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Abstract

This paper presents a novel approach to achieve online multivariable hybrid optimization
of response maps associated to set-valued dynamical systems, without requiring the use of
averaging theory. In particular, we propose a prescriptive framework for the analysis and de-
sign of a class of adaptive control architectures based on neural networks (NN) and learning
dynamics described by hybrid dynamical systems (HDS). The NNs are used as model-free
gradient approximators that are online tuned in order to obtain an arbitrarily precise estima-
tion on a compact set of the gradient of the response map of the system under control. For
the closed-loop system a semi-global practical asymptotic stability result is obtained, and the
results are illustrated via numerical examples.
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A Neuro-Adaptive Architecture for Extremum Seeking Control Using
Hybrid Learning Dynamics

Jorge 1. Poveda, Kyriakos G. Vamvoudakis, and Mouhacine Benosman

Abstract— This paper presents a novel approach to achieve
online multivariable hybrid optimization of response maps
associated to set-valued dynamical systems, without requiring
the use of averaging theory. In particular, we propose a
prescriptive framework for the analysis and design of a class of
adaptive control architectures based on neural networks (NN)
and learning dynamics described by hybrid dynamical systems
(HDS). The NNs are used as model-free gradient approximators
that are online tuned in order to obtain an arbitrarily precise
estimation on a compact set of the gradient of the response
map of the system under control. For the closed-loop system
a semi-global practical asymptotic stability result is obtained,
and the results are illustrated via numerical examples.

I. INTRODUCTION

The problem of online optimization of response maps in
nonlinear dynamical plants, also called extremum seeking
control (ESC), has received significant attention during the
last years, e.g., [1], [2], [3], [4], [5], [6]. Though most of the
existing extremum seeking algorithms are based on averaging
theory for smooth systems [7], [8], or hybrid systems [9],
other type of Lipschitz continuous extremum seeking archi-
tectures that are not based on averaging theory have shown
potential advantages in terms of transient performance, e.g.,
[10], [11], [12], [13]. Because of this, and motivated by
recent developments in averaging-based hybrid extremum
seeking control [5], we present in this paper a novel class
of hybrid extremum seeking architectures that do not rely
on averaging theory. In particular, we propose a prescriptive
framework for the design and analysis of hybrid ESCs based
on neural networks (NN) with provable stability guarantees.
The design of this type of systems is also motivated by results
in the area of neuro-adaptive control [14], and neuro-adaptive
optimal control [15], which have been successfully applied
in several contexts where the model of the plant is absent
or partially known. Because of the use of NN techniques
to approximate the gradient of the cost function from cost
measurements, the class of hybrid ESCs proposed here
is termed neuro-adaptive hybrid extremum seeking control
(NHESC). Since the approach presented in this paper is of
modular nature, the hybrid optimization/learning dynamics
can be designed independently of the NN block. As shown
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in [5], allowing for the presence of hybrid dynamics in the
optimizing/learning block opens the door for the design of
novel ESCs not considered so far in the literature, such as
discontinuous dynamics for “finite-time” convergence, set-
valued dynamics for game theoretical applications, or learn-
ing dynamics for multi-agent systems with switching graphs,
to just name a few. Moreover, the framework of HDS allows
us to consider discontinuous or set-valued plants. The results
presented in this paper thus parallel those presented in [5]
for HESCs based on averaging theory, offering an alternative
approach based on NN, with the potential practical advantage
of obtaining better transient performance by using a large
number of neurons, as well as minimizing the impact of the
choice of dither signal on the performance of the closed-loop
system by only requiring a standard persistency of excitation
(PE) condition. Indeed, removing the need for averaging
allows us to eliminate one of the time-scales that emerge in
the closed-loop system, as well as to substitute the constraint
of using dithers with “sufficiently” small amplitudes and
frequencies, by the condition of using a sufficiently large
number of neurons. This observation is relevant since in
many practical applications the excitation signal is turned
off after an initial learning phase [15].

This paper is organized as follows: Section II presents
some mathematical preliminaries. Section III characterizes
the type of plants that we study. Section IV characterizes the
main block components of the NHESC. Section V presents
our main stability result. Section VI shows numerical exam-
ples, and Section VII ends with some conclusions.

II. PRELIMINARIES

We denote by R (R>) the set of real numbers (resp. non-
negative real numbers), and by Zx( the set of non-negative
integers. For any p > 0 the closed ball of appropriate
dimension in the Euclidean norm, of radius p, is denoted
by pB. We denote by a - S the circle in R? with radius
a. Given a compact set A C R™ and x € R", we use
|z| 4 == inf e 4 ||z — y]| to denote the distance of = to A. A
set-valued mapping M : RP =% R"™ is outer semicontinuous
(OSQ) at z if for each (x;,y;) — (x,y) € RP xR"™ satisfying
y; € M(x;) for all i € Z>o, we have y € M (x). A mapping
M is locally bounded (LB) at z if M (x) is bounded. The
mapping M is OSC and LB relative to a set K € RP if M is
OSC for all z € K and M (K) := Uzex M(x) is bounded.

In this paper we will consider dynamical systems with con-
tinuous and discrete-time dynamics, called hybrid dynamical
systems (HDS). A HDS with state x € R” is represented
by its data H := {C, F,D,G}, and the evolution of z is



characterized by the equations

&t € F(z), z€C
r" €G(z), €D,

(la)
(1b)

where the set-valued mappings F': R* 2 R" and G : R* =
R™, called the flow map and the jump map, respectively,
describe the evolution of the state x when it belongs to the
flow set C' or/and the jump set D, respectively. We will
always impose the following conditions on the data of the
system:

(Cl) The sets C' and D are closed.

(C2) F is OSC and LB relative to C, F(x) is convex

for every z € C, and C C dom(F).
(C3) G is OSC and LB relative to D, and D C dom(G).

Solutions of (1) are defined on hybrid time domains. We
recall [16, Chap. 2] that a compact hybrid time domain is
a subset of R>( x Z>( of the form U;.’:O([tj,tjﬂ] x {5}
for some nonnegative integer J and some real numbers 0 =
to <ty <...<tj41. A hybrid time domain is a set £ C
R>o X Z>o such that, for each (T,J) € E the set E N
([0,7] x {0,...,J}) is a compact time domain. A hybrid
arc is a mapping ¢ : £ — R”™ such that F is a hybrid
time domain and, for each j € Z>¢, t — ¢(t,7) is locally
absolutely continuous. A hybrid arc z is a solution to (1)
from o € R, denoted by x € S(x), if: 1) 2(0,0) = zo.
2) If (t1,35), (t2,7) € dom(x) with ¢; < to then, for almost
every t € [t1,t2], z(t,j) € C and & € F(xz(t,7)). 3) If
(t,5), (t,7+1) € dom(x), then :(¢,j) € D and z(¢,j+1) €
G(x(t, 7).

The following two stability definitions would be used in
this paper:

Definition 2.1: Let H be a hybrid system of the form (1),
and A C R” be a compact set. The set A is uniformly
globally asymptotically stable (UGAS) for H if there exists
a ICL function 8 such that any solution x to H satisfies
[2(t, j)la < B(2(0,0) 4, + j), for all (¢,) € dom(z). M

Definition 2.2: For a HDS parametrized by € > 0, denoted
He .= {C.,F.,D.,G.}, a compact set A C R" is said to
be semi-globally practically asymptotically stable (SGP-AS)
as ¢ — 01 if there exists a function 8 € KL such that the
following holds: For each A > 0 and v > 0 there exists
€* > 0 such that for each ¢ € (0,¢*) each solution z of
H. that satisfies |2(0,0)|4 < A also satisfies |x(t,j)|4 <
B(|x(0,0)| 4,t + j) + v, for all (¢,5) € dom(z). [ |

Remark 2.1: 1f the sets C. and D, are compact, SGP-AS
is equivalent to global practical asymptotic stability (GP-
AS), since A can be selected sufficiently large to encompass
every initial condition where solutions of 4. are defined. B

ITII. PROBLEM STATEMENT

Consider a constrained dynamical system described by the

differential inclusion
bePO.u), (O,u)ehgxU, y=¢0), @

where § € R™, u € R™, and y is a scalar output. System (2)
is characterized by the set-valued mapping P : R™ x R" =

R™, and the output function ¢ : R”™ — R. The state 6 is
constrained to evolve in the compact set Ay := A\gB, where
Ao € Ry is a parameter that can be selected arbitrarily large
in order to encompass any complete solution of interest, i.e.,
any solution of interest with an unbounded time domain. The
input u is constrained to evolve in the set U C R". System
(2) must satisfy the following regularity assumption:
Assumption 3.1: P(-,-) satisfies condition (C2) relative to
Ag x U, and ¢;(+) is continuous. |
Equation (2), together with the dynamics u = 0, i.e.,
u kept constant, describe an open-loop system that can be
modeled as a HDS of the form (1) with no jumps, i.e.,

,Hﬁ,u = {A9 X Uv P x {0}7 (Z)a (Z)} 3

We impose the following stability assumption on (3).

Assumption 3.2: There exists a set-valued mapping H :
R™ = R™ that is OSC and LB relative to U, such that
for each p € Ry the compact set M, := {(0,u) : 0 €
H(u),u € R"NpB} is UGAS for system (3) with restricted
flow set Ap x (UN pB). [ |

In order to have a well defined optimization problem the
following two assumptions are also required.

Assumption 3.3: Let H(-) be given by Assumption 3.2.
For each u € R™ and each pair 0,0 € H(u), we have that
e(0) = (). =

The response map of system (2) is then defined as

J(u) :={p(0) : 0 € H(u)}, )

where H(-) is given in Assumption 3.2. Note that under
Assumption 3.3 the mapping J(-) is well-defined. The op-
timization problem is then characterized by the following
assumption.

Assumption 3.4: J : R™ — R is smooth and has a global
minimum u* € U. ]

Assumptions 3.1-3.3 are the generalization for differential
inclusions of the standard ESC assumptions used when the
plant is a Lipschitz continuous ODE, e.g., [2]. Thus, as in
the standard ESC, our main goal is to design model-free
feedback mechanisms that guarantee convergence of u to u*
by using only measurements of y, assuming no knowledge
of J, P, and ¢.

IV. NEURO-ADAPTIVE HYBRID EXTREMUM
SEEKING CONTROL

A conceptual scheme of the proposed neuro-adaptive
hybrid extremum seeking architecture for the minimization
of J is presented in Figure 1. This scheme is comprised of
four main blocks: (A) the neural network-based model-free
gradient approximator; (B) the differential inclusion generat-
ing the dither signal p needed to provide the persistency of
excitation to the system; (C) the hybrid learning dynamics
7:[5; and d) the plant, which was already characterized in the
previous section. We proceed now to the describe in detail
the components (A), (B) and (C).
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Fig. 1: Modular scheme of NHESC

A. NN-based Model-Free Approximator

Under Assumption 3.4 the response map J(-) is smooth,
which under the High-Order Weierstrass Approximation
Theorem and the results in [17], imply the existence of a
complete independent basis set of functions {¢;(u)} such
that J and VJ are uniformly approximated on compact sets,
i.e., there exist scalar coefficients ¢; such that

N o)
J(w) = cigi(u) + Y cidi(u), )
i=1 i=N+1

(2
0J() _~, 00(w) | =~ do(u)
Ouj ZCZ 8u7- + X Z c E)uj ’ ( )
=1 E i=N—+1 -
where ¢(u) = [p1(u),...,on(u)]" : R® — RN, and the
last terms in (5)-(6) converge uniformly to 0 as N — oc.
Therefore, given N € Z>1, (5) and (6) can be written as

J(u) = ¢(u) "w* + e(u) (7
VJ(u) = Dé(u) "w* 4 Ve(u), (8)

where w* € RY, and D¢(u) is the Jacobian matrix of ¢
evaluated at u. The mapping ¢ : R” — R¥ is called the NN
activation function vector, N the number of neurons in the
hidden layer, and €(-) the NN approximation error.

Assumption 4.1: The function ¢(+) is continuous. |

The following lemma corresponds to [15, Lemma 1], and
establishes the approximation properties of the neurons in
the hidden layer.

Lemma 4.1: Let Q@ C R™ be compact. Then as N — oo
the approximation errors €(u) and Ve(u) satisfy e(u) —
0 and Ve(u) — 0, uniformly. Moreover, for each fixed
N, there exist (€1,é2,w) € R3, such that |e(u)| < &,
[Ve(u)|| < €, and [|w*|| < w, for all u € . [ |

The main challenge in equations (7) and (8) is that the
ideal weights w* are unknown. Therefore, they have to be
estimated online by using only measurements of .J. In order
to do this, let u be fixed, and define the output of the NN as
J(u) = w7 ¢(u), where w is the estimated value of the NN
weights w*. Define the weight approximation error as

W= — w*, )

and the estimation error of J as

e=J—J, or e=uw¢u)+e(u). (10)

We aim to select w to minimize the squared residual error
E = 1eTe. To do this, we consider the following learning
dynamics based on the modified Levenberg-Marquardt gra-
dient descent algorithm

¢ .
(1+¢Tp)*"
where I' € R+, which has a normalization term (1+¢ " ¢)?
instead of the standard (1+¢ " ¢) , see also [18]. The learning

dynamics (11) will be constrained to evolve in a compact set
Q. that will be defined in the next section.

w=-T

(1)

B. PE Signal Generator

Similar to standard adaptive architectures [18], in order
to obtain convergence of the learning dynamics (11) to their
correct values, a persistency of excitation condition is needed
in ¢. To achieve this, a dither signal p : R>g — R” needs to
be injected to u for all ¢ > 0. This signal will be generated
as the solution of the time-invariant differential inclusion

pell(p), pev, 12)

where IT : R = R", and ¥ C R" is the flow set describing
the points in the space where i is allowed to evolve.

Assumption 4.2: The set-valued mapping TI(-) satisfies
(C2) relative to ¥, and ¥ is compact. |

Note that Assumption 4.2 is not restrictive, and it is satis-
fied if, for instance, TI(-) is single-valued and continuous.
However, using set-valued mappings as signal generators
allows us to consider a broader class of excitation signals
compared to those generated by differential equations.

The following stability and completeness assumption is
also imposed on system (12).

Assumption 4.3: For system (12) there exists a UGAS
compact set -Au C W, and for each initial condition in W
there exists at least one complete solution y(-). [ |

For system (12) the dimension of the state p can be
enlarged to generate enough dither signals with different
excitation frequencies. A simple example of this case is
presented as follows:

Example 4.1: Consider the time-invariant oscillator given
by the dynamics

/:L:(I)w'luﬂ /.LECL'S”, a >0, (13)
where @, : R?” — R2?” is a block matrix of the form
Qo 0 ... 0
0 Q, ... 0
P, = ) . ) ; (14)
0 0 Qs

and where the block components (), are defined as

0 Wy
—W; 0

Qwi::{ ], w; ERsg, V i€{l,...,n}.



From Definition 2.1 it is easy to see that system (13) renders
the set aS™ UGAS. Then, one can take as dither signals
linear combinations of the odd components of the solutions
of (13), which are given by u;(t) = cos(w;t)u2;—1(0) +
sin(w;t)u2;(0), for i € {1,...,n}. Similar sinusoidal ex-
citation signals have been used by averaging-based hybrid
extremum seekers [5], as well as by algorithms not based on
averaging [12]. ]

Although the stability condition imposed by Assumption
4.3 is critical for our stability analysis of the closed-loop
system, so it is the PE property associated to the signal ¢ in
the learning dynamics (11):

Assumption 4.4: Define ¢(t) := ¢(u + w(t)). Then, there
exists constants (01, 32, T) € R2, such that for each v € R"
and each solution M; of (12), the normalized time varying

signal ¢(t) := % satisfies

t+T _ _
ng/‘ H(1)6" (r)dr < ol

for all ¢ > 0. |

Remark 4.1: Note that under Assumptions 4.1 and 4.3,
and by the compactness of W, for each fixed u, the signal
¢(t) is uniformly bounded. Moreover, there will always exist
a signal ¢ with unbounded time domain, such that the PE
condition can actually be evaluated. |

Remark 4.2: One can ensure that the signal ¢(t) is per-
sistently exciting by adding exploration noise formed by
sinusoids of different frequencies, see [18, Chapter 4]. Such
sinusoids can be obtained as in Example 4.1. ]

Using the PE property of ¢, as well as the learning
dynamics (11), and the change of variable (9), for each pair
of positive numbers (p, c) € R2>0 we can study the stability
properties of the system

u=20
fr € II(p) .
5 -T- ¢(U + 'u) ) (U, /.L7’LU) € C'lo,c
W= e
(1+ du+ ) Td(u+ )’
(15)
with e = W' ¢(u + p) + €(u + ), and with flow set
Chre:=(pBNU) x ¥ x Q,, (16)

where Q. := {@w € RY : 2@ 'T'% < c}. The following
proposition establishes a stability result for this system with
frozen input.

Proposition 4.2: Consider system (15) with flow set (16),
and suppose that Assumptions 4.1 - 4.4 hold. Then, for each
pair (p,c) € R2, and each  such that éB C int(2.), there
exists a number N* of NN such that for all N > N* there
exists a compact set A, C €B such that the compact set

o ={(u,p,w) :ue pBNU, (u,w) € A, x A} (17)

is UGAS.

Proof: Since u is constant and p is generated by the
uncoupled PE signal generator (12) which renders the set A,
UGAS, it suffices to study the behavior of the dynamics of
w. Moreover, since u is constrained to lie in the compact set

pBNU, and p is uniformly bounded, we can take ¢(t) in (15)
as an independent absolutely continuous function of time.
Now, consider the radially unbounded Lyapunov function
1
Vg = inr—lw, (18)

and note that W = . Taking the derivative of (18) one gets

Vi = w' T~
. T
= b —_— I 'w
( r? ( o)
- 1
= To+e ¢f ————w
(1+¢79)
When € = 0 we have that Vw reduces to
Vi = —a" ¢¢" b, (19)
which can be rewritten as
2
Vi =————=<0. (20)

Y (49792 T

This implies that sup;s | Vi (t)] < 00 and sup,s [|@(t)]| <
oo. Moreover, (20) and (18) 1mply that for each ¢ € R the
compact set Q. := {w € RY : Vg () < ¢}, is positively
invariant under the dynamics (11), which guarantees the
existence of complete solutions for system (15). Using the
PE condition on 45, and equation (19), it follows by [18,
Theorem 4.3.2] or [15, Thm. 1] that w converges to zero
exponentially fast. Now, if ¢ # 0, using the PE condition,
one has that V5 is negative if [15, Thm. 1],

€]
+ T’

Note that |1 + ¢T¢|| > 1. Let € > 0 be such that B C
int(Q.), and let € < € Then, since u is constrained to the
compact set pBNU and p to the compact set ¥, using Lemma
4.1 the condition ||¢|| < € can be guaranteed by taking N
sufficiently large. Therefore, there exists a N* such that for
any N > N* equation (21) is satisfied if || o] > &.
Then, since [|¢(¢)|| < 1 for all ¢+ > 0, using the Cauchy-
Schwarz inequality we have that V will be negative outside
the set Q¢ := {w € RN : ||| < & }. Finally, define B;
éB c RY and note that for sufficiently small & one has that
Qe, C Be C int(Q,). Thus @ (t) converge exponentially fast
and in finite time to Bz. Since the flow set in (15) is compact,
the previous arguments, and Assumption 4.3, imply by [16,
Corollary 7.7] and [5, Lemma 1] that there exists a compact
set A. C w* + €B such that the set (pBNTU) x A, x A, is
UGAS for system (15). |
Proposition 4.2 will allows us to make use of singular
perturbation arguments once the dynamics of % are taken
into consideration. This approach makes the design of the
NHESC of modular nature, allowing us to design the learn-
ing dynamics of u independently of the dynamics of the NN.
Remark 4.3: The proof of Proposition 4.2 exploits the
stability properties of u, as well as the PE Assumption 4.4
on the solutions of the generator (12), instead of using the

~T
1276 = 3 e @



weaker and more common PE assumption on ¢(-). However,
several classes of dithers can be generated by system (12),
including the standard sinusoid signals. |

C. Hybrid Learning Dynamics

The optimization block H in Figure 1, is modeled as a
HDS of the form

fbu,z € F(S (-Tu,za D¢(U)T1D) )
I‘;L}x S G& (xu,z>7

where 7, . == (u',27)" € R™" and n + r = . The state
z is an auxiliary state of dimension! r € Z:>(, which can be
used to model timers, logic states, etc. The sets C,,, D,, C R"
and C,, D, C R" define the flow and jump sets for u and
z, respectively, and § € R.( is a tunable parameter that
gives flexibility for the design of the set-valued mappings
Fs5 : R x R" =3 RY and G : R = R’. The hybrid learning
dynamics (22) are based on the following two assumptions:
Assumption 4.5: There exists a §* € Ry such that for all
d € (0, 6*] the following holds:
o Cy xC, and D, x D, satisfies (C1).
. Fg(-, -) satisfies (C2) relative to (C x C,) x R™, and
CA?(;(') satisfies (C3) relative to D,, x D,.
o For each compact set X C R! there exists an ¢* € R+
such that for each ¢ € (0,¢*) and each =z, .(0,0) €
K the HDS (22) with flow map F(x.,., VJ(u) + €B)
generates at least one complete solution. |
Assumption 4.6: The set U satisfies C, U D,, = U, and
there exists a compact set Y C C, x D, such that the set
Ay = {u*} x T is SGP-AS as § — 0T for system (22)
with Dé(u) T = VJ (u). |
If F5 and Gy are independent of any parameter 0, As-
sumption 4.6 is just a UGAS assumption on (22). Different
examples of hybrid learning dynamics satisfying Assump-
tions 4.5 and 4.6 can be found in [5].

Ty, € Cy x Cy,  (22a)

T € Dy x D, (22b)

V. MAIN RESULT
The closed-loop system is obtained by combining the plant
(2), the PE generator (12), the NN dynamics (11) with J
replaced by y = (), and the hybrid dynamics (22). The
resulting system is a HDS #H := {C,F,D,G} with state
T = ($I7271DT,MT,9T)T and equations
C:=(CyxCy)xQ:xTx Ay
161 . Fé (xu,zv D¢(U)TUA))

—kp - p(u+ p) (0T p(u+ ) — ¢(0))

(23a)

€ F(x):= ey T
P(f,u+ p)
(23b)
D:=(DyxD,)xQ.xTx Ay (23¢)
GJ (:L'u,z)
et e G(z) = w , (23d)
i
0

IThe case = 0 indicates that the auxiliary state z is omitted.

where ky 1= €1 €9, kg 1= £5- T, (e1,£2) € R2, are tunable
parameters, and where

B(u + 1)
1T+ ¢(u+ ) T plu+ )’

with ¢ defined as in Assumption 4.4. The following theorem
is the main result of this paper. Its proof is based on the
singular perturbation results for HDS presented in [19], and
it is omitted due to space limitations.

Theorem 5.1: Suppose that all the assumptions of Sec-
tions III and IV hold. Then, for each compact set K c R
satisfying A, . C int(K), there exists a pair (¢, \g) such that
the set A, , x{w*} x A, x Ag is GP-AS as (J, TT%/]’ €2,€1) —
0T for the HDS (23) with restricted flow and jump sets

5w+u%:( (24)

Cr :=[(Cu x C.) N K] x Qe x ¥ x Ay (25)
D :=[(Dy x D)) NK] x Q. x ¥ x Ay, (26)
]

The proof of Theorem 5.1 is similar to the proof of [5,
Thm. 1]. However, it has three main differences: First, using
the NN model-free approximator allows us to eliminate one
of the multiple time-scales that emerge in the closed-loop
system. Second, the averaging-based step of [5, Thm. 1] is
replaced by a singular-perturbation argument that makes use
of Proposition 4.2. Third, the amplitude of the dither signal
w1 does not necessarily have to be small in order to obtain a
good approximation of the gradient of the response map J.
Instead, the number of neurons in the hidden layer should be
sufficiently large. This is in contrast to results such as those
in [10], where the number of neurons N do not significantly
affect the performance of the system provided the amplitude
of the dither signal is sufficiently small.

VI. NUMERICAL EXAMPLES

We present two simple numerical examples:

A. SISO Case

Suppose that the plant is a static map such that y =
J(u) := u?, which has a global minimum at u* = 0. We
want to achieve convergence to u* in “finite-time”, and with
an approximately constant evolution rate. To achieve this
consider dynamics (22) given by the differential inclusion

1 if VJ(u) <0

[~1,1] if VJ(u) =0
—1 if VJ(u)>0,

e k- 27)

which simply corresponds to the Krasovskii regularization
[20] of the discontinuous gradient method [21]. The dither
signal is generated by an oscillator as the one considered
in Example 4.1. The vector of basis functions is defined as
¢ = [u?,u,1]T. Figure 2 shows the evolution of the vector of
weights 1 = [1y, 19, wW3] " converging to the actual values
w* = [1,0,0]". The inset shows the evolution in time of the
input u converging to the optimal value u*. The amplitude
of the dither signal was 2, and I = 500.
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B. MISO Case

Now, consider a system with state # € R?, dynamics
§-60 = A0 + Bu, and output y = (01 — 5)2 + (6, — 4)2,
where A and B are just the identity matrix I, v € R2, and
d = 5 x 107%. Note that the output is a scalar nonlinear
function of both states #; and 6. For this system Assumption
3.1 is easily satisfied. Moreover, Assumptions 3.2 and 3.3
are satisfied with H(u) = u. The response map is obtained
as J = (u; — 5)? + (uz — 4)2, which satisfies Assumption
3.4 with u* = [5,4]". For this system we use a vector of
basis functions given by ¢ = [u?,u1,u, us,1]7. Note that
although here for simplicity we consider quadratic functions,
one could consider other types of polynomial or not polyno-
mial basis functions for non-quadratic response maps. The
dither signals are generated by a dynamical system as the
one considered in Example 4.1. The dynamics (22) are a
standard gradient descent. Figure (3) shows the evolution of
the weights w; of the basis functions. Figure (4) shows the
evolution of the control actions converging to the optimal
point that minimizes the response map. The amplitude of
the dither signals was 2.5, and I = 200.

VII. CONCLUSIONS

This paper presents a novel prescriptive framework for
the design of hybrid extremum seeking controllers that
used neural networks-based model-free approximators. The
approach avoids the use of averaging theory, and does not
require a small amplitude in the dither signal in order to
estimate the gradient of the response map of the plant under
control. The optimization/learning dynamics are allowed to
be modeled by general set-valued hybrid systems, which
allows for the implementation of discontinuous, set-valued,
and hybrid optimization dynamics. Future directions include
a rigorous computation and numerical study of the method,
as well as its application in a multi-agent system setting.
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