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Abstract

We present a new image feature detection method. Our method selects features based on
segmenting points with high local intensity variations across different scales using a robust
rank order statistics approach. Our method produces a large number of repeatable features
that are invariant to several image transformations such as rotation, scaling, viewpoint, and
lighting variations. We show the advantages of our feature in comparison to other existing
features using the Oxford dataset. We also show that, when used in monocular and stereo
SLAM systems, our feature outperforms SIFT in terms of the pose estimation accuracy using
several public datasets including the KITTI dataset.
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ROS2D: Image Feature Detector Using Rank Order Statistics

Khalid Yousif!, Yuichi Taguchi2, Srikumar Ramalingamz, and Alireza Bab-Hadiashar!

Abstract— We present a new image feature detection method.
Our method selects features based on segmenting points with
high local intensity variations across different scales using a
robust rank order statistics approach. Our method produces a
large number of repeatable features that are invariant to several
image transformations such as rotation, scaling, viewpoint, and
lighting variations. We show the advantages of our feature in
comparison to other existing features using the Oxford dataset.
We also show that, when used in monocular and stereo SLAM
systems, our feature outperforms SIFT in terms of the pose
estimation accuracy using several public datasets including the
KITTI dataset.

I. INTRODUCTION

Extracting salient visual information from local image
regions is regarded as one of the most important procedures
for many image processing and computer vision applications.
These applications include camera calibration, image match-
ing and registration, object recognition and classification,
structure from motion/SLAM and many more.

Generally, the main aim of feature extraction is to reduce
the amount of resources required to describe an image by
sampling it into a subset of points, while still describing the
image with sufficient accuracy. For many years, SIFT [1] has
been regarded as the golden standard for feature detection
and description by the robotics and computer vision commu-
nities, due to its repeatability, distinctiveness, and invariance
to a variety of image transformations. The number of features
extracted by SIFT usually ranges between a few hundred
to a few thousand. While this number may be sufficient,
several applications benefit from extracting a larger number
of features. For instance, feature-based STM/SLAM systems
estimate the camera pose and generate a 3D model using
a subset of the matched features (inliers); if the number
of the matched features is small, the number of the inliers
will likely be small, resulting in inaccurate camera pose
estimation and a sparse 3D model.

In this paper, we propose an image feature detection
method that is able to extract a large number (ranging from
a few thousand to tens and even hundreds of thousand) of
highly repeatable features. When paired with robust image
descriptors such as SIFT descriptors, the proposed feature is
highly invariant to viewpoint, rotation, blurring, lighting, and
scale changes. Similar to the 3D feature extraction method
presented in [2], our method utilizes a rank order statistics
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based robust segmentation method (MSSE) to segment the
image into regions with uniform intensities and regions con-
taining high intensity variations. Experiments on the Oxford
dataset [3] demonstrate that our feature performs favorably
compared to existing features in terms of the repeatability
and inlier ratio. We also use our feature in monocular and
stereo SLAM systems and show that our feature outperforms
SIFT in terms of the pose estimation accuracy using several
public datasets including the KITTI dataset [4].

II. RELATED WORK

Harris corner detector [5] is one of the earliest and most
well-known feature detectors. They defined a corner by
a point in which image intensities have a large variation
between adjacent regions in all directions. Mikolajczyk and
Schmid [6] extended the Harris corner detector to be scale
invariant. Rosten and Drummond [7] proposed an efficient
corner detector called FAST. FAST corners are found by
comparing the neighboring pixels (in an area that includes
16 pixels around the center) to the center pixel. A region
is defined as uniform, an edge, or a corner based on the
percentage of neighboring pixels with similar intensities to
the center pixel. Rublee er al. [8] extended FAST by adding
an orientation component to the features. BRISK [9] is
another feature detector that searches for maxima in both
the image plane and the scale-space using the FAST scores
as a measure for saliency.

Lowe [1] proposed SIFT, a method that is widely regarded
as one of the most robust feature detectors available because
of its invariance to scale, rotation, viewpoint, and illumina-
tion changes. SIFT features are computed by analyzing the
Difference of Gaussian (DoG) between images at different
scales. One of the main downsides to SIFT is that it is
computationally expensive. Bay et al. [10] outlined this issue
and proposed SURF, a feature detector that is similar to
SIFT in that it is invariant to multiple image transforma-
tions, but is faster. As opposed to SIFT which analyzes the
DoG, SURF analyzes the determinant of the approximated
Hessian matrix in order to find the local maxima across all
scales. Lourenco et al. [11] outline the problem of matching
keypoints extracted from radially distorted images that are
acquired by cameras with microlenses or wide field of view
and propose a method that improves the repeatability of de-
tection and effectiveness of matching under radial distortion.

Our method is closely related to [2], which used a rank
order statistics to extract 3D features from a point cloud.
Their method computed 3D features on a single metric
scale available in the 3D data, while our method computes
2D features using a multi-scale representation to achieve



the scale invariance. Moreover, their aim was to obtain as
small number of features as possible that are needed to
register two RGB-D frames, while we aim to obtain a large
number of high quality features to improve the camera pose
estimation accuracy. This difference stems mainly from the
fact that in RGB-D SLAM systems, 3D point measurements
are typically stable and a smaller number of 3D features
is sufficient for the pose estimation. On the other hand,
in monocular and stereo SLAM systems, 3D points are
triangulated from the inlier matches of 2D features; the
triangulated 3D points are less stable than the measured 3D
points in RGB-D SLAM systems, and the number of the 3D
points is smaller because they are triangulated from at least
two frames instead of measured in a single RGB-D frame.

III. RANK ORDER STATISTICS 2D FEATURES

In this section, we describe the main steps of detecting the
Rank Order Statistics 2D features (ROS2D). As a preprocess,
we convert the original color image to grayscale, and apply
a histogram equalization method to the grayscale image to
improve the lighting invariance of the features. The first
step of the feature detector involves the construction of a
multi-scale representation. This is followed by calculating a
saliency measure (we will refer to it as a residual) for each
point across both the image and scale dimensions. Using
this measure, a robust data segmentation method (MSSE) is
employed to find points at different scales with high intensity
variations in comparison to their local neighborhood. This is
followed by assigning an orientation component to each of
the detected features. Finally, a descriptor is computed for
each feature.

A. Multi-scale representation and calculating the residuals

Similar to SIFT, we construct a scale-space pyramid
consisting of n octaves and m octave layers. Each octave is
obtained by sampling the previous one into half its resolution.
For each octave layer within an octave, a ¢ that corresponds
to a Gaussian function at that scale is computed using the
method described in [1]. Using each o, a Gaussian kernel
(discrete approximation to Gaussian function) is computed
using the following equation [12]:
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where G; is the ith Gaussian coefficient of the one dimen-
sional kernel, ¢ is a scale factor such that };G; = 1, and
ksize corresponds to the size of the kernel. In order to
obtain a ksize X ksize kernel, we simply multiply the one
dimensional Gaussian kernel G by its transpose. We note that
the size of the kernel is fixed across the scale space, and is
calculated based on the ¢ of the highest octave layer. This
is followed by calculating the kernel’s Gaussian coefficients
for each layer. We also note that the aforementioned kernels
are not used as means to blur the images. The Gaussian
coefficients at each octave layer are solely used as weights
for the calculation of the residuals (saliency measures). The
procedure to calculate the residuals is as follows. For each

PR Octave Layer 3: o3

e Octavelayer2:o,

Octave 3
Octave Layer 1: o

<« Octave Layer 3: 03

Octave Layer 2: o,
<« Octavelayer L: o

\<; Octave Layer 3: o

\«<—— Octave Layer 2: 0,

\ < Octave Layer 1: o,

Residual Images across the scale-space

Fig. 1. An example of the constructed residual images across different
scales. In this example, there are 3 octaves and 3 octave layers. Note that
although the o values are the same for different octaves, down-sampling
the images into half its resolution has the same effect as doubling the scale
(but more efficient than using large ¢ values).
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Fig. 2. MSSE segmentation of the residuals across the scale space. ROS2D
features are selected as points in the second group associated with high
residual values.

point in the scale-space pyramid, we assign a residual value
using the following equation:

r:ij(IC—IJ-)Z, )
j

where r is the residual at the query point, /. and [; are the
intensity values of the query point and its jth neighbor within
the kernel respectively, and w; is a weight corresponding to
the jth coefficient of the Gaussian kernel at that octave layer.
The residual values are stored in residual images as shown
in Figure 1. Since we have n octaves and m octave layers,
this results in a total of n x m residual images. We assume
that points with small residual values (close to zero) belong
to regions with small intensity variations, whereas higher
residual values correspond to regions with high intensity
variations. Note that a point may be associated with a small
residual on one scale (if the discrete Gaussian function falls
inside a region), but a large residual on higher scales (if the
discrete Gaussian function is larger than a region). In the
following section, we will describe how the residuals are
segmented and the features are selected.

B. Robust segmentation of the residuals

The next step involves segmenting the image points at all
the scales into two groups based on their residual values. The
first group contains points associated with small residuals,



corresponding to regions with small intensity variations. The
second group contains points with large residual values, cor-
responding to regions with high intensity variations. Similar
to the procedure described in [2], we first sort the residual
values in an ascending order, and then iteratively calculate
the standard deviation of the sorted data using the first k
sorted values using the following equation:

k
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where r; is ith residual in the sorted square residuals vector,
and p is the dimension of the model. Initial value of k
corresponds to the assumed minimum percentage of points
that could be considered a segment in the application. The
transition point k' (k" corresponds to the new kth order that is
flexibly found by MSSE) is found by iteratively incrementing
k until the following condition is met:
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where T is a constant factor and is typically set to 2.5
to include 99% population of a normal distribution [13].
Figure 2 shows an example of the segmentation of the points
based on their residual values using the MSSE constraint into
two groups. Points associated with residuals in the second
group are the selected features.

C. Orientation assignment

Each of the features selected from the above step is
assigned an orientation value using the method described
in [1]. A histogram consisting of 36 bins is formed around
each feature covering 360° using the gradient orientations
of points in a region around the feature (the size of this
region is directly related to the scale at which the feature
is selected). Each of the gradient orientations is weighed
using the gradient magnitude at that point. The orientation
value corresponding to the maximum value in the histogram
is assigned to the feature. In addition, if there are other
dominant orientation values within 80% of the maximum
value, then new features are created to be identical to the
original feature but assigned with a different dominant ori-
entation. To achieve better accuracy, we interpolate the peak
position by fitting a parabola to the 3 histogram values closest
to each dominant orientation [1]. Assigning an orientation
to each feature is crucial to achieve rotation invariance,
since a feature descriptor can be computed relative to this
orientation.

D. Feature descriptor

ROS2D features could be paired with any image descrip-
tor. In our experiments, we assigned SIFT descriptors to
ROS2D features due to its robustness and invariance to
a number of image transformations. SIFT descriptors are
obtained by dividing the region around the feature into
4 x 4 subregions. In each subregion, an orientation histogram
of 8 bins is constructed. This information is then stored
in 4 x4 x 8 = 128 byte description vector. We computed
the descriptors on the histogram-equalized grayscale image,
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Fig. 3. Example of the Oxford dataset [3] used for the evaluation of the
proposed method: blurring (a and b), rotation and scale (c and d), viewpoint
change (e and f), JPEG compression (g), and lighting variation (h).

generated in the preprocess of the ROS2D detector. We
observed that this slightly improves the lighting invariance
of the features.

IV. FEATURE PERFORMANCE EVALUATION

The proposed ROS2D feature extraction method was im-
plemented in C++ using the OpenCV 3.0 framework. We
performed the experiments using a Dell Precision M3800,
powered by an Intel i17-4702HQ processor and 16 GB of
RAM. Our method was compared with other methods using
the Oxford dataset [3] which includes 8 sets of images
with different image transformations as shown in Figure 3.
For each set (containing 6 images), the transformation level
gradually increases (5 levels for each set). The image trans-
formations included in this dataset cover Gaussian blurring
(Bikes and Trees), rotation and scaling (Bark and Boat),
viewpoint change (Graffiti and Wall), JPEG compression
(UBC), and lighting variation (Leuven). The benchmark also
provides ground truth information in the form of homogra-
phies between the first image and each of the other 5 images
in each set.

A. Repeatability evaluation

Repeatability is widely considered as one of the most
important attributes of a feature detector. To evaluate the
repeatability performance of the proposed method, we use
the evaluation method presented in [14]. The repeatability
score is calculated as the ratio between the corresponding
features and the total number of features that are viewed
by both images. Features from two images are considered
to be corresponding if the ratio between the overlapped
area of their regions (after the projection of the feature’s
region of the second image into the first, using the ground
truth homoghraphy transformation) and the union of the two
regions is less than 0.5. In our case, a region is defined as a
circle and is directly related to the scale at which the feature
was detected. Figure 4 shows the repeatability scores of
different feature extraction methods. The compared methods
are ROS2D, BRISK [9], FAST [7], ORB [8], SIFT [1],
and SURF [10]. The figure shows that the proposed method
consistently detects repeatable features under a wide range of
image transformations. The results show that the repeatability
performance of the proposed method is consistently one of
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Fig. 4. Repeatability performance of the compared methods using the Oxford image sets with an increasing level of image transformations (1 to 5).

the highest in all datasets when compared with the state-of-
the-art methods.

B. Matching performance evaluation

In this experiment, we pair the state-of-the-art feature
detectors with descriptors and evaluate their matching perfor-
mance using the same dataset used in the previous section.
We perform a mutual consistency check, by finding the
nearest neighbors in the descriptor vector space from the
source frame to the target frame and vice versa. Only pairs
of corresponding points that were mutually matched to each
other were considered as the correspondences. We then
compute the inlier ratio as MberoL i tonespondees

We compute the number of correct correspondences by
transforming the features (from the set of correspondences
that were obtained from mutual consistency matching) from
the source frame to the target frame using the ground truth
homography transformation. A correspondence is assumed to
be correct if the L2 distance between the transformed feature
and the target feature is less than a predefined threshold
(two pixels). The results of this experiment are plotted in
Figure 5, which show that the proposed method performs
well consistently under various image transformations. The
proposed method performs particularly well under the scale
and rotation, lighting, and JPEG compression variations. A
main advantage of the proposed method is its performance
consistency in comparison to the other methods.

Figure 6 shows the average number of inliers obtained by
the matching procedure described above using all the image
sets. It can be clearly seen that the proposed method is able
to provide a large number of repeatable features that are also
invariant to various image transformations. Extracting high
quantity and quality features is one of the main advantages

of the proposed approach.

C. Limitations

In the previous sections, we showed that our method

outperforms existing methods in terms of the repeatability

and inlier ratio. Here we discuss the limitations of our

method.

Precision-recall performance: Figure 7 presents com-

parisons between different feature extraction methods

using the

number_of_correct _-matches
recall ( number_of _correspondences

(”;‘0’;‘2;‘;;% - igﬁfﬂ;ﬁﬁﬁ‘) curve for two image sets of the
Oxford dataset. Two features are said to be matched if the
distance between their descriptors is lower than a predefined
threshold ¢. The value of ¢ is varied to obtain the afore-
mentioned curve. The results show that SIFT and SURF
outperform ROS2D in this test, particularly as we increase

t, since the number of false matches are increased at a

) vs precision

higher rate for ROS2D. Note that our method still provides

good top matches (left most part of the plots), although the
entire precision-recall performance is relatively low, which
concerns not only the top matches but also the subsequent
matches. The top matches are more important when we
perform sequential image matching, e.g., in SLAM, because
the images have large overlaps and similar appearance.
Processing time: Our method is computationally expen-
sive due to the fact that the residuals are computed for all
the image points at all the scales and that MSSE performs
a sort and a linear search. We compared the processing
time between ROS2D and SIFT. We extracted features from
the Graffiti image set, computed the extraction time, and
averaged the results. For a fair comparison, we extracted
approximately the same number of features for both methods
(around 2600 features). The detection times were 648 ms
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Fig. 7. Precision-recall performance of different feature extraction methods
using the Oxford dataset. For each method, 3 curves corresponding to 3
different difficulty levels are plotted.

and 184 ms for ROS2S and SIFT respectively. SIFT feature
detection time was faster than the proposed method by a
factor of 3.5.

V. EVALUATION IN SLAM SYSTEMS

In this section, we compare the performance between
the proposed method (ROS2D detector paired with SIFT
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of the compared methods using the Oxford image sets with an increasing level of image transformations (1 to 5).
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Fig. 8. Sample images from the KITTI datasets showing different types
of environments: (a) urban, (b) country, and (c) highway.

descriptor) and SIFT (detector and descriptor) when we use
them in stereo and monocular SLAM systems. We show that
a larger number of features extracted with our method is
helpful to improve the camera pose estimation accuracy in
the SLAM systems.

A. Stereo SLAM evaluation

We implemented a stereo SLAM system and used the
exact same framework to compare the accuracy of ROS2D
with SIFT. The stereo SLAM system first extracts features
from the stereo pair, matches them, and obtains their 3D
coordinates via triangulation. In the next step, the system
matches sequential left images and refines those matches
using a RANSAC-MSSE geometric verification step based
on the 3D-to-3D correspondences. The aforementioned step
results in estimating transformations between sequential im-
ages, which are then concatenated up to the current time to
obtain the global poses of the frames. To reduce the drift and
preserve local consistency, we implemented a sliding window
bundle adjustment, in which the measurements obtained in
the previous 10 stereo image pairs are used to refine the
camera pose estimates as well as the point landmarks.

We evaluated the accuracy of the stereo SLAM system
using the KITTI dataset [4]. The dataset is captured using a
stereo camera mounted on top of a vehicle driving around
in various environments. The vehicle is also equipped with



a high accuracy GPS for retrieving ground truth trajectories.
Each image has a 1230 x 370 resolution and a 81° horizontal
field of view. The dataset contains 11 sequences provided
with the ground truth trajectories. These sequences mainly
include three types of scenes: urban with surrounding build-
ings, country containing small roads with vegetations in the
scene, and highway containing wide roads [15]. Examples
of these sequences are shown in Figure 8. The accuracy is
evaluated using average translational and rotational errors
for segments of lengths 100,200,300,...,800 meters. Trans-
lational errors are measured as a percentage of the distance
traveled with respect to each of the aforementioned segment
lengths, whereas rotational errors are measured in degrees
per meter [4].

Evaluation using different numbers of features: In
the first experiment, we study the effect of using differ-
ent numbers of features on the pose estimation accuracy.
We evaluated the accuracy of the proposed method and
SIFT using the first KITTI sequence (00) which consists of
4541 stereo images captured in an urban environment. We
calculated the translational and rotational errors (using the
ground truth trajectories) by varying the maximum number
of extracted features for the compared methods. For the
proposed method, we set the maximum number of features
simply by selecting an #» number of points after the transition
point k' (see Figure 2). To vary the number of extracted
SIFT features, we changed the “nfeatures ” parameter in the
OpenCV SIFT implementation [12], which allows the user
to select the number of best features to retain by ranking by
their scores (measured as the local contrast).

The results of this evaluation are shown in Figure 9.
Note that the maximum number of SIFT features that we
were able to extract was around 6800, whereas the proposed
method was able to extract up to 33120 features. Figures 9
(a) and (b) show that the rotational and translational errors
are correlated, and the most accurate results for SIFT were
obtained when using around 4150 features. In general, we
observed that more features provide more accuracy, but the
improvement saturates after we provide enough features. We
found that when using the proposed method, no significant
accuracy gain was achieved using more than 8000 features.
Overall, the most accurate results achieved by the proposed
method outperformed the most accurate results obtained
by SIFT by 17.3% for translation and 15.7% for rotation.
Figure 9 (c) shows that the inlier ratio decreases when
more features are extracted for SIFT, whereas it increases
when extracting a larger number of ROS2D features. For
SIFT, more features are obtained by changing the parameter
explained above, which may reduce their distinctiveness due
to the selection of lower ranked features and result in a
larger number of false matches. On the other hand, more
ROS2D features are obtained by taking more points after
the transition point k’. These points are associated with
high value residuals, meaning that they belong to regions
with high intensity variations and are likely to be highly
distinctive. Having said that, we found that only selecting
features with the highest residuals (well beyond k") does not

necessarily provide the most accurate pose estimation results
(although their matching performance is high), since this may
result in only selecting features from particular regions in the
image (e.g., features obtained from distant objects, which
are not adequate for estimating the translation). We found
that features with relatively lower residual values (but also
beyond k') could provide us with valuable information for
accurately registering the frames.

Evaluation using different KITTI sequences: In this
evaluation, we compared the accuracy of our method with
SIFT using the 11 KITTI sequences. We set both methods’
parameters as described above. The results are summarized
in Table I and example trajectories are shown in Figure 10.
The results show that the proposed method outperformed
SIFT in all sequences except for sequences 03 (both methods
produced comparable results) and 06 (SIFT produced slightly
more accurate results). Note that the trajectories shown in
Figure 10 do not show the hidden errors in the vertical
position of the camera (y-axis). Also note that despite the
proposed method outperforming SIFT for the 01 sequence,
both methods produced large errors. This sequence consists
of frames captured on a highway, and the bad results may
be attributed to outliers that have similar attributes to inliers.
Those outliers are not a direct result of completely bad
matches or random errors. They belong to structures corre-
sponding to a different (and incorrect) motion. For instance,
some features may exhibit no parallax (the angle between the
captured rays is the feature’s parallax) during camera motion
due to them having a very large depth [16]. Such features
are only able to constrain the rotational component of the
camera motion, thus providing an inaccurate translation.
Regardless of the type of features used, identifying such
motions is a difficult task, and we plan on resolving this issue
in our future work. Another scenario where both methods’
accuracy deteriorated was that some sequences contained
cars moving at various speeds. The robust estimation method
used in this approach was generally able to correctly segment
the correspondences associated with the camera motion.
However, when another car was driving at a similar speed,
correspondences located on this car were mistakenly con-
sidered as inliers and used to estimate the camera motion.
This results in a very small but continuous drift throughout
the sequence [17]. For instance, this scenario occurs on the
04 sequence and an example of this problem is depicted in
Figure 11. The figure shows the inlier correspondences that
were obtained after performing the robust estimation step.
It can be seen that a few (around 5) correspondences were
located on a vehicle driving in front of the camera. We will
focus on motion segmentation in our future work.

B. Monocular SLAM evaluation

In this section, we show the 3D reconstruction results of
the proposed method for monocular sequences obtained from
public datasets [18], [19]. Similar to the stereo SLAM system
described in Section V-A, we implemented a monocular
SLAM system that initially employs a 5-point RANSAC
algorithm [20] to estimate the camera motion between the
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Fig. 10. Stereo SLAM results for three different KITTI sequences.

TABLE I
THE AVERAGE ROTATIONAL AND TRANSLATIONAL ERRORS FOR THE PROPOSED METHOD VS. SIFT USING 11 DIFFERENT KITTI SEQUENCES.

Sequence No. Environment Distance ROS2D-SIFT SIFT-SIFT
Average trans. err. (%) Average rot. err. (deg/m) Average trans. err. (%) Average rot. err. (deg/m)
00 Urban 3714m 1.5749 0.0073 1.9051 0.0087
01 Highway 4268m 26.1425 0.0285 1205.4239 0.0116
02 Urban+Country 5075m 1.9133 0.0091 5.6095 0.0241
03 Country 563m 4.7215 0.0184 4.1427 0.0202
04 Country 397m 4.6817 0.0070 6.0074 0.0077
05 Urban 2223m 3.7162 0.0151 3.978 0.0107
06 Urban 1239m 5.8266 0.0263 4.5559 0.0134
07 Urban 695m 4.8446 0.0277 10.2396 0.0523
08 Urban+Country 3225m 2.6416 0.0083 3.3316 0.0106
09 Urban+Country 1717m 4.0464 0.0108 4.8863 0.0108
10 Urban+Country 919m 2.8794 0.0111 4.0707 0.0191

first two frames and triangulate the 3D points of their
correspondences (up to a scale). For the remaining frames,
we used a P3P algorithm to estimate the relative poses. We
also used a global bundle adjustment algorithm in place of
the sliding window bundle adjustment used previously.
Figure 12 shows the 3D reconstruction results of the
Temple dataset [18] (only first 13 images were used) and the
Sceaux Castle dataset [19] (contains 11 images) using both
ROS2D and SIFT features. It can be seen clearly that the
proposed method was able to provide much denser models
in comparison to SIFT. In addition, Figure 13 shows the 3D
reconstruction results obtained by the proposed method using

the first 30 images of the Dino dataset [18]. We note that the
SLAM failed when using SIFT features for this sequence, as
there were not enough inliers detected by the initial 5-point
RANSAC step.

VI. CONCLUSIONS

We proposed a 2D feature detector that selects features
using a robust rank order statistics segmentation method.
The main idea is to segment points with high local inten-
sity variations across different scales. In the experimental
evaluation, we showed that our method is able to obtain a
large number of high quality and repeatable features. We



Fig. 11. Inliers obtained by the robust estimation method when matching
sequential images. It can be seen that some correspondences were located
on a moving object (car), as it was driving at a similar speed to the moving
camera.

Sceaux castle

ROS2D

SIFT

Fig. 12. Top: sample images from the Temple [18] (left) and Sceaux Castle
datasets [19] (right). Bottom: 3D reconstruction results using ROS2D and
SIFT features.

also showed that our method performs better than state-of-
the-art methods in terms of the repeatability and inlier ratio,
and that the features obtained by our method are invariant to
various image transformations such as rotation, blurring, and
lighting variations. In addition, we showed that our method
outperformed SIFT when used in SLAM systems in terms of
the pose estimation accuracy. We finally showed that using
ROS2D features produced denser 3D models than using
SIFT. The main limitation of ROS2D is its computational
complexity, and in our experiments, SIFT was faster than
our method. We note that increasing the number of keypoints
leads to increasing the computational burden at description
time and therefore the description step could be optimized in
the future. In addition, the robust segmentation step consists
of storing the residuals and searching for the point that
separates features from the rest of the points. This step is
computationally expensive, and in the future we plan on
using faster search methods such as a binary search, to
improve the efficiency of the proposed method.
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