2i)-LICQ. Given na < n, a number of components of x∗i that were
desired to be at the bound of 0, the optimal solution x∗ and bound multipliers ξ∗ were chosen to
satisfy (2i)-SC by

x∗i[j] =

{
0 for all j ≤ na
0.1 + rand(0, 1) for all j > na

and ξ∗i[j] =

{
0.1 + rand(0, 1) for all j ≤ na
0 for all j > na,
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for all i ∈ {1, . . . , N}. Here, rand(0, 1) denotes a uniform random number in [0, 1]. Letting Yi and
Zi respectively denote bases for the range and null spaces of the active bounds, the Hessian for the
subproblems were randomly chosen by

Qi =


UiDiag(ui)U

T
i for strictly convex QPs

Ui(ZiDiag(ui,Z)Zi)U
T
i for convex QPs

Ui(YiDiag(ui,Y )Y Ti + ZiDiag(ui,Z)ZTi )UTi for indefinite QPs,

where Ui ∈ Rn×n is a unitary matrix, ui ∈ Rn had elements ui[j] = rand(0, 1), ui,Z ∈ Rn−na had
elements ui,Z[j] = rand(0, 1), and ui,Y ∈ Rna had elements ui,Y [j] = rand(−10−1, 0). Since Qi was
positive definite in the null space of bound constraints that were active at x∗i and (2i)-SC holds, (2i)-
SSOSC was satisfied.

For the indefinite QPs, we additionally included the subproblem upper bounds xi[j] ≤ ‖x∗‖∞ + 1.
This guaranteed the existence of minima for (2i) for any λ due to compactness of the feasible set.
The choice ensured that these upper bounds were inactive at x∗ (though they may be active at other
stationary points).

Let us now describe the generation of the coupling equality and/or inequality constraints. Suppose
me (≤ nN − naN) was the number equality constraints that were desired in the problem and suppose
ma (≤ nN − naN −me) was the number coupling inequality constraints that were desired to be active
at x∗. The coupling equality and active inequality constraints were obtained as[

A[·1] · · · A[·ma]

]T
= ZV

where Z ∈ RnN×(n−na)N was block diagonal with Zi on the diagonal and V ∈ R(n−na)N×(me+ma) were
(me+ma) columns of an (n−na)N × (n−na)N unitary matrix. The entries of the (m−ma) remaining
rows of the matrix A for coupling inequality constraints were chosen at random without any structure.
The right hand side of the inequality constraints were chosen as

b[j] =

{
A[·j]x

∗ for all j ≤ me +ma

A[·j]x
∗ + 1 for all j > ma

and λ∗[j] =


randn(0, 1) for all j ≤ me

0.1 + rand(0, 1) for all me < j ≤ me +ma

0 for all j > ma

where randn(0, 1) denotes a random number drawn from normal distribution with mean 0 and standard
deviataion 1. Thus, the multipiers for the equality constraints are unsrestricted in sign. Finally, the
linear term in the QP was chosen by

qi = −(Qix
∗
i − ν∗i +ATi λ

∗
i ) for all i ∈ {1, . . . , N}.

5.2 Strictly Convex QPs

We generated 100 strictly convex QP instances using the procedure outlined in §5.1 for different val-
ues of {n,N,m, na,ma}. Three different globalization strategies—merit (merit function), filter-2

(filter with 2 entries), and filter-5 (filter with 5 entries)—were used to solve the problems. Table 1
summarizes the performance of Algorithm 1 on QPs with only coupling inequality constraints. One
finds that the results are consistent for all problem sizes and globalization strategies. In all cases, the
average numbers of iterations and function evaluations were roughly around 10 or fewer, despite the
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instances ranging in dimension from nN = 100 to 400. One also finds that the average residual for
the semismooth equations at termination was below 10−6 while the average CPU time (in seconds) was
consistently small.

We also generated 100 strictly convex QPs with both equality and inequality coupling constraints.
Table 2 summarizes the performance of Algorithm 1 on these QPs, where in all cases we chose me = m.
One again finds consistent results, except in the fact that the filter-5 strategy performed slightly worse
for the smaller dimensional problems. This behavior may be attributed to a combination of having fewer
degrees of freedom at the solution and the filter being too flexible as to allowing a step to be accepted as
long as progress is made in a smaller number of entries of the residual. Still, however, the performance
in terms of all measures is consistently good even for the larger problems.

In Tables 3 and 4, we provide the results obtained by running a subgradient algorithm (subgrad), the
proximal Jacobian ADMM (i.e., alternating direction method of multipliers) method of [7] (prox-admm),
and the proximal center algorithm of [32] (which uses a smoothing technique proposed by Nesterov)
(prox-cent). For prox-admm, the penalty parameters ρ, γ, and τi in [7, Algorithm 4, Eq. (1.3)]
are set to 0.1, 0.1, and 1.01ρ‖Ai‖2, respectively. These choices satisfy [7, Lemma 2.2] and were also
employed by the authors in their experiments. The parameters are adjusted adaptively as suggested in
[7, Algorithm 2.3]. The parameters in prox-cent are c and Lc [32, Algorithm 3.2], which are chosen
as ε and 1

ε

∑n
i=1(‖Ai‖2/σi) where σi is the smallest positive eigenvalue of Qi � 0 and 1 otherwise.

In all instances, subgrad and prox-cent did not obtain a solution with a residual below 10−6 within
the maximum iteration limit of 5000 or the CPU time limit (in seconds) of 900. The reported final
residuals illustrate that the algorithms made some progress, but with CPU times so much higher than
Algorithm 1 one can conclude that the performance of these methods is inferior in our setting. At
the same time, prox-admm successfully solved some problems, but it is not reliable for this set and
still required many more iterations, function evaluations, and CPU seconds than Algorithm 1 even in
successful cases. Table 3 provides the results for the case of only coupling inequalities (i.e., the same
problems used to generate the results in Table 1). Table 4 provides the results for coupling equality and
inequality constraints (i.e., the same problems used for Table 2).

Avg. Avg. Avg. Avg.
n N m na ma # solved #Iters. #Func. Res. CPU (s)

merit 10 10 20 2 5 100 7.0 9.6 2.7e-08 0.5
filter-2 10 10 20 2 5 100 8.5 13.6 3.5e-08 0.6
filter-5 10 10 20 2 5 100 9.1 12.8 3.6e-08 0.6
merit 20 20 20 5 5 100 5.9 7.0 2.3e-08 5.6
filter-2 20 20 20 5 5 100 6.0 7.0 2.3e-08 5.8
filter-5 20 20 20 5 5 100 6.0 7.0 2.3e-08 5.7
merit 10 10 20 5 10 100 6.4 8.1 7.4e-08 0.3
filter-2 10 10 20 5 10 100 6.5 7.6 7.4e-08 0.3
filter-5 10 10 20 5 10 100 6.6 7.7 7.4e-08 0.3
merit 20 20 20 10 10 100 5.3 6.3 1.3e-07 3.5
filter-2 20 20 20 10 10 100 5.3 6.3 1.3e-07 3.6
filter-5 20 20 20 10 10 100 5.3 6.3 1.3e-07 3.6

Table 1: Algorithm 1: strictly convex QPs with coupling inequalities.

5.3 Convex QPs

Following similar procedures as in §5.2, we generated 100 (not strictly) convex QPs using the procedure
outlined in §5.1, each when only inequality coupling constraints were present and when equality and
inequality coupling constraints were present. The results for only inequality coupling constraints are
given in Table 5 and the results for equality and inequality coupling constraints are given in Table 6.
The results are again consistently good for all problem sizes and globalization strategies. In terms of
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Avg. Avg. Avg. Avg.
n N m na ma # solved #Iters. #Func. Res. CPU (s)

merit 10 10 20 2 5 100 12.5 34.3 1.1e-08 1.6
filter-2 10 10 20 2 5 100 20.9 52.1 1.9e-08 2.5
filter-5 10 10 20 2 5 100 50.4 119.5 9.5e-09 5.7
merit 20 20 20 5 5 100 8.1 10.6 2.8e-08 8.7
filter-2 20 20 20 5 5 100 8.7 10.2 3.7e-08 8.6
filter-5 20 20 20 5 5 100 8.8 10.4 3.7e-08 8.8
merit 10 10 20 5 10 100 10.6 31.6 3.8e-08 1.1
filter-2 10 10 20 5 10 100 12.8 30.6 4.7e-08 1.1
filter-5 10 10 20 5 10 100 19.2 36.2 3.9e-08 1.4
merit 20 20 20 10 10 100 6.8 8.5 2.2e-08 4.8
filter-2 20 20 20 10 10 100 6.8 7.8 3.0e-08 4.4
filter-5 20 20 20 10 10 100 6.8 7.8 3.0e-08 4.5

Table 2: Algorithm 1: strictly convex QPs with coupling equalities and inequalities.

Avg. Avg. Avg. Avg.
n N m na ma # solved #Iters. #Func. Res. CPU (s)

subgrad 10 10 20 2 5 0 5002.0 10005.0 2.8e-02 258.6
prox-admm 10 10 20 2 5 18 4855.4 4856.4 4.1e-05 180.1
prox-cent 10 10 20 2 5 0 5002.0 10004.0 7.5e-03 362.0
subgrad 20 20 20 5 5 0 1012.7 2026.4 5.8e-02 900.5
prox-admm 20 20 20 5 5 0 1167.6 1168.6 1.6e-02 900.4
prox-cent 20 20 20 5 5 0 621.4 1242.8 1.1e+00 900.8
subgrad 10 10 20 5 10 0 5002.0 10005.0 3.0e-02 186.4
prox-admm 10 10 20 5 10 100 2344.5 2345.5 1.0e-06 65.0
prox-cent 10 10 20 5 10 0 5002.0 10004.0 5.2e-03 269.4
subgrad 20 20 20 10 10 0 1510.9 3022.7 4.8e-02 900.3
prox-admm 20 20 20 10 10 0 1691.0 1692.0 4.4e-03 900.3
prox-cent 20 20 20 10 10 0 907.0 1813.9 5.7e-01 900.5

Table 3: Other methods: strictly convex QPs with coupling inequalities.

function evaluations, the filter strategies outperformed the merit function strategy when only inequality
coupling constraints were present, though again the filter-5 strategy lagged behind the other strategies
in terms of both of these performance measures when equality and inequality coupling constraints were
present. Still, however, all strategies solved 100% of the problems in a number of iterations significantly
fewer than the problem dimension.

Tables 7 and 8 report the corresponding performace of subgrad, prox-admm, and prox-cent. For
essentially all instances, these other methods did not obtain a solution with residual below 10−6 within
the iteration and time limits.

5.4 Indefinite QPs

Following similar procedures as in §5.2, we generated 100 indefinite QPs using the procedure outlined
in §5.1, each when only coupling inequalities were present and when coupling equalities and inequalities
were present. Recall that the procedure in §5.1 produces Hessians Qi with eigenvalues in (−10−1, 1)
and that, for such indefinite QPs, Algorithm 1 does not update the proximal parameter µ; in particular,
we have µk = µ0 = 10−1 + 10−4 for all k. Thus, in these experiments, the subproblems are all convex
despite the fact that the overall QP is indefinite.

The results for only inequality coupling constraints are given in Table 9 and the results for equality
and inequality coupling constraints are given in Table 10. The results for all globalization strategies
are good when only inequality coupling constraints are present, though there are some failures for the
problems with larger (na,ma). As for the problems with equality and inequality coupling constraints, we
find that the filter-5 strategy led to many failures, suggesting that the other globalization strategies
are preferred for these problems. We remark that some additional instances are solved by the merit
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Avg. Avg. Avg. Avg.
n N m na ma # solved #Iters. #Func. Res. CPU (s)

subgrad 10 10 20 2 5 0 5002.0 10005.0 9.4e-02 269.2
prox-admm 10 10 20 2 5 97 3313.4 3314.4 1.1e-06 122.5
prox-cent 10 10 20 2 5 0 5002.0 10004.0 8.7e-03 360.1
subgrad 20 20 20 5 5 0 1011.6 2024.3 1.4e-01 900.5
prox-admm 20 20 20 5 5 0 1154.6 1155.6 3.1e-02 900.4
prox-cent 20 20 20 5 5 0 676.0 1351.9 2.3e+00 900.7
subgrad 10 10 20 5 10 0 5002.0 10005.0 5.5e-02 194.4
prox-admm 10 10 20 5 10 1 4991.8 4992.8 1.2e-04 138.2
prox-cent 10 10 20 5 10 0 5002.0 10004.0 7.2e-03 267.5
subgrad 20 20 20 10 10 0 1410.1 2821.3 8.4e-02 900.3
prox-admm 20 20 20 10 10 0 1617.5 1618.5 4.2e-03 900.3
prox-cent 20 20 20 10 10 0 927.4 1854.8 1.3e+00 900.5

Table 4: Other methods: strictly convex QPs with coupling equalities and inequalities.

Avg. Avg. Avg. Avg.
n N m na ma # solved #Iters. #Func. Res. CPU (s)

merit 10 10 20 2 5 100 18.2 39.5 1.3e-07 2.1
filter-2 10 10 20 2 5 100 18.3 22.9 1.2e-07 1.5
filter-5 10 10 20 2 5 100 20.3 29.3 1.3e-07 1.8
merit 20 20 20 5 5 100 23.6 55.0 1.7e-07 54.0
filter-2 20 20 20 5 5 100 25.3 39.9 1.6e-07 43.0
filter-5 20 20 20 5 5 100 25.1 26.3 1.5e-07 32.0
merit 10 10 20 5 10 100 17.1 27.9 1.6e-07 1.3
filter-2 10 10 20 5 10 100 17.8 30.0 1.4e-07 1.3
filter-5 10 10 20 5 10 100 23.8 35.4 1.3e-07 1.6
merit 20 20 20 10 10 100 20.6 37.1 1.9e-07 27.2
filter-2 20 20 20 10 10 100 21.7 22.9 1.7e-07 19.7
filter-5 20 20 20 10 10 100 21.8 22.8 1.7e-07 19.7

Table 5: Algorithm 2: convex QPs with coupling inequalities.

and filter-2 methods when the time limit is set higher than 900 seconds. However, for our purposes
here, we simply state the results obtained with this time limit.

We do not provide the results for subgrad, prox-admm, and prox-cent for these indefinite QPs since
these methods are not designed to solve nonconvex problems. Results were obtained for subgrad for
these problems, but since it did not solve any instances successfully and the final residual values were
all consistently worse than those obtained using Algorithm 1, we do not bother stating the results here.

6 Applications

In this section, we describe three important real-world applications for our algorithms. In §6.1, we
describe how the computation of market-clearing prices in electricity markets can lead to a strictly
convex QP with coupling constraints that include equalities and inequalities. In §6.2, we show how
nearly-separable QPs arise in the analysis of nonlinear network flow problems. This applicaiton gives
rise to strictly convex problems (not necessarily QPs) with coupling equality constraints. Finally, two-
stage stochastic optimization problems are described in §6.3. In particular, we present a newsvendor
problem with uncertain demands and quadratic costs, leading to indefinite QPs with coupling inequality
constraints.

6.1 Electricity Markets

A prime application in which instances of problem (1) arise is in the establishment of competitive
equilibria in electricity markets. For example, consider a market in which supply nodes (generation
companies, or GenCos, denoted by NG) and demand nodes (Distribution System Operators, or DSOs,
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Avg. Avg. Avg. Avg.
n N m na ma # solved #Iters. #Func. Res. CPU (s)

merit 10 10 20 2 5 100 20.1 52.0 1.2e-07 2.7
filter-2 10 10 20 2 5 100 31.2 77.4 1.5e-07 3.9
filter-5 10 10 20 2 5 100 63.6 146.1 1.1e-07 7.4
merit 20 20 20 5 5 100 19.4 27.0 2.3e-07 29.8
filter-2 20 20 20 5 5 100 19.9 21.1 2.5e-07 25.2
filter-5 20 20 20 5 5 100 19.9 20.9 2.4e-07 25.0
merit 10 10 20 5 10 100 24.1 141.9 1.3e-07 4.9
filter-2 10 10 20 5 10 100 32.0 130.8 1.6e-07 4.7
filter-5 10 10 20 5 10 100 57.7 253.7 1.8e-07 8.9
merit 20 20 20 10 10 100 17.9 26.6 3.1e-07 20.0
filter-2 20 20 20 10 10 100 19.4 21.5 2.9e-07 17.7
filter-5 20 20 20 10 10 100 19.9 22.2 2.9e-07 17.9

Table 6: Algorithm 2: convex QPs with coupling equalities and inequalities.

Avg. Avg. Avg. Avg.
n N m na ma # solved #Iters. #Func. Res. CPU (s)

subgrad 10 10 20 2 5 0 5002.0 10005.0 4.5e-02 309.2
prox-admm 10 10 20 2 5 0 5002.0 5003.0 6.2e-04 182.7
prox-cent 10 10 20 2 5 0 5002.0 10004.0 4.4e+00 297.9
subgrad 20 20 20 5 5 0 986.4 1973.7 1.2e-01 900.5
prox-admm 20 20 20 5 5 0 1191.0 1192.0 2.0e-02 900.4
prox-cent 20 20 20 5 5 0 759.7 1519.4 2.8e+01 900.6
subgrad 10 10 20 5 10 0 5002.0 10005.0 7.2e-02 212.0
prox-admm 10 10 20 5 10 0 5002.0 5003.0 3.8e-04 138.0
prox-cent 10 10 20 5 10 0 4952.0 9904.0 6.2e+01 227.9
subgrad 20 20 20 10 10 0 1527.1 3055.1 1.3e-01 900.3
prox-admm 20 20 20 10 10 0 1718.3 1719.3 1.2e-02 900.3
prox-cent 20 20 20 10 10 0 1176.8 2353.6 2.2e+03 891.8

Table 7: Other methods: convex QPs with coupling inequalities.

denoted by ND) are spread across a network (with edges or electrical lines denoted by E). Over such
a network, the goal of an independent system operator (ISO) is to determine prices that establish a
competitive equilibrium, which can be done by formulating a social welfare maximization problem. If
the GenCos assume quadratic power generation costs, the DSOs assume quadratic consumption costs,
and a DC power flow model is used throughout the network, then one obtains a problem equivalent to
an instance of (1) with the power flow equations playing the role of the coupling constraints. An added
feature of such a problem is that, for privacy reasons, the individual market agents may be unwilling to
share their specific cost function with the ISO. This necessitates the use of a distributed optimization
framework, in which the ISO transmits price signals to the agents, who in turn only communicate their
solutions and/or the sensitivities of their solutions to the price signals.

By the second fundamental theorem of welfare economics [28, 50], a competitive equilibrium can be
characterized by maximizing social welfare through

min
P

∑
i∈NG

ci(Pi)−
∑
i∈ND

ui(−Pi) (24a)

s.t. 1TP = 0 (24b)

− P ≤ AP ≤ P (24c)

PGi ≤ Pi ≤ P
G

i , for all i ∈ NG (24d)

PDi ≤ −Pi ≤ P
D

i , for all i ∈ ND, (24e)

where ci is a strictly convex function representing the cost of generation for GenCo i ∈ NG and ui is
a strictly concave utility function for DSO i ∈ ND. The vector P ∈ R|E| denotes the power limits on
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Avg. Avg. Avg. Avg.
n N m na ma # solved #Iters. #Func. Res. CPU (s)

subgrad 10 10 20 2 5 0 5002.0 10005.0 1.1e-01 278.4
prox-admm 10 10 20 2 5 0 5002.0 5003.0 8.7e-05 184.7
prox-cent 10 10 20 2 5 0 5002.0 10004.0 2.0e+01 279.6
subgrad 20 20 20 5 5 0 1098.8 2198.6 1.4e-01 900.4
prox-admm 20 20 20 5 5 0 1187.0 1188.0 8.0e-02 900.4
prox-cent 20 20 20 5 5 0 842.4 1684.8 8.8e+01 900.5
subgrad 10 10 20 5 10 0 5002.0 10005.0 1.1e-01 205.7
prox-admm 10 10 20 5 10 6 4993.5 4994.5 3.0e-05 138.3
prox-cent 10 10 20 5 10 0 4952.0 9904.0 5.4e+01 237.1
subgrad 20 20 20 10 10 0 1657.9 3316.8 1.3e-01 900.3
prox-admm 20 20 20 10 10 0 1704.8 1705.8 5.1e-02 900.3
prox-cent 20 20 20 10 10 0 1142.8 2285.7 1.5e+03 882.4

Table 8: Other methods: convex QPs with coupling equalities and inequalities.

Avg. Avg. Avg. Avg.
n N m na ma # solved #Iters. #Func. Res. CPU (s)

merit 10 10 20 2 5 100 226.0 719.7 6.6e-08 29.3
filter-2 10 10 20 2 5 100 251.4 439.4 6.2e-08 20.5
filter-5 10 10 20 2 5 100 318.3 472.0 8.0e-08 22.9
merit 20 20 20 5 5 48 260.8 1247.7 2.5e-03 772.1
filter-2 20 20 20 5 5 81 354.8 860.1 2.1e-03 576.2
filter-5 20 20 20 5 5 97 448.1 486.9 4.0e-07 369.5
merit 10 10 20 5 10 100 229.5 658.1 6.1e-08 21.2
filter-2 10 10 20 5 10 100 262.8 380.5 4.9e-08 14.8
filter-5 10 10 20 5 10 94 355.1 7872.6 3.1e+01 73.2
merit 20 20 20 10 10 69 420.8 1830.8 7.7e-04 672.6
filter-2 20 20 20 10 10 99 600.3 656.0 4.0e-07 305.5
filter-5 20 20 20 10 10 98 622.2 679.9 2.1e-03 318.8

Table 9: Algorithm 2: indefinite QPs with coupling inequalities.

the lines in the network, 1 ∈ R|N | is a vector of all ones, and A is the matrix of power distribution
factors for the ISO’s transmission network. The constraint (24b) imposes power balance between the
GenCos and DSOs. The DC power flow model of the ISO network is modeled in (24c) through the
power distribution factors [51].

Introducing multipliers ξ ∈ R for (24b) and (ζ, ζ) ∈ RE+ × RE+ for the lower and upper bound
constraints in (24c), the coupling constraints (24b)–(24c) can be dualized. This results in the dual
function

P (ν) ∈ arg min
P

∑
i∈NG

ci(Pi)−
∑
i∈ND

ui(−Pi)− νTP (25a)

s.t. PGi ≤ Pi ≤ P
G

i , for all i ∈ NG (25b)

PDi ≤ −Pi ≤ P
D

i , for all i ∈ ND, (25c)

where the right-hand side optimization problems are separable in the GenCos and DSOs. The opti-
mization problems are parameterized by ν = ξ1+AT (ζ − ζ), which has the economic interpretation as
the locational marginal price or nodal price of electricity. Thus, (25) allows the GenCos and DSOs to
maintain their privacy of their objective functions and interact with the ISO only through a price signal
νi. The ISO, which is responsible for maintaining the balance of power supply and adherence of line
flow limits, can be viewed as solving the ICP

ν = ξ1 +AT (ζ − ζ) (26a)

1
TP (ν) = 0 (26b)

0 ≤ ζ ⊥ AP (ν) + P ≥ 0 (26c)
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Avg. Avg. Avg. Avg.
n N m na ma # solved #Iters. #Func. Res. CPU (s)

merit 10 10 20 2 5 94 213.3 5946.9 2.3e-02 88.0
filter-2 10 10 20 2 5 85 397.2 21662.1 9.2e-01 224.0
filter-5 10 10 20 2 5 0 654.3 142829.5 1.0e+02 901.0
merit 20 20 20 5 5 22 240.5 1329.5 4.2e-03 871.4
filter-2 20 20 20 5 5 94 562.3 621.6 4.7e-04 487.4
filter-5 20 20 20 5 5 57 808.2 10481.4 3.5e+01 635.3
merit 10 10 20 5 10 67 209.6 30916.5 1.2e-01 332.5
filter-2 10 10 20 5 10 57 368.9 52480.7 1.0e+00 472.5
filter-5 10 10 20 5 10 0 636.0 140952.9 1.8e+02 900.9
merit 20 20 20 10 10 42 384.7 1846.7 1.7e-03 788.4
filter-2 20 20 20 10 10 97 708.3 840.6 3.8e-04 447.1
filter-5 20 20 20 10 10 20 590.5 23888.0 9.3e+01 835.9

Table 10: Algorithm 2: indefinite QPs with coupling equalities and inequalities.

0 ≤ ζ ⊥ −AP (ν) + P ≥ 0. (26d)

If {(ci, ui)} are quadratic, then we obtain subproblems of the form in (2i). For such cases, the
approach proposed in this paper has been pursued by the authors in [44], some of the results of which we
provide now. The cost function for the GenCos is chosen as a strictly convex quadratic function, ci(P ) =
c1iP+c2iP

2 where c2i > 0. The values for the coefficients c1i and c2i are generated randomly. The utility
function for the DSOs is chosen as a strictly concave quadratic function, ui(−P ) = ui1(−P ) + u2iP

2

where u2i < 0. The coefficient values u1i and u2i are generated randomly. The demands at the
buses are allowed to vary between 80% and 120% of the nominal demand specified in the test cases
available in MATPOWER [53]. Table 11 summarizes the performance statistics of Algorithm 1 versus
a subgradient algorithm with diminishing stepsizes averaged over 10 different runs in which the cost and
demands are varied. The subgradient algorithm hits the iteration limit of 100000 on most instances,
whereas Algorithm 1 solves the problems in very few iterations with modest function evaluation counts.
Further, Algorithm 1 is 2-3 orders of magnitude faster than the subgradient algorithm.

Name Semismooth Subgradient
Avg. #Iters. Avg. #Fcn. Avg. CPU (s) Avg. #Iters. Avg. CPU (s)

case9 5.5 19.6 0.01 100000 1.8
case14 6.1 49.7 0.03 100000 2.1
case30 5.6 19.7 0.02 100000 3.1
case39 10.0 90.7 0.07 43262 1.6
case57 7.6 34.7 0.04 100000 4.4
case118 6.0 32.3 1.08 100000 89.6

Table 11: Results for the social welfare maximization problem (24).

6.2 Nonlinear Network Flows

Networks are used for modeling the transportation of energy, materials, people, information, etc. between
source and demand locations. The term nonlinear networks refers to the class of networks in which (i)
flow through the network is driven by a potential and (ii) potential loss on an edge in the network is
a nonlinear function of the flow rate through that edge. Nonlinear network analysis is the problem
of determining potential and flows that result in a network for a particular choice of resistances on
each edge. Raghunathan [43] presented a strictly convex formulation for a nonlinear network analysis
problem. Given a network with a set of nodes N , set of source nodes N src fixed at a potential πsrc

i , set
of edges E , set of flow demands qdem

i for i ∈ N \ N src, set of resistance choices re for each edge e ∈ E ,
potential loss function θ(·; r) : R+ → R+ for a choice of resistance r, and with Θ(q; r) :=

∫ q
0
θ(q′; r)dq′,

22



the convex formulation from [43] can be expressed as

min
∑
e∈E

(Θ(q+
e ; re) + Θ(q−e ; re))Le −

∑
i∈N src

∑
e=(i,j)

πsrc
i (q+

e − q−e ) (27a)

s.t.
∑
e=(j,i)

(q+
e − q−e )−

∑
e=(i,j)

(q+
e − q−e ) = qdem

i for all i ∈ N \ N src (27b)

0 ≤ (q+
e , q

−
e ) for all e ∈ E . (27c)

Typically, the potential loss function takes the form θ(q; r) = krq
a for some kr > 0 and a ≥ 1. For

all a ≥ 1, the function Θ(·; r) is strictly convex and, hence, (27) is an instance of a strictly convex
optimization problem.

Dualizing the equality constraint (27b) using multipliers λi for i ∈ N \ N src, one obtain an implicit
equality constraint system as∑

e=(j,i)

(q+
e (λ)− q−e (λ))−

∑
e=(i,j)

(q+
e (λ)− q−e (λ)) = qdem

i for all i ∈ N \ N src

where (q+
e (λ), q−e (λ)) for each e = (i, j) solves

min
(q+,q−)≥0

(Θ(q+; re) + Θ(q−; re))Le + (λj − λi − beπsrc
i )(q+ − q−),

with be = 1 if i ∈ N src and be = 0 otherwise.
If θ(q; r) = krq

2, then the subproblems on the edges are quadratic optimization problems of the
form (2i). The semismooth equation approach presented in this paper can then be readily applied to
obtain the superior convergence observed in Table 12. The instances in Table 12 correspond to the water
network design problems available at http://or.dei.unibo.it/instances/water-network-design.
The description of the data format can be found in [5]. Though the potential loss function is specified
for a = 1.857, we also consider the case of a = 1. For each instance, the diameters for the pipes are
randomly assigned from the available set of pipe diameters in the input file. The reported results on
number of iterations and function evaluations are averaged over 10 different runs in which the diameter
assignments are varied. The CPU times for Algorithm 1 are also provided, demonstrating that solver is
very fast. Though the approach has been described here by means of a fine-grained decomposition by
edges in the network, the approach can be readily extended to decomposition of a large network into
sub-networks.

Name |N | |E| |N src| a = 1 a = 1.857
Av. it. Av. fcn. Av. Av. it. Av. fcn. Av.

CPU (s) CPU (s)

hanoi 32 34 1 2.3 3.3 0.02 39.9 50.6 0.22
foss iron 37 58 1 1.8 2.8 0.02 77.8 98.2 0.60
foss poly 0 37 58 1 2.5 3.5 0.02 68.0 81.7 0.49
pescara 71 99 3 2.8 3.8 0.05 79.9 124.3 1.12
modena 272 317 4 2.7 3.7 0.49 83.4 129.7 11.77

Table 12: Results for water network analysis problems.

6.3 Two-stage Stochastic Optimization Problems

Decision-making under uncertainty pervades almost all areas of planning and operation. Such problems
fall under the class of stochastic programming [4]. Two-stage stochastic programs are problems in which
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the decision-maker is required to make a first-stage decision here-and-now, agnostic to the realization
of the uncertain parameters. Once the values of these uncertain parameters manifest themselves, the
decision-maker has the opportunity in the second-stage to take corrective action. Such problems can
generally be formulated as

min
(y,yk)

f(y) +

Nr∑
k=1

pkfk(yk) (28a)

s.t. Ty + T kyk ≤ tk for all k ∈ {1, . . . , Nr} (28b)

y ∈ Y and yk ∈ Yk for all k ∈ {1, . . . , Nr}, (28c)

where Nr denotes the number of uncertainty scenarios and pk is the probability of scenario k. The
variable y denotes the first-stage decisions while yk denotes the second-stage decision variable for each
scenario k. The sets Y and Yk are typically polyhedral, defined by linear equalities and inequalities.
The constraint (28b) couples the first-stage and the second-stages decisions. (For ease of exposition, we
have restricted our attention to a formulation with inequality constraints only, though formulations with
equality constraints can also be handled in a straightforward manner.) As before, dualization of (28b)
results in an optimization problem

min
(y,yk)

f(y) +

Nr∑
k=1

pkfk(yk) +

Nr∑
k=1

(λk)(Ty + T kyk − tk) (29a)

s.t. y ∈ Y and yk ∈ Yk for all k ∈ {1, . . . , Nr}, (29b)

which is separable in the first-stage and second-stage variables. When the functions f and {fi} are
quadratic, the subproblems are precisely of the form (2i). The approach presented in this paper can be
readily applied to the ICP

0 ≤ λk ⊥ Ty(λ1, . . . , λNr ) + T kyk(λk) ≤ tk for all k ∈ {1, . . . , Nr}.

Examples of such instances include the stock-ordering problem that arises in a number applications such
as the newsvendor problem [4], and contaminant source inversion in water networks [26].

Let us consider the newvendor problem with uncertain demand and quadratic costs and prices. The
first-stage quantity is the order-quantity y whose cost is given as f(y) = 0.01y2 + y and the price
for the quantity that is sold is fk(yk) = −0.01(yk)2 − 1.2yk. Thus, the objective function (28a) is
nonconvex. The coupling constraints (28b) are yk ≤ y which limits the sale quantity in each scenario
to be smaller than the order quantity. Further, Y = [0, 150] and Yk = [0, dk] where dk is the demand in
that scenario. The demand is assumed to be uniformly distributed in (0, 100) and, hence, pk = 1/Nr.
Table 13 presents results for scenarios with Nr = 10 and Nr = 100. The proximal penalty parameter
µ0 is chosen as 0.1/Nr, ensuring that the resulting problems are all sufficiently strictly convex. The
algorithm successfully solved all 100 problems in each of the cases. The reported iterations and function
evaluations are averaged over 100 runs in which the demands are varied. The objective values reported
as the mean and standard deviation over the 100 runs. We also report the mean and standard deviation
of the objective from running IPOPT [49] on the same instances.

Nr Avg. #Iters. Avg. # Fcn. Avg. CPU (s) Obj. IPOPT Obj.
10 164.2 392.9 0.41 -2.24±1.47 -2.24±1.47
100 186.2 2469.2 3.21 -1.55±0.38 -1.54±0.38

Table 13: Results for the newsvendor problem with quadratic costs and prices.
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7 Conclusion

We have presented algorithms for solving an interesting class of quadratic optimization problems (QPs).
The distinguishing feature of the problems in this class are that they involve groups of variables that can
be considered separately except for a set of linking constraints. The methods that we have presented
exploit this nearly separability, but in a manner that still allows fast local convergence guarantees under
reasonable assumptions. Our first algorithm is applicable when solving strictly convex QPs while our
second algorithm incorporates proximal point methodologies to handle a lack of strict convexity or even
indefiniteness. Numerical experiments with randomly generated problems illustrate that our approaches
are generally very efficient and reliable, either with merit function or filter globalization techniques. We
have also demonstrated superior performance of our methods compared to a classical subgradient ap-
proach when applied to solve real-world problems related to finding competitive equilibrium in electricity
markets, nonlinear network analysis, and two-stage stochastic optimization.
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A Stationarity, Differentiability, Regularity, and (1) vs. (5)

In this appendix, we discuss stationarity conditions for the QPs (1) and (2i), differentiability properties
of the subproblem solutions xi(·) with respect to λ, regularity properties of implicit complementarity
problem (5), and relationships between solutions of (1) and (5).

A.1 Stationarity Conditions for (1) and (2i)

First-order stationarity conditions for the QPs (1) and (2i) can be derived from standard theory on
Karush-Kuhn-Tucker conditions; e.g., see [2]. A point x∗ is a first-order KKT point of (1) if there exist
multipliers (λ∗, ξ∗) such that

Qx∗ + q +ATλ∗ +BT ξ∗ = 0

0 ≤ b−Ax∗ ⊥ λ∗ ≥ 0

0 ≤ c−Bx∗ ⊥ ξ∗ ≥ 0.

(30)

Similarly, a point x∗i is a first-order KKT point of (2i) if there exists multipliers ξ∗i such that

Qix
∗
i + qi +ATi λ+BTi ξ

∗
i = 0

0 ≤ ci −Bix∗i ⊥ ξ∗i ≥ 0.
(31)

Second-order KKT points are defined as those at which the first-order KKT conditions can be satisfied
and at which a curvature condition on the Hessian holds over a critical cone defined by the corresponding
active constraints. To formally state these second-order conditions, let us first define the following: Given
a primal point x ∈ RnN , a Lagrange multiplier vector for the coupling constraint λ ∈ Rm, and Lagrange
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multipliers for the subproblem constraints ξ := (ξ1, . . . , ξN ) ∈ RpN , let subsets of the indices for the
coupling constraints be

α(x, λ) := {j : (Ax− b)[j] = 0 < λ[j]},
β(x, λ) := {j : (Ax− b)[j] = 0 = λ[j]},

and γ(x, λ) := {j : (Ax− b)[j] < 0 = λ[j]},
(32)

and, for all i ∈ {1, . . . , N}, let subsets of the indices for the inequalities in Xi be

αi(xi, ξi) := {j : (Bixi − ci)[j] = 0 < ξi[j]},
βi(xi, ξi) := {j : (Bixi − ci)[j] = 0 = ξi[j]},

and γi(xi, ξi) := {j : (Bixi − ci)[j] < 0 = ξi[j]}.
(33)

Using these definitions, given (x∗, λ∗, ξ∗) satisfying (30), we define the critical cone

T (x∗, λ∗, ξ∗) :=

d =

d1

...
dN

 ∈ RnN :


N∑
i=1

Ai[α·]di = 0,

N∑
i=1

Ai[β·]di ≤ 0,

and Bi[αi·]di = 0, Bi[βi·]di ≤ 0

for all i ∈ {1, . . . , N}



 . (34)

Similarly, corresponding to a point (x∗i , ξ
∗
i ) satisfying (31), we define the critical cone

Ti(x∗i , ξ∗i ) :=
{
di ∈ Rn : Bi[αi·]di = 0 and Bi[βi·]di ≤ 0

}
, (35)

We may now state that x∗ is a second-order KKT point of (1) if there exist multipliers (λ∗, ξ∗) such
that (30) holds and

dTQd ≥ 0 for all d ∈ T (x∗, ξ∗, λ∗), (36)

and x∗i is a second-order KKT point of (2i) if there exists ξ∗i such that (31) holds and

dTi Qidi ≥ 0 for all di ∈ Ti(x∗i , ξ∗i ). (37)

If these curvature conditions hold strictly for nonzero elements in the critical cone, then one can conclude
that the corresponding point is a strict local minimizer. In particular, x∗ is a strict local minimizer
of (1) if there exist multipliers (λ∗, ξ∗) such that (30) holds and

dTQd > 0 for all d ∈ T (x∗, ξ∗, λ∗) \ {0}, (38)

while x∗i is a strict local minimizer of (2i) if there exists ξ∗i such that (31) holds and

dTi Qidi > 0 for all di ∈ Ti(x∗i , ξ∗i ) \ {0}. (39)

Overall, one can observe that if (1) (resp. (2i)) is convex in that Q � 0 (resp. Qi � 0), then any
first-order KKT point is a second-order KKT point, from which convexity implies that it is a global
minimizer of (1) (resp. (2i)). Similarly, if (1) (resp. (2i)) is strictly convex in that Q � 0 (resp. Qi � 0),
then any first-order KKT point is a strict local minimizer, from which convexity implies that it is a
strict global minimizer of (1) (resp. (2i)).
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A.2 Differentiability Concepts of Locally Lipschitz Functions

Let Φ : Rm → Rm be locally Lipschitz. Then, by Rademacher’s theorem, Φ is differentiable almost
everywhere in Rm. If DΦ denotes the set of λ ∈ Rm at which Φ is differentiable, then the B-subdifferential
of Φ at λ can be defined (see [25]) as

∂BΦ(λ) :=

{
H ∈ Rm×m : H = lim

λk∈DΦ,λk→λ
∇Φ(λk)

}
. (40)

The convex hull of this set is the generalized Jacobian of Φ at λ [25], written as

∂Φ := conv ∂BΦ(λ).

Such a function is semismooth [25, 41] at λ if it is directionally differentiable at λ and

Hδ − Φ′(λ; δ) = o(‖δ‖) for any δ → 0 and H ∈ ∂Φ(λ+ δ).

Further, Φ is strongly semismooth at λ if

Hδ − Φ′(λ; δ) = o(‖δ‖2) for any δ → 0 and H ∈ ∂Φ(λ+ δ).

A.3 Regularity Properties of Solutions of (5)

A square matrix M ∈ Rm×m is said to be a P-matrix if all of its principal minors are positive [42,
Def. 3.3.1]. If M ∈ Rm×m is a symmetric P-matrix, then M is positive definite. This property is of
importance for matrices arising in the following definition, which relates to regularity of solutions for
(5); see [47, Def. 2.1].

Definition 2 (b- and R-regular solutions of (5)). Suppose that F ∈ C1. Let λ∗ be a solution of (5)
and let α, β, and γ be defined as in (32). Then, λ∗ is a

• b-regular solution of (5) if ∇F[σσ](λ
∗) is nonsingular whenever α ⊆ σ ⊆ α ∪ β;

• R-regular solution of (5) if ∇F[αα](λ
∗) is nonsingular and its Schur complement w.r.t.[
∇F[αα](λ

∗) ∇F[αβ](λ
∗)

∇F[βα](λ
∗) ∇F[ββ](λ

∗)

]
,

namely

(∇F[ββ]/∇F[αα])(λ
∗) := ∇F[ββ](λ

∗)−∇F[βα](λ
∗)(∇F[αα](λ

∗))−1∇F[αβ](λ
∗) (41)

is a P-matrix.

A.4 Differentiability Properties of xi(λ)

The differentiability properties of a first-order KKT point x∗i (λ) of (2i) and its corresponding objective
value as functions of λ follow from the theory of sensitivity analysis of parametric nonlinear optimization
problems. The study of solution and objective sensitivity to variations in parameters in such problems
has been studied extensively since the 1970’s. Since the constraints of (1) and (2i) are affine, we have
that the conditions in Appendix A.1 are necessary for stationarity with the last conditions sufficient for
(local) optimality. However, for certain results below, we rely on additional regularity conditions for
(2i).

We begin by stating two types of regularity conditions on the constraints in (2i).
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Definition 3 ((2i)-LICQ). If Bi[(αi∪βi)·] has full row rank (with (αi, βi) from (33)), then the Linear
Independence Constraint Qualification (LICQ) for (2i) holds at xi ∈ Xi.

Definition 4 ((2i)-SCQ). If there exists xi ∈ Rn such that Bixi < ci, then the Slater Constraint
Qualification (SCQ) holds for (2i).

If a problem has a convex feasible region, as does (2i), the SCQ is equivalent to the Mangasarian-
Fromovitz Constraint Qualification (MFCQ) holding at every feasible point. If the LICQ holds at any
feasible point, then the SCQ holds. For a local minimizer x∗i (λ) of (2i), the LICQ implies uniqueness
of the optimal Lagrange multiplier vector ξ∗i (λ); however, the SCQ only implies that the set of optimal
multipliers at x∗i (λ), call it Ξi(x

∗
i (λ)), is bounded.

Now, given a first-order KKT point of (2i) and the critical cone

T sci (x∗i , ξ
∗
i ) := {di ∈ Rn : Bi[αi·]di = 0} ⊇ Ti(x∗i , ξ∗i ) (42)

with αi defined in (33), we define the following.

Definition 5 ((2i)-SSOSC). If (x∗i , ξ
∗
i ) is a first-order KKT point of (2i), then the strong second-order

sufficient condition (SSOSC) for (2i) holds at (x∗i , ξ
∗
i ) if

dTi Qidi > 0 for all di ∈ T sci (x∗i , ξ
∗
i ). (43)

An early result on differentiability of xi(·) for our purposes can be derived from the work of Fiacco [13,
Thm. 2.1]. We state it as the following lemma.

Lemma 4. Given λ̄ ∈ Rm, suppose that x∗i (λ̄) is a strict local solution of (2i) with λ = λ̄ such that
with the corresponding Lagrange multiplier ξ∗i (λ̄) the following hold:

• βi(x∗i (λ̄), ξ∗i (λ̄)) = ∅,

• the (2i)-LICQ holds at x∗i (λ̄), and

• the (2i)-SSOSC holds at (x∗i (λ̄), ξ∗i (λ̄)).

Then, there exist open neighborhoods Ui, Vi, and Wi centered at x∗i , ξ∗i , and λ̄, respectively, and functions
xi(·) : Wi → Ui ⊆ Xi and ξi(·) : Wi → Vi such that:

(i) xi(·) and ξi(·) are C1 functions of λ ∈Wi;

(ii) for each λ ∈ Wi, the point xi(λ) is a strict local solution of (2i) with Lagrange multiplier ξi(λ);
and

(iii) for each λ ∈Wi, the Jacobian of (xi(·), ξi(·)) at λ is given by[
Qi BTi[αi·]

Bi[αi·] 0

] [
∇xi(λ)
∇ξi[αi](λ)

]
=

[
−ATi

0

]
. (44)

The following result, due to Ralph and Dempe [6, Thms. 1 & 2 and Cor. 4(2)], represents an extension
of this result in which the strict complementarity requirement (i.e., βi = ∅) is relaxed and the LICQ is
replaced by the (weaker) MFCQ along with the Constant Rank Constraint Qualification (CRCQ). The
CRCQ holds automatically for (1), so we do not state it explicitly. Moreover, the MFCQ is equivalent
to the SCQ for (1), so we refer to the latter.
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Lemma 5. Given λ̄ ∈ Rm, suppose that x∗i (λ̄) is a strict local solution of (2i) with λ = λ̄ such that the
following hold:

• the (2i)-SCQ holds and

• the (2i)-SSOSC holds for all ξi ∈ Ξi(x
∗
i (λ̄)).

Then, for all i ∈ {1, . . . , N}, there exist open neighborhoods Ui and Wi centered at x∗i (λ̄) and λ̄, respec-
tively, and a function xi(·) : Wi → Ui ⊆ Xi such that:

(i) xi(·) is a PC1 function of λ ∈Wi;

(ii) for each λ ∈Wi, the point xi(λ) is a strict local solution of (2i); and

(iii) the directional derivative x′i(λ; ·) is a piecewise linear function such that for each λ ∈Wi, d ∈ Rm,
and ξi ∈ Ξi(xi(λ)) the value x′i(λ; δ) is given by the unique solution of

min
v

1
2v
TQiv + vTATi δ s.t. Bi[αi·]v = 0, Bi[βi·]v ≤ 0. (45)

We remark that the conclusion of Lemma 5, namely, that xi(·) is a PC1 function of λ ∈Wi, implies
that xi(·) is locally Lipschitz and directionally differentiable.

A.5 Relationship Between the QP and the ICP Formulations

A solution to (5) easily yields a first-order KKT point of (1). In particular, we have the following result
whose proof follows simply by combining (31) with (5).

Lemma 6. Suppose λ∗ solves (5) with x∗i denoting a first-order KKT point of (2i) for λ = λ∗ for all
i ∈ {1, . . . , N}. Then, x∗ is a first-order KKT point of (1).

Similarly, a solution to (5) can also yield a second-order KKT point of (1). For this claim, we have
the following result whose proof follows by combining (37) and the fact that the Cartesian product of
the Ti’s represents a superset of T .

Lemma 7. Suppose λ∗ solves (5) with x∗i denoting a second-order KKT point of (2i) for λ = λ∗ for
all i ∈ {1, . . . , N}. Then, x∗ is a second-order KKT point of (1).

The reverse implications are the subjects of the following lemmas, the proofs of which are straight-
forward; hence, we state them without proof.

Lemma 8. Suppose that x∗ is a first-order KKT point of (1) in that there exist multipliers (λ∗, ξ∗)
such that (30) holds. Then, the following hold:

(i) for each i ∈ {1, . . . , N}, x∗i is a first-order KKT point for (2i) for λ = λ∗, and

(ii) λ∗ solves (5).

Lemma 9. Suppose that x∗ is a second-order KKT point of (1) in that there exist multipliers (ξ∗, λ∗)
such that (30) and (36) hold. Moreover, suppose that

dTQd ≥ 0 for all d = (d1, . . . , dN ) ∈
N∏
i=1

Ti(x∗i , ξ∗i ). (46)

Then, the following hold:

(i) for each i ∈ {1, . . . , N}, x∗i is a second-order KKT point for (2i) for λ = λ∗, and

(ii) λ∗ solves (5).
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