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Cooperative optimal output regulation of multi-agent systems using
adaptive dynamic programming

Weinan Gao, Zhong-Ping Jiang, Frank L. Lewis, and Yebin Wang

Abstract—This paper proposes a novel solution to the
adaptive optimal output regulation problem of continuous-
time linear multi-agent systems. A key strategy is to resort
to reinforcement learning and approximate/adaptive dynamic
programming. A data-driven, non-model-based algorithm is
given to design a distributed adaptive suboptimal output
regulator in the presence of unknown system dynamics. The
effectiveness of the proposed computational control algorithm
is demonstrated via cooperative adaptive cruise control of
connected and autonomous vehicles.

I. INTRODUCTION

Output regulation problems focus on designing feedback
controllers for a plant to realize asymptotic tracking while
rejecting external disturbance; see, e.g. [1]-[3]. It is a general
mathematical framework that can describe numerous control
problems in the real world. The consensus and coordinated
control of multi-agent systems have been under extensive
investigation in the last decade; see [4], [5] and references
therein. At the same time, the cooperative output regulation
problem has received considerable attention [6]—[8]. There
are usually two groups of agents in the cooperative output
regulation problem. The agents in the first group can directly
access the leader information (modeled via an exo-system)
for feedback control, while the other agents in the second
group cannot. The leader-follower consensus problems can
be treated as special cases.

Using traditional output regulation solutions, there are two
major strategies for addressing cooperative output regulation
problems: feedback-feedforward [6] and internal model prin-
ciple [7], [9]. By means of the internal model principle, one
can convert an output regulation problem to a stabilization
problem of an augmented system composed of the plant and
a dynamic compensator named as internal model. By taking
unknown control direction and large parameter uncertainties
into account, reference [8] proposes a distributed adaptive
control design approach for the cooperative output regulation
of a class of multi-agent dynamical systems. However, the
issue of adaptive and optimal controller design for the
cooperative output regulation of multi-agent systems with
unknown dynamics remains open.
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A recent trend in adaptive optimal control is to invoke re-
inforcement learning [10] and approximate/adaptive dynamic
programming (ADP) [11] for feedback control of dynamical
systems. Among all the different ADP approaches for both
continuous-time and discrete-time systems, much attention
has been paid to achieve the adaptive optimal stabilization
of linear or nonlinear plants [12]-[18]. The generalization
to adaptive optimal tracking control is studied by [19]-[21],
and an integration of ADP and output regulation has been
proposed for the first time in [22]. For non-model-based
optimal stabilization of large-scale systems, some interesting
results appear in [23], [24] by combining (robust) ADP
with game theory or small-gain theory [25]. Nevertheless, an
application of ADP to achieve cooperative output regulation
of multi-agent systems remains an open problem.

The main purpose of this paper is to develop a novel ADP
methodology to realize cooperative optimal output regulation
of uncertain continuous-time multi-agent linear systems via
online learning. As the first contribution of this paper, we
design a distributed and suboptimal controller for coopera-
tive optimal output regulation problem (COORP) whereby
each agent can achieve disturbance rejection and asymptotic
tracking. As the second contribution, we develop a non-
model-based learning method that implements the policy
iteration using only the real-time input/state data collected
online along the trajectories of the multi-agent system, when
the perfect system knowledge is not available. This method
can be regarded as a generalization of our recent work on the
centralized adaptive optimal output regulation of continuous-
time linear systems [22].

The remainder of this paper is organized as follows. In
Section II, we briefly review the cooperative output regu-
lation problem and a corresponding model-based solution.
Then, the COORP is formulated in Section III and a subop-
timal controller is designed by solving several optimization
problems. After that, a data-driven ADP based design for
COOREP is presented in Section IV which can produce an
approximate solution of the corresponding algebraic Ric-
cati equations and regulator equations. The convergence
and stability of the proposed algorithm are also rigorously
analyzed. An application to the cooperative adaptive cruise
control (CACC) of connected vehicles is shown in Section
V. Finally, some conclusions are drawn in Section VI.

Notations.  Throughout this paper, || - || represents
the Euclidean norm for vectors and the induced
norm for matricess. ® indicates the Kronecker
product operator. vec(4) = [af,a¥,---,al]7,

where a; € R™ are the columns of A € R™ ™,



For a symmetric matrix P € R™*™, vecs(P) =
[p%1,2p12,"' ,2D1m, D22, 2D23, "+ s 2Dm—1,ms Prom ]~ €
R2™m+D) | veev(v) = [0, 0109, , V10, V3, Vovs, - - -

1 .
Vm—1Um, v2,]T € R2™™+1) for an arbitrary column vector
v € R™. |v|p denotes v’ Pu.

II. PROBLEM STATEMENT

Consider the following linear multi-agent system

o =Ev, (1)
i?i :Aixi + Biui + Dﬂ/,
e; =Cix; + Fpv, i=1,---,N,

where x; € R", u; € R™ and e; € RP¢ are the state,
control input and tracking error of the ith subsystem, and
v € R? is the state of the exosystem (1) which generates
the disturbance D;v and the reference signal —F;v of each
subsystem. Given the exosystem (1) and the plant (2), define
a digraph G = {V,&}. V = {0,1,--- , N} is the node set
with node 0 denoting the leader modeled via the exosystem
(1) and the remaining N nodes being identified as followers
described by (2). £ C V xV refers to the edge set. Denote N;
the set of all the nodes j such that (j,7) € £. The adjacency
matrix A = [a;;] € RVFDX(N+1) jg defined such that a;; >
0 is a positive weight if (j,7) € £ and otherwise a;; = 0.
Then, the corresponding Laplacian £ of G is

_ ZN: aoj —[am"' aGON]
S @

2)

where A = diag{aio, a2, - ,ano}, and H = [h;;] €
RN*N is defined by h;; = <Z§V:0 aij) —ai; and hy; = —ay;
for all 7 # j.

Some standard assumptions for the solvability of tradi-
tional cooperative output regulation problem are made on
the system (1)-(2).

Assumption 1: (A;, B;) is stabilizable for i = 1,--- | N.
. A — M B
Assumption 2: rank c. 0
o(E),i=1---,N.

Assumption 3: The digraph G contains a directed span-
ning tree with the node 0 as its root.

Remark 1: It has been shown in the Lemma 1 of [6] that
all the eigenvalues of H have positive real parts.

The cooperative output regulation is to design a distributed
control policy such that the overall system is asymptotically
stable (in the absence of v) and tll>r£o ei(t) = 0, for i =
1,2,---,N.

Remark 2: The cooperative output regulation problem
studied in this paper includes leader-follower consensus
problem as a special case if we let the v = x(, and matrices
C; and F; as identity matrices for all ¢ = 1,2,--- N.
Moreover, if all the N subsystems in (2) share the same
system dynamics, the cooperative output regulation problem
will be reduced as a synchronized output regulation problem
[26].

A technical solution to the cooperative output regulation
problem is recalled as follows.

Theorem 1 ( [6]): Under Assumptions 1-3, choose a large

@ > 0 such that for any ¢ = 1,2,---,¢9 and any
j=12...,N, Re(/\z(E) - M)\](H)) < 0. Let K;,i =
1,2,---, N, be such that A; — B; K; is Hurwitz and matrices

L, = U; + K;X; where pairs (X;,U;) solve the following
regulator equations

XiF =A; X; + B;U; + D;, 4)
0=C;X; + F;. 5)

Then, the cooperative output regulation problem is solved
by a distributed control policy

w =— Kz + LiG,1=1,2,--- | N, ©)

G=EG+pn|Y ay—G) +aow—G)| . ()
JEN;
III. FORMULATION AND MODEL-BASED SOLUTION OF
COORP

The COORP studied in this paper considers both steady
and transient performance of each subsystem. The formula-
tion follows the traditional linear optimal output regulation
problem [22], [27] that the optimal distributed control policy
need not only solve the cooperative output regulation prob-
lem, but also address the following two problems.

Problem 1:

; TH.x. Tp 17
(g}&)”[‘r(Xi Q:X; +U; RU;) ®)
(4) — (5),

where Q; = QT > 0,R; = R > 0.

Note that Assumption 2 ensures the solvability of regulator
equations (4)-(5) with any matrices D; and Fj, for ¢ =
1,2,..., N [1]. It has been shown in [27] that the solution
(X},U}) to Problem 1 is unique. Let Z; := x; — X[ v, @; :=
u; — U;v. The error system is obtained as follows

subject to

r; = A% + By, 9
The optimal feedback controller 4] = —Kz; is found by

solving the following constrained minimization problem.

Problem 2:
win [ (e
U4 O

subject to (9),

where Q; = QF > 0,R; = RT > 0, with (4;,V/Q:C;)
observable.

When the system parameters are known and v can be
immediately used by all the other agents for feedback, the
cooperative output regulation for system (1)-(2) is equivalent
to achieve output regulation for each subsystem. Moreover,
the COORP is solvable through designing the following
decentralized controller

Qi + [l g, )dt

uf = —Kjx+ Liv (11)

where, for : =1,2,--- | N:



1) K is computed by solving Problem 2, to arrive at
K} = -R;'BI P}

with P = (P?)T > 0 the solution to the following
algebraic Riccati equation

ATP; 4+ P A+ CIQ,Ci — Py B,R; ' BI' Py =0,
(12)

and in this case, the cost of Problem 2 for each ith
subsystem achieves its minimum J;* := |2;(0)|p;.

2) L} =Uf+ KX}, where (X},U/) is the minimizer

of Problem 1.

Remark 3: Instead of solving (12) which is nonlinear in
P?, a policy iteration algorithm, Algorithm 1, is recalled
which approximate P;* by iteratively solving linear Lyapunov
equations.

Algorithm 1 Policy Iteration Algorithm [28]
1: Find a Ko such that A; — B; Ko is a Hurwitz matrix.
k < 0. Select a sufficiently small constant € > 0.
2: repeat
3: Solve Pjj;, and K ;41 from
0 =(A; — B;K;)" Py + P (A; — BiKyk)
+CIQiC; + KL R Ky, (13)
Kij1 =R; "B} Py, (14)

4: k<+ k—+1.
5. until [Py — P 1| <€

However, the optimal controller (11) is not implementable
since v might not be accessible by some agents instantly. To
this end, we develop a suboptimal distributed controller that
subjects to the required communication topology.

w = —Kiz+Li¢,i=1,2,---,N. (15)

The suboptimality of system (1)-(2) in closed-loop with
(15) is characterized in the following Theorem.

Theorem 2: Letting Ji@ be the cost of Problem 2 for the
ith subsystem (2) in closed-loop with controller (15), the
summation of the cost error of each subsystem J;° — J¥ is

N

>S9 =) = [ L (¢ vldr

=1

(16)

where ¢ = [¢7,¢T, -+, ¢T]T, L* = blockdiag{L}, L}, - ,
Ly}, R = blockdiag{Ry,Rs,--- ,Rn}, v =15 Q0.

Proof: By the fact that (A ® I,))(In ®v) = (H®
I,)(1y ® v), the overall system incorporated with the dy-
namic compensator (7) is

t =Ax + Bu+ Dv,

C=[(In®E) — p(H @ 1)C] +pH L),
v :(IN ® E)I/,

e =Cz+ Fv (17)

where x = [z, 23 .- 2%)T, for M = A,B,C,D,F,
M = blockdiag{ M, Ms,--- , Mn}.
Then, the closed-loop error system is

r=(A— BK*)Z+ BL*(¢ —v), (18)

¢ =Cz (19)
where z = [#7, 21, 25]7 and K* = blockdiag{ K7,
K3, K&}

Denote P* = blockdiag{ P}, Py ,--- , P }. Differentiat-
ing the Lyapunov function V' = z7 P*Z along the solutions
of the system (18), we have

d
%(:ETP*J’:)
=z"[(A - BK)"P* + P*(A - BK)|z
+ 23T P*BL*(( —v)
=—lelg — |K*Z|r + 22" (K*)"RL*(¢ — v)
=~ (lele +[alr) + [L*(¢ = v)|r.
where @ = [af,ud, - a7t
Integrating both sides of the last equation, we have

N N oo
Soar > = [ vlndr,
i=1 i=1 0

which directly implies (16).
Moreover, from (17), one can get

d
SC=v) = Iy ® B) = p(H @ I](C — ).
A selection of p in Theorem 1 ensures the exponential
convergence of signal ( — v, which, in turn, guarantees the
boundedness of the cost error in (16). The proof is thus
completed. [ ]

(20)

IV. DATA-DRIVEN COOPERATIVE OPTIMAL OUTPUT
REGULATION CONTROLLER DESIGN

In this section, we develop a data-driven suboptimal con-
troller design approach for COORP via ADP. Interestingly,
the developed approach is able to approximate the control
gains K* and L* without relying on the knowledge of system
dynamics A, B and D.

Consider the ith subsystem. Defining Z;; = x; — Xj;v
for j = 0,1,2,--- ,hy + 1, where X;9 = Op,;xq, Xi1 €
R™*4 such that C; X;1 + F; = 0. X;; € R for j =
2,3, -, h;+1 are selected such that all the vectors vec(X;;)
form a basis for ker(I, ® C;), where h; = (n; — p;)q is the
dimension of the null space of I, ® C;. Then,

«%ij = A;x; + Byu; + (Dz — XijE)’U
= Aikjij + BZ(KZ]CE” + ul) + (Dz - SZ(X”))'U,
(21)
where A;, = A; — B; K, and S; : R™*9 — R"*? js a
Sylvester map S;(X) = XFE — A; X, X € R™*9,
The motivation to introduce Z;; is that we hope to solve
not only P;; and K, but also the Sylvester map of trail

matrices X;; which is a crucial term for solving regulator
equations without accurate knowledge of A, B and D.



Then, along the solutions (21) by (13)-(14), we have
Py — |Zij ()
t+6t
=/ (125 |(AT Pt P s + 2(wi + KinZig) " B P
t

+ QUT(Di — Sl(

|Z3;(t + dt)

P

Xij))" Pixlijldr

t+45t
:/ [_|jij|(Q,;+K3;€R,;Kik) +2(u; + Kipij) T Ri K o1 T
t

+ 2UT(D,' -S; (XLJ))TRki’,J]dT 22)

By Kronecker product representation, we obtain

|fij|(Qi+Kij;cRiK1,k) = (jg ® :E?;)V(:‘C(Qq + KgI;RKik)’
v (Di = 8(Xij))" Piij =

(jg [ UT)VeC((Di, - Si(Xij))TPik)
(ui + Kikfij)TRiKLk-i-la_?ij = [(j

+ (@5 @ul )In, ® Ri)]VeC(Ki,k+1)~

7)) (In, ® K} R;)
(23)

Moreover, for any two vectors a, b and a sufficiently large
number s > 0, define

0o =[vecv(a(ty)) — vecv(a(ty)), -,
veev(a(ty)) — veev(a(ts—1))]%,

t1 to ts
Fa,b :[/ (l®bd7’,/ a®bd77... 7/' a®de]T.
to Jt1 te s
(24)
Equations (22)-(24) imply the following linear equation
vecs(Pyr)

VeC(Ki’k_;,_l)
vec((D; — Si(Xi;))" Pir)

lpijk = q)ijka (25)

where

\Ijijk :[65%3'50”’ 721—‘5”9’2” (Inl ® K; kR )
—2lz,,4),

(I)ijk = - Fz”zuveC(Qz + K R sz)

The uniqueness of solution to (25) is guaranteed under
some rank condition as shown below. This rank condition is
like the condition of persistent excitation (PE) in adaptive
control [29]. Similar as other ADP algorithms, we add an
exploration noise to the input to satisfy the rank condition.
However, a major difference from traditional adaptive control
is that one can directly approximate the solution to the
Riccati equations and regulator equations.

Lemma 4.1: For all j € Z,., if there exists a s* € Z, such

that for all s > s*, for any sequence tg < t; < --- < tg,
n;(n; + 1
rank([FfU@j y Fi”-ui y Fiw"l}]) = % + (mi + q)nl7
(26)

then the matrix W;;; for the ¢th subsystem has full column
rank for all k € Z.

A general solution to (4)-(5) can be described by a
sequence of a;; € R as

h;+1
Xi =X+ Z ;i Xij.
=2
hi+1
Sl(XZ Z azg B U + D
which is rewritten as
Aixi = bi, 27)
where
Ai =[Ain Aia,
.A' o _VeC(SZ‘(XiQ)) VeC(Si(Xi,thl))
i = | vee(Xi2) vee(Xi pt1)
o 0 -1, ® (P, sz+1R>
Az? - __Iniq 0 )
Xi =[aiz, @i pa1, vee(X;) T, vee(U;) 17,
p = | vee(=8i(Xi) + Dy)
T —vec(X;1) '

One can observe that matrices Py, K; +1 and S;(X1),
,8i(X n,+1) in (27) are obtainable by (25). Also, D; can
be computed from (25) by vec(D;) = vec(D; — S;(Xio)).

Now, we are ready to present the non-mode-based ADP
Algorithm 2 to solve COORP.

Remark 4: Albeit some nodes cannot get instant informa-
tion from the leader, by Assumption 3, all the nodes in G are
reachable from node 0. There always exists a At > 0 such
that v(¢) in the period [¢;,t;41] is received by all the other
subsystems at t = t; + At.

Theorem 3: If (26) is satisfied, for ¢ = 1,2,---, N,
sequences { P} and {K;;,}32, computed by Algorithm

2 converge to P; and K. Furthermore, the multi-agent

Tz, u; (In, ® R;), system (1)-(2) in closed-loop with the learned controller (28)

achieves cooperative output regulation.

Proof: Letting Py, = PL > 0 be the solution to
(13). K k41 is uniquely determined by (14) and ﬂ E =
(D; — Si(Xi;))T Pig. On the other hand, leting P, K
and T solve (25), condition (26) ensures that P, = P,
K41 = K and Tix = T are uniquely determined. By [28],
we have hm sz =K hm sz = P. The convergence

of sequences {P}, and {Klk} %° , obtained by non-
model-based Algorithm 2 is thus ensured. Moreover, we have
(A; — B; K, x-) is a Hurwitz matrix for small threshold ¢; >
0. Based on Theorem 1, we observe that the tracking error
of each subsystem is guaranteed asymptotically converging
to O if the learned controller (28) is applied. [ ]

Remark 5: Note that if v is not measurable by any nodes,
one can refer to [22] to generate a signal w € R?" by
the knowledge of the mininal polynomial of matrix E such
that there is an unknown matrix G € R%*%m guch that
v(t) = Guw(t). Interestingly, we convert the problem of
unmeasurability of v(¢) into that of an unknown matrix G.



Algorithm 2 ADP Algorithm for COORP

i+ 1

2: repeat

3: Compute matrices X;o, X1, -+, X p,41

4: Apply an initial policy u) = —K;ox + &; on [tg, ]
with exploration noise &; and A; — B; K;p a Hurwitz
matrix

5 70

6 repeat

7: Compute I'z, .z, Uz, ;u;, z,0 St (26) holds

8: j—j3+1

9: until j = h; + 2

10: j+<0,k+0

11: repeat

12: Solve Pj;, and K; ;41 from (25)

13: k+—k+1

14: until [P, — P;,_1| < ¢; with ¢; a small positive
constant.

15: K k,j+1

16: repeat

17: Solve S;(X;;) from (25)

18: j—i+1

19: until j = h; +2

20: Solve (X}, U;) from Problem 1

21: Lip <~ U+ K 3o X

22: Obtain the following suboptimal controller
u; = —Ki i + L+ G (28)

23: i1+ 1
24; until i = N + 1

V. APPLICATION TO CONNECTED AND AUTONOMOUS
VEHICLES

In this section, we apply Algorithm 2 to the longitudinal
cooperative adaptive cruise control (CACC) of a platoon
of connected vehicles. CACC is an intelligent autonomous
driving strategy based on wireless vehicle-to-vehicle (V2V)
communication that is believed to be realizable in the near
future. Different from the existing CACC approaches [30],
[31], this paper designs a suboptimal distributed controller
while the mathematical models of the vehicles are unknown.
For © = 1,2, 3,4, we utilized the following model of the ith
vehicle for the purpose of simulation [32],

S; =V,
Vi =as,

(29)

: -1 -1
a; =T; a; +7; u; +d;

where s;,v;,a;, 7; are the position, velocity, acceleration
and time constant of the engine of vehicle #i. The constant
d; is the ratio of the mechanical drag to the product of 7;
and the mass of vehicle #:. The values of 7; and d; are
illustrated in Tab. I. The topology of this platoon is depicted
in Fig. 1, where all the followers can receive motional
data from its preceding vehicle and the leader, while the
exosystem is only accessed by the leader. In this example,

= __:: T~ Y .
coenen |- QD -~ 0 D - G
#0 #1 #2 #3 #4
Direction
-
Fig. 1. The structure of the vehicular platoon
TABLE 1
SYSTEM PARAMETERS
Parameter ~ Value  Parameter = Value  Parameter  Value
T1 [8} 0.1 T2 [8} 0.11 T3 [9] 0.12
Ta[s] 0.13  di[m/s?] 3 da[m/s3] 3.1
ds[m/s?] 3.2 da[m/s®] 3.3

both desired trajectory s; and disturbance d; are generated
by the following exosystem:

i)l =02,
’()2 ZO,
d; =d;vs,

sf=— 1501 — 20(5 — i)vy (30)

with the initial value v = [0 1]T.

For ¢t < 6s, we apply initial admissible control policy
added by an exploration noise, which is a summation of
sinusoidal signals with different frequencies. Then, we follow
Algorithm 2 to iteratively learn matrices K;; and P;;. The
comparisons of F;; and their optimal values P, are shown
in Fig. 2. After that, the optimal solution to the regulator
equations is obtained which can be employed to get the
feedforward gain. To be more specific, we give the learned
approximated solution (X7, U;) to the regulator equation of
vehicle #1 and its optimal one as follows.

15.0000  80.0000 15 80
X, =00016 15.0084|,x7=|0 15|,
—0.0068 —0.0045 0 0

Uy =[-0.0019 —0.2082] U7 = [0 —0.3].

[ ¥ p————— 15—
\ =0 -,y — Pl \ =0 =P - P
\ \
1 \ 1 \
\
b =]
0.5 \ 0.5 \u
. I:L|:| Dopoo o 0
0 5 10 0 2 4 6
Number of Iteration Number of Iteration
1.5 15
S EE-nl S CE-mn
\ \
1 \ 1 \
=]
0.5 \ 0.5 h\
=8 o

0 L2 o#:ﬂﬂg
0 2 4 6 0 2 4

Number of Iteration Number of Iteration

Fig. 2. The comparison of P;j at kth iteration of ith subsystem and their
optimal values



700

. 5
—_— s] U
6001 p—
2
E 4
(2]
=4
S ¥
°
1%}
o
o d
_100 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 5 10 15 20 25 30 35 40
Time(s)
Fig. 3. The positions of vehicles and their desired values

We utilize the learned distributed controller (28) to reg-
ulate the motion of connected vehicles. From Fig. 3, one
can observe that all the vehicles in the platoon can effec-
tively achieve asymptotic tracking while rejecting unknown
disturbance.

VI. CONCLUSIONS

This paper has studied the cooperative optimal output
regulation problem (COORP) of multi-agent linear systems
from a perspective of adaptive dynamic programming (ADP).
In the presence of unknown system dynamics, a novel data-
driven, non-model-based approach to COORP is proposed by
reinforcement learning and ADP. Both theoretical analysis
and simulations indicate that the closed-loop multi-agent
systems can achieve asymptotic tracking and disturbance
rejection with desired optimality properties.
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