MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Value-Aware Loss Function for Model-based Reinforcement
Learning

Farahmand, A.-M.; Barreto, A.M.S.; Nikovski, D.N.
TR2017-049 April 2017

Abstract

We consider the problem of estimating the transition probability kernel to be used by a
model-based reinforcement learning (RL) algorithm. We argue that estimating a generative
model that minimizes a probabilistic loss, such as the log-loss, is an overkill because it does
not take into account the underlying structure of decision problem and the RL algorithm
that intends to solve it. We introduce a loss function that takes the structure of the value
function into account. We provide a finite-sample upper bound for the loss function showing
the dependence of the error on model approximation error, number of samples, and the
complexity of the model space. We also empirically compare the method with the maximum
likelihood estimator on a simple problem.

Artificial Intelligence and Statistics (AISTATS)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright (© Mitsubishi Electric Research Laboratories, Inc., 2017
201 Broadway, Cambridge, Massachusetts 02139

Value-Aware Loss Function for Model-based Reinforcement Learning

Amir-massoud Farahmand
Mitsubishi Electric Research
Laboratories (MERL), USA

Abstract

We consider the problem of estimating the
transition probability kernel to be used by
a model-based reinforcement learning (RL)
algorithm. We argue that estimating a gen-
erative model that minimizes a probabilistic
loss, such as the log-loss, is an overkill because
it does not take into account the underlying
structure of decision problem and the RL al-
gorithm that intends to solve it. We introduce
a loss function that takes the structure of the
value function into account. We provide a
finite-sample upper bound for the loss func-
tion showing the dependence of the error on
model approximation error, number of sam-
ples, and the complexity of the model space.
We also empirically compare the method with
the maximum likelihood estimator on a simple
problem.

1 INTRODUCTION

The standard approach to model-based reinforcement
learning (RL) [Sutton and Barto, 1998; Szepesvari,
2010] is to use data D,, = {(X;, Ai, R;, X!)}7; to esti-
mate the transition probability kernel P* by P and the
expected reward function r by 7. The learned model
is then used to generate new samples, see e.g., [Sut-
ton et al., 2008; Farahmand et al., 2009; Hester and
Stone, 2013; Deisenroth et al., 2013, 2015]. A stan-
dard RL/Planning algorithm can use these samples to
find a close to optimal policy, possibly by first finding
an approximation to the optimal (action-)value func-
tion. Estimating P* by P is the problem of conditional
probability (density/distribution) estimation and the
estimating r by 7 is a regression problem. In the rest

Proceedings of the 20*" International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2017, Fort Laud-
erdale, Florida, USA. JMLR: W&CP volume 54. Copyright
2017 by the author(s).

André M.S. Barreto
National Laboratory for Scientific
Computing (LNCC), Brazil

Daniel N. Nikovski
Mitsubishi Electric Research
Laboratories (MERL), USA

of this work, we only focus on learning P*.!

There are several general approaches to estimate P*
such as Maximum Likelihood Estimation (MLE), Max-
imum Entropy (MaxEnt) estimation, the Maximum A
Posteriori (MAP) estimation, and Bayesian posterior
inference. We argue that these conventional approaches
to find a generative model might be an overkill, thus
may not be required.

For example, consider the ML estimate, which is the
minimizer of the empirical negative-log loss, which in
turn is an empirical approximation to the KL divergence
KL(Pi[|P) = 3,cx Pi(w) log $:3.% Minimizing the
KL divergence is generally seen as a desirable goal for
learning a probabilistic model because KL(Py||Ps) =0
if and only if P; and P, are the same almost surely.
Given dataset D,, = { X}, with X; ~ P*, we define
the empirical measure P,(-) = 3" 0x,(-). The
MLE within a probability model space M is

. 1
P + argmin KL(P,||P) = argmax — Z log P(X;).
PeM Pem T T
(1)

In the context of model-based RL, learning P that min-
imizes a negative-log loss or other “probabilistic” losses
leads to an estimate that tries to model all aspects of
the environment. This might be beyond the require-
ment of solving the RL problem effectively. It might
be the case that some aspects of the environment are
irrelevant to find a good or optimal policy. For exam-
ple, consider a visually-enabled robot that is supposed
to learn how to navigate in a building. If we consider
the camera image as a part of the state of the robot,
trying to learn a transition probability kernel means
that we have to learn how the camera image changes
when the robot takes certain actions. This is a very

LAn extended abstract version of this paper has been
presented at European Workshop on Reinforcement Learn-
ing [Farahmand et al., 2016].

2We use P,]5, etc. to denote an unconditional probabil-
ity distribution over X, and we use P, 75, etc. to denote a
conditional transition probability kernel.

Value-Aware Loss Function for Model-based Reinforcement Learning

high-dimensional state space and trying to learn such
a conditional distribution with high enough accuracy,
in the log-loss sense, is quite difficult. Nonetheless,
modeling the probability distribution at that level of
accuracy is not required to learn a policy that can
navigate the robot in the building just fine. The only
aspect of the model that is really required is a crude
model that describes the building’s topology as well as
distances between rooms, and maybe the location of
the objects. The robot does not really need to know the
detail of paintings on the walls, the texture of objects,
and many other visual detail of the building. On the
other hand, if the goal is to have an interior decorator
robot that suggests how to redecorate the building to
make it visually appealing, all those visual information
is required.

The difference between the navigator robot and the
decorator one is not in the transition model of their
environment, but is in the decision problem that they
have to solve. The difference in the decision problem
is reflected in the difference in the reward functions
and as a result in the value functions. It is desirable to
have a model learning formalism that takes the decision
problem, or at least some aspects of it, into account.

Furthermore, the implicit assumption that model ap-
proximation error can be made zero, that is, P* belongs
to M used for estimation, may not be correct for many
estimators. When we have the model approximation
error, the model learning method must make a compro-
mise in the choice of the estimate: None of the models
in M would be the same as P* (e.g., in the almost sure
sense), so the estimation method has to choose a model
with a minimum error with respect to (w.r.t.) some
loss function. The choice of the loss function becomes
important then. A loss function that is designed for a
particular decision problem in hand provides a better
approximation, for the task of solving the very same
decision problem, than a probabilistic one that does
not take the decision problem into account.

These arguments suggest that generic distribution es-
timation approaches such as MLE, which minimizes
the KL-divergence w.r.t. the empirical distribution,
might not be the best candidate for learning a model
to be used within a model-based RL framework. Can
we design a better “decision-aware” loss function that
takes the decision problem into account?

This paper is a step towards incorporating some as-
pects of the underlying decision problem into model
learning. We go beyond the “vanilla” model learning,
and define a new loss function that incorporate the
structure of the value function to learn the transition
model (Section 2). We call the approach based on this
loss function Value-Aware Model Learning (VAML).

Algorithm 1 Generic Model-based Reinforcement
Learning Algorithm

J/ NIDP (X, AR, P")

// K: Number of interaction episodes

// M: Space of transition probability kernels

// G: Space of reward functions

Initialize a policy mo

for k=0to K —1do
Generate training set D — {(X;, A, Ri, X{) =1 by
interacting with the true environment (potentially us-
ing 7Tk), i.e., (Xi, Al) ~ v with X: ~ 'P*(|X1,AL) and
R; ~ R*(-| Xi, As).
P ¢+ argmingp 1, Lossp (P; Uk_oD) {e.g., by the gra-
dient descent specified in Theorem 1 for VAML or (12)
for MLE}

7 <— argmin,.. g Lossg (r; UIfZODg))

Te41 < Planner(P, R) {e.g., Fitted Q-Iteration}
end for
return 7gx

We also provide a finite-sample upper bound guarantee
for VAML in Section 3 showing the effect of the model
approximation error, number of training samples, and
the complexity of the model space. This guarantees
the soundness of the algorithm. We empirically study
the model learned by VAML/MLE within a complete
model-based RL framework in a simple finite MDP
problem. In the supplementary material, which is the
extended version of this paper, we provide the proofs
of all results. Moreover, we analyze the model approxi-
mation properties of VAML vs. MLE through a series
of simple, but illuminating, examples. We also provide
additional empirical results studying various aspects
of VAML vs. MLE. The general conclusion of these
results is that VAML is superior to MLE whenever
we have a model approximation error, i.e., the true
transition model does not belong to the class of models
in which our estimator is selected.

2 VALUE-AWARE MODEL
LEARNING

Algorithm 1 describes a generic model-based RL agent.
It interacts with the environment, which is speci-
fied by an unknown Markov Decision Process (MDP)
(X, A, R*,P*,7), to collect data D,,. Here X is the
state space, A is the action space, R* is the reward
distribution, and P* is the transition probability kernel,
and 0 < < 1 is the discount factor [Szepesvari, 2010].
The data is used to learn an estimate P of the true
transition probability P* of the environment and an
estimate 7 of the expected reward. The model learning
step is usually done using an MLE, e.g., counting the
number of transitions from state-action pair (z,a) to
another state z’ in a finite state-action MDP is such
an estimate. The learned model is then used by a plan-

Amir-massoud Farahmand, André M.S. Barreto, Daniel N. Nikovski

ning algorithm Planner to find a policy, with the goal
of finding a close to optimal policy. The new policy
might be used to generate more data and improve the
model.

There are many variations to each step of this generic al-
gorithm such as how to collect new data points (cf. [Hes-
ter and Stone, 2013]) or what Planner should we use
from all possible value-based, policy search, etc. algo-
rithms. Moreover, the interaction with the environment
might be in a one-shot batch setting (K = 1) or in a
continual online setting, and the spectrum in between.

The main thesis of this work is that estimating the
model should be influenced by the way Planner is going
to use it. So we focus on estimating the transition
probability and we study how we should define a loss
function Lossp. We ignore all other important issues
regarding designing a model-based RL algorithm for the
moment in the rest of this work, except in the section
on empirical studies (Section 4) where we choose a
particular algorithm as Planner.

Let Planner be an algorithm that receives a model P
and returns a policy 7 ¢ Planner(”ﬁ). We assume that
the reward function is already known to Planner, so
we do not explicitly pass it as an argument. For a
user-defined initial probability distribution p € M(X),
with M(X) being the space of probability distributions
on X, we evaluate the performance of 7 by

9w = [dpta)v o). 2)

The goal of a successful model learner can then
be defined as follows: Given a dataset D, =
{(X“AZ,X{) ;Z:l with Zz = (XZ,AZ) ~ I/(X X .A) S
M(X x A), potentially different from p, and X| ~
P*(-|X;, Ay), find P such that J(x) for 7 < Planner(P)
is as large as possible. This is a very generic goal.
To make it more concrete, we have to make a few
choices. First suppose that Planner uses the Bellman
optimality operator defined based on P to find a Q*,
that is T : Q—r+ 775 max, (0, and then outputs
T = ﬁ'(-;@*), the greedy policy w.r.t. Q* defined as
#i(x; Q) = argmax,c 4 Q(x,a). The use of the Bell-
man [optimality] operator is central to value-based
approaches such as the class of (Approximate) Value
Iteration or (Approximate) Policy Iteration algorithms.

This is still too general, so we focus on the more speci-
fied goal of finding a P such that the difference between
T*Q and T*Q is not large. We may express this goal
by defining the following cost (loss):

PP V)(w0) = [{ P () — P, V)| =

’/ [’P*(dx’|aﬁ,a) — ﬁ(dm’h‘,a)} V(z')], (3)

in which we substituted max, Q(-,a) with V' to simplify
the presentation. In the rest of the paper, we may
sometimes use P,(-) with z = (z,a) € Z2 =X x A
to refer to the probability distribution P(:|x,a), so
P.V = [P(dy|z,a)V(dy).

It might be argued that since
(P (le,a) = Plle,a), V)| <
[P Clz.a) = llz.a)| 1V (4)

it is enough to learn P such that the ¢;-norm of its
difference with the true P* is small. This can be
achieved by minimizing the KL divergence because
Pinsker’s inequality shows that for two probability
distributions P; and P», we have

1P = Pofly < V/2KL(P1[[P2). (5)

These two upper bounds together justify the use of
MLE since MLE is the minimizer of the empirical ap-
proximation of the KL divergence, as shown in Section 1.
This is the argument, sometimes implicit, behind most
model-based RL algorithms that use a log-loss or a
similar “probabilistic” loss to estimate the model.

Finding a minimizer for the KL divergence, Hellinger
distance, ¢; loss, or other losses that depend only on the
probabilities, however, ignores the underlying decision
problem, which is specified through the reward/value
function. As an extreme example, suppose that r(z) =
cforallz € X, so V7 is constant for all policies, and the
optimal policy would not have any preference over any
of the actions. So even if X is a very large space (e.g.,
a subset of R? with a large d), and however complex
P* is (e.g., the dynamics is not very regular), learning
a P sufficient to find the optimal policy is indeed very
easy: Any transition probability distribution suffices to
find the optimal policy. In contrast, [P —P*||; goes to
zero at a convergence rate that depends on dimension
d and regularities of P*, and can be very slow, e.g.,
O(n~'/?4). An estimator for P* that ignores this extra
information requires more samples in order to provide
a guarantee that the error in the model-based planning
is small.?

Moreover, and maybe more importantly, if the true
transition kernel P* does not belong to the model space
M from which we estimate the model P, we can only
hope to find the “closest” model within M to P*. The
notion of closeness, however, depends on the distance
measure. A distance measure that explicitly takes into

3The relationship between the probabilistic loss and the
LHS of (4) is a bit more subtle than what we portrayed
here, but this should be enough for our current discussion.
Refer to the supplementary material for a discussion on
this issue.

Value-Aware Loss Function for Model-based Reinforcement Learning

account the decision problem and what really matters
for Planner can be superior to the one that does not.

Returning to (3), there are three hurdles that should
be addressed. The first is that ¢(P, P*; V)(z, a) is de-
fined as a pointwise measure of error, but we would
like to learn a model that is valid for the whole state-
action space X x A. The second is that V itself is not
known, so one cannot optimize this cost as is. The
third is that P*, which is the main object of interest,
is not known. Instead we have D,, = {(X;, A;, X))},
and as a result the empirical conditional distribution
Pu(-|z,a) = 2377 0xsix,.4,(|z,a). Here the condi-
tional Dirac’s delta function is defined as follows: For
a measurable set S, dx/|x, a,(S|z,a) = 1 whenever
(z,a) = (X;, 4;) and X[€ S, and 0 otherwise.

We can easily address the first concern by defining the
cost functional as the expected squared pointwise cost
w.r.t. a probability distribution v € M(X x A), i.e

A, (P,P5V) =

/du(x,a) / [P*(dx’|x,a) — ﬁ(dx’|x,a)] V(z)

The choice of the Ls(v)-norm of the pointwise cost is
motivated by the relation between the performance
loss J(m*) — J(m) = [[V* = V7|, , and the La(v) of
quantities such as the Bellman error QQ —T™(Q in API
or the approximation error T*Qy — Qg1 in AVI [Farah-
mand et al., 2010]. Somehow looser relationship also
exists between the performance loss and the L (v) er-
ror [Munos, 2007], but working with the squared error
is easier in our future derivations. One could use the
supremum norm too, but it would be too conservative.
The choice of v determines where in the state-action
space we have to emphasize the accuracy of the model,
in the sense of how well it can approximate the effect
of the Bellman operator evaluated at that point. When
the choice of v is clear from the context, we may simply

write ¢(P, P*; V).

2

(6)

To address the second concern, not knowing V', we
may take a robust approach w.r.t. the choice of value
function. We define the cost function to reflect that
our goal is to find a P that is suitable for all V in a
given value function space F. Therefore, we define

cg,u(/}s’ P*) =
2

dv(x,a) sup
VeF

‘/ *(dz'|x, a) — P(dz’|z, a)] V(')
(7)

To understand this loss better, let us focus on a sin-
gle state-action pair (x,a) and study the pointwise

cost.* Note that even though

sup [[P* (fr,a) = PClr,a)]V ()] <
[PC.0) =P (o), s VI, (®)
eF

the LHS is often much smaller than the upper bound.
They would only become equal when F is the space of
bounded measurable functions, which is much larger
than the usual function spaces that we often deal with,
e.g., defined based on a finite set of basis or even a
reproducing kernel Hilbert space (RKHS). As the goal
is to minimize the LHS of (8), and because its RHS
can be a loose upper bound for most choices of F,
directly optimizing the LHS can lead to better models
compared to minimizing the £; loss or the KL distance
(minimized by MLE), which itself is yet another level
of upper bounding according to (5).

The loss function (7) reflects the influence of the value
function on the model-learning objective. If we happen
to know that V has certain regularities, e.g., it belongs
to the Sobolev space W*(R?) or a reproducing kernel
Hilbert space, this loss function lets us focus on learn-
ing a model that can discriminate between such value
functions, and not more.

To address the last concern, one approach is to follow
the usual recipe in machine learning and statistics, the
Empirical Risk Minimization (ERM), by replacing the
true state transition kernel P* with the observed em-
pirical distribution P,, and v € M(X x A) with the
empirical measure v,(-) = 23" §(x, 4,)(-). Theo-
rem 2 shows that under certain standard conditions,
this is indeed a sound procedure. The result would be
the following cost functional:

o (75> (P, Pa) =
1 sup ‘/ (e | X5, As) — (dx’|X¢,Ai)] V(')
n (X“Al)eD ver

2

:lz

n
(Xi,A;)€Dn

sup
Ver

‘V(X{) - /ﬁ(dm'|Xi,Ai)V(x')

9)

The output of VAML is
P « argminc3 , (P).
PeM

(10)

To completely specify the algorithm, we have to choose
F and M. We do this in the rest of this section.

4One might argue that it would be better to have the
supremum over V outside the integral over state-actions.
We study this a bit further in the supplementary material,
but we do not pursue this path much more as it does not
seem to be as computationally appealing as the current
formulation.

2

Amir-massoud Farahmand, André M.S. Barreto, Daniel N. Nikovski

2.1 The Gradient of c%n(ﬁ)

In this section, we compute the gradient of the cost
function C%,n(P) for a particular choice of model space
M and the value function space F. We choose P =Py
as an exponential family described by features ¢ :
X x Ax X — RP and the weight vector w € R? | i.e

exp (qb’T(", a)w)

Pﬂi(dx |JC CL) fexp ¢'T($/'|$ a)w) dZE"

dz’. (11)

We consider the case that the value function
belongs to the function space F = Fp =
{V]g(:c) =¢'(z)0 : 0 €RP, 1], < B} with ¢ : X —
RP being the feature map. The use of linear value
function approximator is a common practice in the RL
literature.

Note that in general features ¢'(z’|z,a) of the prob-
ability model P are different from the features ¢(x)
used to represent the value function. Of course, we
may choose them to be related, for example by defining
@' (x|z,a) = h(x,a)p(x’) for some function h(x,a).

We use the following key relationship in our derivations,
which are presented in the supplementary material.

sup (P:—P., V) —BH/ P)(dyl=)o " (y)’
VeeFB

X", ¢ (X' X, A;)) as
the cross-covariance between ¢(X') and ¢'(X'|X;, A;)
w.r.t. the probability distribution P, (-] X;, A;).

Theorem 1. Consider the parameterization (11) of
the estimated probability transition kernel 75“,, and the
value function space F = Fp. The gradient of c%n(ﬁw)
w.r.t. the parameter w s

Denote Covy, 5 (1X1,A;) (o(

vwcg,n(,ﬁw) =
2B? & , T

— (Bt xsnn (X)) = 6(X0)]

(X'|X:, A)).

Covyrp, (x4, (O(X), ¢

The loss function has two main terms. The first term
computes the difference between the empirical average
of the walue function features ¢(X]) and its expec-
tation Ey, » (1X5,A)] according to the model
with parameter w. éo thls term encourages finding
a model that “matches” according to the features ¢
of the value function space F. The other term is the
cross-covariance between the features ¢ of the value
function and the features ¢’ of the model. This term
might be seen as a weighting term for the first one.

It is instructive to compare this gradient with the
gradient of the negative log-loss (1) with the same

exponential model, which is

ié [EX'NﬁwuXi,Ai) [sb/T(X/\XnAi)] - ¢'T(X§|Xw4i)} :

(12)

One can interpret this by saying that MLE is trying to
find P, such that the expected value of model features
¢’ evaluated at the next-state matches the empirical
values. The matching is based on model features ¢’
and not the value features ¢. One might see that for
finite MDPs with exact representation of both value
function and the model (i.e., lookup tables for both ¢
and ¢'), the asymptotic solutions of VAML and MLE
are the same, but since their gradients on the way are
not, they approach that point differently.

Working with exponential family can be computation-
ally expensive, no matter whether we use MLE or
VAML. To begin with, even sampling from (11) re-
quires the computation of the normalizing factor (i.e.,
partition function), which except in special cases such
as for Gaussian distributions, does not have a closed-
form solution. The second issue is that to compute the
gradients required for MLE or VAML, we require to
estimate certain expectations (and covariance matri-
ces). This can be challenging too. On the positive side,

_ however, these computations, have been the subject of

many years of research; and there are already many
methods, exact or approximate, to evaluate this general
family of probability distributions, e.g., various Monte
Carlo estimates or variational methods [MacKay, 2003;
Goodfellow et al., 2016]. Moreover, we may not really
need to have a very accurate estimate of the gradients
in VAML or MLE in order to minimize the cost func-
tion. It might be enough to only have a few samples
from the learned distribution to estimate the “direc-
tion” of the gradient correctly. This is one of the ideas
behind Contrastive Divergence [Carreira-Perpinan and
Hinton, 2005], which we can use for VAML too.

3 STATISTICAL ANALYSIS OF
VAML

We provide a finite sample error upper bound show-
ing that VAML is indeed a sound algorithm in the
sense that the minimizer P of the empirical loss s
if attained, has a small error (7), given enough data
points n and under standard capacity condition on the
function spaces M. The result of this section is not
limited to exponential models of M.

Consider a family of probability distributions Mg
and a pseudo-norm J : My — [0,00). Let the
set M used by VAML be a subset M = Mp =
{P e Mgy : J(P) < B} for some B > 0. We can think
of J of a measure of complexity of functions in Mg, so

Value-Aware Loss Function for Model-based Reinforcement Learning

M would be a ball with a fixed radius B w.r.t. J. If
My is defined based on an RKHS, we can think of J
as the inner product norm of the RKHS. We have the
following assumptions on the metric entropy (logarithm
of the covering number) of M.

Assumption Al (Capacity of Function Space)
For B> 0,let M = Mg ={PeMy: JP)<B}.
There exist constants C' > 0 and 0 < a < 1 such that
for any u, B > 0 and all sequence z1,...,z2, € Z, the
following metric entropy condition is satisfied:

B 2a
IOgN(uaMBaLQ(PZLn)) < C <> :

u

Metric entropy of M p is a measure of the size of Mp,
and roughly speaking, it is the logarithm of the mini-
mum number of balls with radius w that are required
to completely cover M p. In general, it is more difficult
to estimate a function when the metric entropy grows
fast when u decreases. Here La(Py,) is the Lo-norm
defined w.r.t. the empirical measure (cf. e.g., Section
9.3 of [Gyorfi et al., 2002];). For many examples of
the metric entropy results, refer to [van de Geer, 2000;
Gyorfi et al., 2002; Giné and Nickl, 2015]. After stating
this assumption, we are ready to state the theorem.

Theorem 2. Given a dataset D, = {(X;, A;, X))},
with independent and identically distributed samples
(Xi, A) ~ v, with X! ~ P*(:|Xi, 4;), let P be
the minimizer of the VAML algorithm, i.e., P «
argminp ey €3, (P), with the previously specified choice
of value function space F. Let Assumption A1 hold.
Furthermore, assume that sup,cy [|[¢(z)| < 1 and

supgex |o(z)|l, < 1. Fiz 6 > 0. There exists a con-
stant ¢ > 0 such that

N 2
E {sup ‘(’Pz —pz)v‘] < inf E {Sup (P2 —P})V|2] +
VeF PeM |ver

16log(4/6)

c(1+B%)p o

log(p/d)

with probability at least 1 — 4.

This upper bound shows the usual model (or function)
approximation error (first term) and the estimation
error (second and third terms). The dominant term
in the estimation error behaves O(n~'/2), which is
the usual behaviour of the supremum of the empirical
process for models that are not very large. The size of
the function space M, specified by B in Assumption A1,
appears in the bound. We also see the effect of size
of ¢ vector, specifying the value function space F,
appears linearly. We believe that this dependence on p
is suboptimal, and can be improved further.

Maybe more interesting is the effect of the model
approximation error. The bound shows that the

error of the estimated P is comparable to the er-
ror of the best choice in the model class M, i.e.,

infpepm E [supVEf |(Pz — fPE)Vﬂ . This is reassuring
since VAML was motivated by the fact that the impor-
tant property of an estimated model P should be that

‘<75(-|z) —P(]z), V>‘ is small only for V € F that
might be encountered by the algorithm, and not nec-

essarily for all possible value functions, which cannot
even be represented by the value-based algorithm.

One could obtain faster estimation error (i.e., O(n~1))
by studying the modulus of the continuity of the empir-
ical process instead of the supremum of the empirical
process, as we do here. We decided not to provide such
a result because of two reasons. The first is that faster
rates require increasing the constant in front of the ap-
proximation error (it would not be 1 anymore). In the
regime that we have an approximation error (P* ¢ M),
which is the regime that can make VAML superior to
MLE, this would lead to asymptotically worse results.
The other reason is to simplify the proofs and making
them more accessible. The proofs can be found in the
same section of the supplementary material.

A few other short remarks are in order. The first is that
this is a statistical guarantee, and is valid under the
condition that minpeq 3, (P) is indeed attained. We
have not shown that this minimum can be achieved by
following the gradient of Theorem 1, especially since the
VAML'’s objective is not necessarily convex. Another
remark is that we do not analyze the effect of the model
estimation error on the quality of the policy obtained by
Planner(P). Avila Pires and Szepesvari [2016] provide
such a policy error bound.

4 EMPIRICAL STUDIES

In this section, we empirically study the performance
of VAML and MLE-based estimators when they are
used within a complete model-based RL algorithm. We
provide several others experiments designed to better
understand various aspects of VAML and MLE better
in the supplementary material.

We consider a finite MDP. We choose several partition-
based (i.e., aggregation) model space M to which the
true model P* does not belong. Also we consider a
partition-based value function space FI“4. When the
resolution of the partitioning is lower than the num-
ber of states, the optimal value function @Q* might be
outside FII. We use the approximate value iteration
as Planner. That is, given a model P, which is cho-
sen to be either the true model P* of the MDP or
the estimated models Pyamr or PumrLe, we repeatedly
apply R o
Qi1 Hpa (T Q)

Amir-massoud Farahmand, André M.S. Barreto, Daniel N. Nikovski

to obtain an approximation Q;;* S Pean/ P 1O Q*, the
true optimal action-value function. Here Il 74 is the
orthogonal projection onto FI4l hence the “approxi-
mate” part of AVI. We obtain Q* (and hence V*) using
exact VI with P*. Note that Q* = QP* is only an ap-
proximation to Q* because Q* is obtained by AVI, so it
is forced to be within F!, but Q* in general may not
belong to FIAI. The apploxnnatlons VP « P/ PaiLe
are defined similarly.

After obtaining the various approximations of the op-
timal value function, we compute their corresponding
greedy policies Ty g/ vamr < Planner(Pyre/Pvame).
In particular, we are interested in V™LE and V/7vaML,
the true value function of the policies obtained by the
estimated models.

We use two criteria to evaluate the quality of the esti-
mated models. The first is that how close V3

vaML/ PMLE

is to V3.. We use the Ly-norm of these distances,
e Ve = Vi n/Pawe l2- By comparing to V.. in-

stead of V*, we separate the error caused by the choice
of model space and the model estimation procedure
(MLE or VAML), which is our main object of study,
from the error caused by the choice of value function
space FI4. The second criterion is the performance
loss of the obtained policies compared to the opti-
mal policy, that is, >~ ., [V*(z) — V™Mre/vave ()] =
||V* _ }/TMLE/VAML ||1’ 7}(.; Q;)VAI\[L)

7?(~;Q;§MLE), the greedy policies w.r.t.

where Tpy, .
and 7p,, . =

Q;’W\[L and QA%MLE. Because of the value function
and model approximation errors, the performance loss
might be non-zero. But it is possible that even though
mem /Paes 7 @7, the greedy policy is still an optimal
policy, as we shortly see. This is due to the action-gap
phenomenon [Farahmand, 2011].

Let us define the parameters of the problem more con-
cretely. We choose a finite state random-walk MDP
with |X] = 25, A = {left,right}, and v = 0.9. The
choice of a = “right” moves the agent to one of the four
right-side states with equal probability (with a total
probability of 0.7), does not move it (with probability of
0.2), and moves it to the left-side state (with probability
of 0.1). The opposite holds for a = “left”. The bound-
aries are not connected, and the behaviour changes
accordingly. The value function space F is defined
based on partitioning of the state space X to M subsets.

Sowehave]-'z{xHZjM:lvj]I{xEJj} : véRM}.

The action-value function space F!4l is simply |A|l =2
copies of F. We change M in our experiments.

The model space, used by both VAML and MLE, is
an exponential family defined based on N partitions,
cf. (11). The features ¢’ are defined so that each of
them is an indicator function of whether given a state-
action pair (z,a), the next-state 2’ would be in one of

the N partitions or not. More precisely,

M= {ﬁw(:cl\x,a) c i@ |z a) =1z’ € I,z = k,a =1},
i=1,. Nk=1,... X, 0=1,...,]A,
e NN,

Note that the partitioning is only on the next-state
2, and not the current state x. We change N in
our experiments. A small detail is that because the
state space is finite and partitions {I;} and {.J;} have
integer-valued lengths, the lengths of all of them are
not exactly |X|/M (or |X|/N). A state x belongs to

Jj with j = | 7], and similarly for I;s.

We use gradient descent to optimize the loss functions
for both VAML and MLE. In particular, we use ADAM
by Kingma and Ba [2015] with the choice of $; = 0.9,
Bs = 0.999, o = 0.25, and € = 1078 in their notations.
We followed ADAM for 1000 iterations.

Figure 1 present the results of the experiments for
M =11 (more results in the supplementary material).
The bold curves in each figure show the results when P*
is given as the input to VAML or MLE (so cg’,,(ﬁ, P*)
of (7) is minimized instead of 3, (P,P,) of (9); and
similarly for MLE), while the dashed curves are for
when samples (i.e., empirical measure P,,) are used
for minimization. For the empirical measure, for each
choice of a, we draw 100 states X; uniformly from X
and then draw 25 samples from the next state according
to P(:|X;,a). So in total, we have 2 x 100 x 25 = 5000
samples. Studying the behaviour of the algorithms
under both the true distribution and the empirical
distribution allows us to separate the errors due to
model approximation error and the estimation error.

The left-side figures show the value function estimation
error ||V, — A;VAML /g2 We observe that as the
number of partitions IV for the model space increases,
the error decreases too. The errors for the VAML
model for most Ns are smaller than MLE’s, sometimes

significantly.

A curious observation is that when N is an integer multi-
ply of M, the number of partitions in the representation
of F, the error of MLE becomes very small—sometimes
even slightly smaller than VAML’s (when N = 11,22 in
Figure 1). This is aligned with our theoretical analysis
in Section 5 of the supplementary material. We observe
a similar smallness of errors in the neighbourhood of
those integer multiplies because the structure of the
partition would be similar to the aforementioned case.
When empirical data is used, the difference between
VAML and MLE become less significant since the esti-
mation error dominates the model approximation error.
We also note that ||V7;k —V*||2 = 1.40 for M = 11.

The right-side figures show the performance loss ||[V* —

Value-Aware Loss Function for Model-based Reinforcement Learning

12

Number of partitions for Qp: 11

= MLE (True model)
: = VAML (True model
“1{Fd MLE (Empirical)

F 4 VAML (Empirical)

T (.

1V =Vl

\
\ IR R

SETTETEAEST SR

ol T o |
2 4 6 8 10 12 14 16 18 20 22 24

Number of partitions for P

,Number of partitions for @p: 11

= MLE (True model)
= VAML (True model] |
—— True model

F 4 MLE (Empirical)
| F 4 VAML (Empirical) |]

Ve =vell

6 8 10 12 14 16 18 20 22 24
umber of partitions for P

Figure 1: The effect of the number of partitions N of P on MLE and VAML when FMI has M = 11 partitions.
The left figure shows the value function approximation error. The right figure shows the performance loss of
using the obtained greedy policies. The dashed curves correspond to the empirical model. The error bars depict
one standard error with the number of independent runs equal 20.

Vrmuee/vame ||y for both cases. If the performance loss
of a policy is zero, it means that it is optimal. As
a baseline, the green line shows the performance loss
of the greedy policy w.r.t. Q*p* For M = 11, the
performance loss is 0.277. It is quite possible that
even though there is a significant value function error,
due the action-gap phenomenon, the greedy policy is
behaving close to optimal or the best value function
in the class. That is why we observe that in case
of M = 11, the performance of mp,,,, and mp,, . is
as good as good as 7(-; Q%.) after N = 4 for VAML
and N = 5 for MLE. It is curious to note that the
performance loss of MLE is sometimes slightly better
than that of 7 (- Q;}), particularly at those values of
N when || V. ngMLE |2 is larger. This basically means
that wronger models happened to make better policies.
We do not believe this is a general pattern beyond this
particular problem, but further investigation might be
interesting.

5 DISCUSSION AND FUTURE
WORK

We presented a loss function to learn the probability
transition model to be used by a model-based rein-
forcement learning algorithm. In contrast with the
conventional approaches, we take some aspects of the
decision problem, particularly the knowledge about the
value function approximator, into account.

There are several methods for learning the transition
probability kernel or quantities related to it. Methods

such as [Ormoneit and Sen, 2002; Barreto et al., 2011]
implicitly learn the transition model, but they do not
benefit from the structure of the value function. Some
other methods estimate auxiliary operators that are
semantically different from P (e.g., they are not proba-
bility kernels), but can be used to compute the effect
of Bellman operator on a value function [Griinewélder
et al., 2012; Yao et al., 2014; Lever et al., 2016]. Com-
paring VAML, which learns a generative model, and
these other approaches is an interesting question.

We empirically studied the behaviour of VAML and
MLE when they are used within a model-based RL
algorithm. The results showed that minimizing the
loss suggested by VAML translates into having a better
value function approximation error, as well as smaller
performance loss when the learned model is used for
planning. We also studied model approximation prop-
erties of VAML vs. MLE through some examples in
the supplementary material.

We would like to mention that exponential family is not
the only class of probability distributions for modeling
of the environment. Another possibility, which deserves
further study, is the adoption of the generative adver-
sarial network to VAML’s loss function [Goodfellow
et al., 2014]. Finally, incorporating the structure of
policy space into model learning is another interesting
research topic along the research program of this work.

Acknowledgements

We would like to thank the anonymous reviewers for
their helpful feedback.

Amir-massoud Farahmand, André M.S. Barreto, Daniel N. Nikovski

References

Bernardo Avila Pires and Csaba Szepesvari. Policy
error bounds for model-based reinforcement learn-

ing with factored linear models. In Conference on
Learning Theory (COLT), 2016. 6

André M.S. Barreto, Doina Precup, and Joelle Pineau.
Reinforcement learning using kernel-based stochastic
factorization. In J. Shawe-Taylor, R.S. Zemel, P.L.
Bartlett, F. Pereira, and K.Q. Weinberger, editors,
Advances in Neural Information Processing Systems
(NIPS - 2/), pages 720-728. 2011. 8

Miguel A Carreira-Perpinan and Geoffrey Hinton. On
contrastive divergence learning. In International
Workshop on Artificial Intelligence and Statistics
(AISTATS), volume 10, pages 33-40, 2005. 5

Marc Peter Deisenroth, Gerhard Neumann, and Jan
Peters. A survey on policy search for robotics. Foun-
dations and Trends in Robotics, 2(1-2):1-142, 2013.
1

Marc Peter Deisenroth, Dieter Fox, and Carl Edward
Rasmussan. Gaussian processes for data-efficient
learning in robotics and control. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 37(2):
408-423, 2015. 1

Amir-massoud Farahmand. Action-gap phenomenon
in reinforcement learning. In J. Shawe-Taylor, R.S.
Zemel, P.L. Bartlett, F. Pereira, and K.Q. Wein-
berger, editors, Advances in Neural Information Pro-
cessing Systems (NIPS - 24), pages 172-180. Curran
Associates, Inc., 2011. 7

Amir-massoud Farahmand, Azad Shademan, Martin
Jagersand, and Csaba Szepesvari. Model-based and
model-free reinforcement learning for visual servoing.
In Proceedings of IEEE International Conference on
Robotics and Automation (ICRA), pages 2917-2924,
May 2009. 1

Amir-massoud Farahmand, Rémi Munos, and Csaba
Szepesvari. Error propagation for approximate policy
and value iteration. In J. Lafferty, C. K. I. Williams,
J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors,
Advances in Neural Information Processing Systems
(NIPS - 23), pages 568-576. 2010. 4

Amir-massoud Farahmand, André M.S. Barreto, and
Daniel N. Nikovski. Value-aware loss function
for model learning in reinforcement learning. In
18th European Workshop on Reinforcement Learning
(EWRL), December 2016. 1

Evarist Giné and Richard Nickl. Mathematical Foun-
dations of Infinite-Dimensional Statistical Models.
Cambridge University Press, 2015. 6

Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron

Courville, and Yoshua Bengio. Generative adversarial
nets. In Advances in Neural Information Processing
Systems (NIPS - 27), pages 2672-2680. 2014. 8

Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning. MIT Press, 2016. 5

Steffen Grunewalder, Guy Lever, Luca Baldassarre,
Arthur Gretton, and Massimiliano Pontil. Mod-
elling transition dynamics in MDPs with RKHS em-
beddings. In International Conference on Machine
Learning (ICML), pages 535-542. ACM, 2012. 8

Lészlé Gyorfi, Michael Kohler, Adam Krzyzak, and
Harro Walk. A Distribution-Free Theory of Nonpara-
metric Regression. Springer Verlag, New York, 2002.
6

Todd Hester and Peter Stone. TEXPLORE: Real-time
sample-efficient reinforcement learning for robots.
Machine Learning, 90(3), 2013. 1, 3

Diederik P. Kingma and Jimmy Lei Ba. Adam: A
method for stochastic optimization. In International

Conference on Learning Representations (ICLR),
2015. 7

Guy Lever, John Shawe-Taylor, Ronnie Stafford, and
Csaba Szepesvari. Compressed conditional mean
embeddings for model-based reinforcement learning.
In AAAI Conference on Artificial Intelligence, 2016.
8

David J. C. MacKay. Information Theory, Inference,
and Learning Algorithms. Cambridge University
Press, 2003. 5

Rémi Munos. Performance bounds in L, norm for ap-
proximate value iteration. SIAM Journal on Control
and Optimization, pages 541-561, 2007. 4

Dirk Ormoneit and Saunak Sen. Kernel-based rein-
forcement learning. Machine Learning, 49:161-178,
2002. 8

Richard S. Sutton and Andrew G. Barto. Reinforcement
Learning: An Introduction. The MIT Press, 1998. 1

Richard S. Sutton, Csaba Szepesvari, Alborz Geram-
ifard, and Michael Bowling. Dyna-style planning
with linear function approximation and prioritized
sweeping. In Proceedings of the 24th Conference on
Uncertainty in Artificial Intelligence, 2008. 1

Csaba Szepesvari. Algorithms for Reinforcement Learn-
ing. Morgan Claypool Publishers, 2010. 1, 2

Sara A. van de Geer. Empirical Processes in M-
Estimation. Cambridge University Press, 2000. 6

Hepgshuai Yao, Csaba Szepesvari, Bernardo
Avila Pires, and Xinhua Zhang. Pseudo-MDPs
and factored linear action models. In IEEFE

Symposium on Adaptive Dynamic Programming And
Reinforcement Learning (ADPRL), 2014. 8

	Title Page
	page 2

	/projects/www/html/publications/docs/TR2017-049.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9

