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Abstract

We describe in detail the recently proposed fourdimensional modulation format family based
on 2-ary amplitude 8-ary phase-shift keying (2A8PSK), supporting spectral efficiencies of
5, 6, and 7 bits/symbol. These formats nicely fill the spectral efficiency gap between dual-
polarization quadrature PSK (DP-QPSK) and DP 16-ary quadrature-amplitude modulation
(DP-16QAM), with excellent linear and nonlinear performance. Since these modulation for-
mats just use different parity bit expressions in the same constellation, similar digital sig-
nal processing can be seamlessly used for different spectral efficiency. A series of nonlinear
transmission simulation results shows that this modulation format family outperforms the
conventional modulation formats at the corresponding spectral efficiency. We also investigate
the adaptive equalizer for these modulation formats.
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Abstract—We describe in detail the recently proposed four-
dimensional modulation format family based on 2-ary amplitude
8-ary phase-shift keying (2A8PSK), supporting spectral efficien-
cies of 5, 6, and 7 bits/symbol. These formats nicely fill the spec-
tral efficiency gap between dual-polarization quadrature PSK
(DP-QPSK) and DP 16-ary quadrature-amplitude modulation
(DP-16QAM), with excellent linear and nonlinear performance.
Since these modulation formats just use different parity bit
expressions in the same constellation, similar digital signal
processing can be seamlessly used for different spectral efficiency.
A series of nonlinear transmission simulation results shows that
this modulation format family outperforms the conventional
modulation formats at the corresponding spectral efficiency.
We also investigate the adaptive equalizer for these modulation
formats.

Index Terms—high-dimensional modulation format, adaptive
modulation and coding, spectral efficiency, nonlinearity tolerance.

I. INTRODUCTION

HERE is an increasing interest in flexible networks

where adaptive transceivers select from multiple data
rates, modulation formats, and forward error correction (FEC)
overheads for efficient network usage [1]-[4]. For example,
it has been shown that the mean loss in throughput per
transceiver for a granularity of 100 Gb/s is four times larger
than for a granularity of 25 Gb/s [4]. In order to cover wide
range of channel conditions, multiple modulation formats with
different spectral efficiency have been extensively studied [5]—
[15].

Dual polarization (DP)-quadrature phase-shift keying
(QPSK), star-8 quadrature-amplitude modulation (QAM), and
16QAM are widely used for 4, 6, and 8 bits/symbol trans-
mission. Here we use bits/symbol defined in four-dimensional
(4D) space of DP signaling. It has been recognized that DP-
Star-8QAM does not always perform best for 6 bits/symbol,
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and many formats have been investigated [16]—[20]. In partic-
ular, 4D-2A8PSK has been shown to be superior to many other
formats in linear and nonlinear performance, due to its large
Euclidean distance, 4D constant modulus (constant power)
characteristics, and Gray labeling [21]-[23]. In order to relate
this to the block coding approach described in the context
of high-dimensional modulation [11], 5, 6, and 7 bits/symbol
modulation formats were introduced as a family of block-
coded 2A8PSK in a unified manner in [24].

In this paper, we first review the family of 5, 6, and
7 bits/symbol modulation formats. We then conduct trans-
mission simulations in a nonlinear dispersion-managed (DM)
link, as well as a dispersion-uncompensated link, to verify
that this proposed modulation family indeed shows excellent
linear and nonlinear transmission characteristics. Through an
analysis using separated nonlinear components, we also reveal
that reduction of self-phase modulation (SPM) and cross-phase
modulation (XPM) are the primary beneficial factors of the 4D
constant modulus property. We next discuss several items re-
lated to practical implementations in a digital signal processor
(DSP), which need some attention since the constellation is
different from that of the conventional QAM-based formats.
Finally we show that the penalty caused by practical DSP
is small and the benefits far exceed the penalties. This paper
provides additional contributions over the previous report [24];
more specifically, new detailed analyses (i.e., impact of DM,
non-DM links, separated nonlinearity, and DSP algorithms)
and improved modulation parameters (i.e., optimized block
coding, set partitioning, ring ratio, and power ratio).

II. MODULATION FORMATS
A. Generalized Mutual Information (GMI)

Conventionally, pre-FEC bit error ratio (BER) has been
used to predict post-FEC BER performance of hard deci-
sion (HD) FEC systems. However, pre-FEC BER cannot be
directly applied to modern optical communications systems,
which rely on soft-decision (SD) FEC coding based on bit-
interleaved coded modulation (BICM). As an alternative per-
formance measure applicable for SD-FEC systems, the BICM
limit, called generalized mutual information (GMI), has been
recently introduced to the optical research community for
comparing multiple modulation formats [25], [26]. Several
modulation formats were compared using this metric [18],



[27]. The normalized GMI can be obtained from the log-
likelihood ratio (LLR) outputs of the demodulator at the
receiver as follows [28]—[30]:

I=1-Egy[log, (1+exp ((-1)"'L))], (1)

where b, L, and E[-] denote the transmitted bit b € {0, 1}, the
corresponding LLR value, and an expectation (i.e., ensemble
average over all LLR outputs L and transmitted bits b),
respectively. We denote “normalized” GMI as the mutual in-
formation per modulation bit, not per modulation symbol. The
normalized GMI can thus determine the maximum possible
code rate of SD-FEC coding for BICM systems. Accordingly,
multiplying the number of bits per symbol with the normalized
GMI is equal to the achievable throughput per symbol.

In Fig. 1, we show the relationship between Q-factor
calculated from pre-FEC BER and normalized GMI of four
different modulation formats, i.e., DP-QPSK, DP-Star-8QAM,
6b4D-2A8PSK, and DP-16QAM. We will explain the 6b4D-
2A8PSK modulation format in detail in Section II-D. Here,
the Q-factor is defined by

Qber = 2 {erfc™' (2 BER)}?, )

which is a classical measure to calculate the required signal-to-
noise ratio (SNR) to achieve the BER for binary-input additive
white Gaussian noise (AWGN) channels. Here, erfc™'(.) de-
notes an inverse complementary error function. From Fig. 1,
it can be seen that the identical pre-FEC BER (Q-factor) does
not achieve the same BICM limit for different modulation
formats, in particular at lower code rate regimes. At the
normalized GMI of 0.85, the Q-factor ranges from 4.77 dB
(BER = 4.16 x 1072) to 4.86 dB (BER = 4.01 x 1072),
which correspond to the typical Q (BER) threshold of the
state-of-the-art SD-FEC having a code rate of 0.8 [31], [32].
Considering this fact, we will use 0.85 as a target of the
normalized GMI throughout the paper.
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Fig. 1. Q-factor calculated from pre-FEC BER vs. normalized GMI for four
modulation formats.

B. Generic 2A8PSK

The constellation of the 4D-2A8PSK family [21]-[24] is
shown in Fig. 2. It is essentially 8PSK, with two different
amplitudes represented by the radii, 1 and r, (suppose

r1 < ro without loss of generality). For the combined X- and
Y-polarizations (i.e., 4D space), there are 28 = 256 possible
combinations (i.e., 8 bits per 4D symbol). By superimposing
a condition that two polarizations have complimentary radius,
i.e., if r; is chosen for one polarization, then 75 is used
for the other polarization, we can realize set partitioned (SP)
4D codes, achieving 4D constant modulus property, leading
to excellent nonlinear transmission characteristics. We define
r1/r2 (< 1) as a ring ratio. If the ring ratio is equal to 1, the
modulation format is reduced to regular DP-8PSK.

Fig. 2 also includes the mapping rule of 4D-2A8PSK [33].
Set-partitioning can be applicable. Letting B[0], ..., B[7] de-
note eight bits for modulation, B[0]-B[2] and B[3]-B[5] are
used for the Gray-mapped 8PSK at X- and Y-polarizations,
respectively. Whereas, B[6] and B[7] are used to determine the
amplitude in X- and Y-polarizations, respectively. By properly
choosing the best 32, 64, and 128 point constellations out of
256 combinations, we can obtain 32SP-, 64SP-, and 128SP-
2A8PSK, for the spectral efficiency of 5, 6, and 7 bits/symbol,
respectively. We also call them 5b4D-, 6b4D-, and 7b4D-
2A8PSK for convenience.
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Fig. 2. Constellation and bit-to-symbol mapping of 2A8PSK.

C. 5b4D-2A8PSK

For 5 bits/symbol, 5b4D-2A8PSK (i.e., 32SP-2A8PSK) can
be constructed by a linear code, with five information (modu-
lation) bits B[0]-B[4], and three parity bits B[5]-B[7]. Since
BJ[5] and B[6] each can be expressed as the linear combination
of the five information bits, the total number of possible linear
codes to be designed is 2'° = 1024. We selected the best
combination which gives the least required SNR for the target
GMI of 0.85, through Monte-Carlo simulations.

In order to realize a 4D constant modulus format, the
Y-polarization ring size is always the opposite of the X-
polarization ring size. This is expressed by negating another
parity bit B[6] for B[7]. Consequently, the parity-check equa-
tions for 5b4D-2A8PSK are expressed as follows:

B[5] = B[0] & B[1] & B[2], 3)
B[6] = B[2] ® B[3]| @ B[4], (Y]
B[7) = B[6], )

where @ and [] denote the modulo-2 addition and negation,
respectively. This code shows 0.25 dB improvement in the



required SNR in the linear region compared to that of [24],
which was constructed as a nonlinear code.

D. 6b4D-2A8PSK

In the case of 6b4D-2A8PSK (64SP-2A8PSK), B[6] is a
parity bit of single-parity-check code which is an exclusive-or
(XOR) of all the information bits B[0]-B[5], protecting all
information bits. Another parity bit B[7] is the negation of
BI6] as used in 7b4D-2A8PSK. The best code for the target
GMI of 0.85 (which we call Type A) was found to be

B[6] = B[0] @ B[1] @ B[2] & B[3] ¢ B[4] & BJ5],
B[7] = B[6].

(6)
@)

Note that this is the same code as described in [21]. For
comparison, we also consider another code (which we call
Type B), which uses a parity bit B[6] to protect only the least
significant bits, as follows:

B6] = B[2] @ B3],
B[7] = B[6].

®)
€))

The normalized GMI for these two types, after optimizing the
ring ratio at each SNR, is plotted in Fig. 3. The optimized
ring ratio is also present. As the figure shows, in the region
where the GMI is below 0.81, Type B slightly outperforms
Type A. On the other hand, for GMI above 0.81, Type A
performs better than Type B. Since our target GMI is 0.85,
we use Type A for 6b4D-2A8PSK throughout this paper.

Note that, for Type A, the optimal ring ratio becomes 1
when SNR is below 6 dB. This means that a simple DP-§8PSK
performs almost as well as Type B. It is related to the report
in [34], where low-rate (at a target GMI of 0.567) DP-8PSK
was shown to perform better than high-rate (at a target GMI
of 0.85) DP-QPSK.
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Fig. 3. Normalized GMI and optimized ring ratio vs. SNR in AWGN for the
two types of 6b4D-2A8PSK.

E. 7b4D-2A8PSK

The simplest code in the 4D constant modulus 2A8PSK
family is 7b4D-2A8PSK, which can also be considered as
128SP-2A8PSK. In this case, B[0]-B[6] are the information

bits while there is only one parity bit at B[7]. In order to
realize 4D constant modulus format, a single parity bit B[7]
is used as follows:

(10)

F. Other Modulation Formats

In order to evaluate the performance of 5b4D-2A8PSK,
we consider three other modulation formats having 5
bits/symbol spectral efficiency; i.e., 8PolSK-QPSK [35], 32SP-
16QAM [8], and time-domain hybrid (TDH) modulation.
8PolSK-QPSK [35] is a 4D constant modulus format, which
has 8 polarization states on the Poincaré sphere. 32SP-16QAM
is a 4D modulation which is based on DP-16QAM. We used
the parity rule described in [8] to generate 32 code words. We
also evaluated TDH modulation using a 1:1 mixture of DP-
QPSK and 6b4D-2A8PSK to generate 5 bits/symbol spectral
efficiency on average.

For comparison with 6b4D-2A8PSK, we evaluated three
other modulation formats of 6 bits/symbol spectral efficiency;
specifically, DP-8PSK, DP-Star-8QAM, and DP-Circular-
8QAM [18]. DP-8PSK and DP-Star-8QAM are standard mod-
ulation formats. DP-Circular-8QAM has one center point and
seven circular constellation points, and has larger Euclidean
distance than DP-8PSK. We followed the constellation and
labeling as described in [18].

For 7b4D-2A8PSK comparison, two more modulation for-
mats of 7 bits/symbol spectral efficiency are evaluated. 128SP-
16QAM is a 4D modulation based on DP-16QAM, where
the parity rule described in [8] is used to generate 128 code
words. TDH modulation using 1:1 mixture of 6b4D-2A8PSK
and DP-16QAM is also simulated. In addition, we simulated
(7/8) x 34GBd DP-16QAM to compare for the same data rate.

III. NONLINEAR TRANSMISSION CHARACTERISTICS
A. Simulation Procedure

We simulated transmission performance over a 2,000 km
DM link at a rate of 34 GBaud per channel to investigate
the effect of high fiber nonlinearity. Simulation procedures
are similar to that reported in the previous work [24]. Fig. 4
depicts the configuration and the computational procedure for
nonlinear transmission simulations.

At the transmitter, pulses were filtered by a root-raised-
cosine (RRC) filter with a roll-off factor of 10%. Eleven WDM
channels using the same modulation format were simulated
with 37.5 GHz spacing and no optical filtering. The link
comprised 25 spans of 80 km non-zero dispersion shifted
fiber (NZDSF) with loss compensated by Erbium-doped fiber
amplifiers (EDFAs). In order to quantify performance over the
nonlinear fiber link for multiple modulation formats, a span
loss budget was used as a performance metric [36], which is
defined as,

Span Loss Budget = 58 + P — ROSNR,

—10log,o(N) = NF,  (11)

where P is the launch power per channel expressed in dBm,
ROSNR is the required OSNR to achieve the target GMI in
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Fig. 4. Configuration of the simulated system and the procedure. LD: Laser Diode, RRC: Root Raised Cosine, OA: Optical Amplifier, DC: Dispersion

Compensation, LLR: Log-Likelihood Ratio, ROSNR: Required OSNR.

dB, N is the number of spans, and NF is the noise figure of
the EDFAs in dB.

NZDSF parameters were, v = 1.6 /W/km; D = 3.9
ps/nm/km; o = 0.2 dB/km. Other fiber effects such as
dispersion slope and polarization mode dispersion (PMD) were
not simulated. At the end of each span, 90% of the chromatic
dispersion was compensated as a lumped linear dispersion
compensator. Dispersion pre-compensation was applied at the
transmitter side using 50% of the residual dispersion of the
full link. The rest of the dispersion is compensated just before
the receiver.

An ideal homodyne coherent receiver was used, with an
RRC filter with a roll-off factor of 10%, followed by sampling
at twice the symbol rate. For adaptive equalization, we used
a time-domain data-aided least-mean-square equalizer which
uses the transmitted data directly as the training sequences for
simplicity. A discussion on a more realistic equalizer will be
given in Section V. We did not use carrier phase estimation
(CPE) in Sections III and IV.

All the optical noise due to the EDFA is loaded just before
the receiver. In order to evaluate the system margin, we varied
the optical signal-to-noise ratio (OSNR) with excessive noise
loading such that the target GMI is reached. The obtained
required OSNR is used to calculate the span loss budget as in
(11). An EDFA noise figure of 5 dB is assumed for the span
loss budget calculations.

Note that in DM links it is known that there is some
difference in simulated nonlinear transmission performance
between having all noise loaded at the receiver (our case) and
distributed noise at each EDFA, depending on the modulation
format [37]. For XPoIM and WDM (SPM+XPM+XPoIM)
cases the difference is generally small, whilst for SPM and
XPM the noise-loaded case may somewhat underestimate the
nonlinear impact (where the performance gap is smaller at
baud rates > 28 GBaud). More detailed analysis regarding
this gap is beyond the scope of this work.

B. 5 bits/symbol Formats

Four 5 bit/symbol formats were compared as shown in
Fig. 5. In this case, the ring ratio r1 /ro = 0.61 is optimized for
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Fig. 5. Span loss budget of four 5 bits/symbol modulation formats as a
function of launch power for the DM link.

5b4D-2A8PSK for maximizing the span loss budget. Note that
ring ratio is not a sensitive parameter, and in fact between 0.56
and 0.66, the peak span loss budget changed only by 0.03 dB.

The span loss budget for 32SP-16QAM reduces quickly due
to large power variations, since it is based on 16QAM. On the
other hand, 8PolSK-QPSK [35] has 0.65 dB worse OSNR for
the linear case, the saturation characteristics is very similar
to 5b4D-2A8PSK, due to its 4D constant modulus property.
TDH modulation using a 1:1 mixture of DP-QPSK and 6b4D-
2A8PSK has constant modulus property at each time slot.
However, we used an optimized power allocation for TDH
modulation (i.e., 6b4D-2A8PSK has 2.7 dB higher power than
DP-QPSK), and there is a power fluctuation between time
slots, causing some penalty due to the nonlinearity.

Overall, 5b4D-2A8PSK has the higher maximum span loss
budget by 0.5 dB over the TDH modulation, by 0.9 dB over
8PolSK-QPSK, and by 1.8 dB over 32SP-16QAM.

C. 6 bits/symbol Formats

Four 6 bits/symbol modulation formats were compared as in
Fig. 6. The optimized ring ratio was r1/ro = 0.65 for 6b4D-
2A8PSK to maximize the span loss budget. It is observed that



N
w

227
m
T 21
©
220
3
e
?
Q187
S17© =0—6b4D-2A8PSK
% =¥=DP-Circular-8QAM
16 =4-=DP-8PSK
d =A=DP-Star-8QAM

—_
(6]

-10 -8 6 -4 2 0
Launch power (dBm)

Fig. 6. Span loss budget of four 6 bits/symbol modulation formats for the
DM link.

n
o

—
©
T
I

=0=7b4D-2A8PSK ]
=#=TDH: 6b4D-2A8PSK & DP-16QAM
=4-128SP-16QAM
=A=DP-16QAM (7/8)*34 GBd

Span Loss Budget (dB)
= >

—
N

-10 -8 -6 -4 -2 0
Launch power (dBm)

Fig. 7. Span loss budget of three 7 bits/symbol modulation formats at 34
GBd and DP-16QAM with the same data rate (7/8 x 34 GBd) as a function
of launch power for the DM link.

the maximum span loss budget for 6b4D-2A8PSK is higher
than DP-Circular-8QAM, DP-8PSK, and DP-Star-§QAM by
0.6 dB, 0.5 dB, and 1.6 dB, respectively.

D. 7 bits/symbol Formats

Fig. 7 shows performance comparison among three 7
bit/symbol formats at 34 GBd and DP-16QAM of the same
data rate (7/8 x 34 GBd). Here, the ring ratio of r1 /rs = 0.59
is chosen for 7b4D-2A8PSK to maximize the span loss budget.
Here, TDH modulation uses a 1:1 mixture of 6b4D-2A8PSK
and 128SP-QAM, whose optimized power ratio was 0.1 dB.

We can see that 7b4D-2A8PSK outperformed THD mod-
ulation, 128SP-16QAM, and (7/8) x 34GBd DP-16QAM by
0.7 dB, 1.4 dB, and 2.2 dB, respectively.

E. Summary for DM Link

The summary of the peak span loss budget for the DM link
is shown in Fig. 8. The circles connected by the dashed lines
include DP-QPSK, 5b4D-, 6b4D-, 7b4D-2A8PSK, and DP-
16QAM, all at 34 GBd. Squares are taken from TDH modu-
lation formats, and triangles are from other modulation formats
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Fig. 8. Summary of the peak span loss budget for the DM link. Blue circles
connected with lines are for the three 4D-2A8PSK formats, DP-QPSK, and
DP-16QAM. Green squares are for TDH modulation formats, and red triangles
are for other modulation formats shown in Figs. 5-7.

in Figs. 5-7. This shows that the 4D-2A8PSK family fills the
gap between DP-QPSK and DP-16QAM almost linearly (in
the dB domain), and each one offers a solid improvement
compared to the conventional modulation formats. Also, note
that DP-QPSK is a member of 4D-2A8PSK family with
specific parity-check equations and ring ratio of 1.

F. 5 bits/symbol in Dispersion Uncompensated Link

In order to evaluate the transmission characteristics of
various modulation formats under a reduced nonlinearity sit-
uation, we also simulated the link with 50 spans of 80 km
standard single mode fiber (SSMF) without inline dispersion
compensation. SSMF parameters are, v = 1.2 /W/km; D = 17
ps/mm/km; o = 0.2 dB/km. No dispersion pre-compensation
was used. The target GMI remained the same at 0.85. Fig. 9
shows the span loss budget of the four modulation formats
for the spectral efficiency of 5 bits/symbol, as an example.
Overall, the differences among the modulation formats are
smaller than the case of DM-NZDSF link. 5b4D-2A8PSK still
shows the highest budget, outperforming TDH of DP-QPSK
and 6b4D-2A8PSK, 8PolSK, and 32SP-8QAM by 0.2 dB, 1.0
dB, and 0.8 dB, respectively. For dispersion uncompensated
links, TDH and 32SP-16QAM did not suffer as much as they
did in the DM case. This may be due to the weaker nonlinear
distortion in the uncompensated SSMF links compared to DM-
NZDSF links.

G. Remarks

Here, we make some remarks in the differences between the
preliminary results reported in [24] and the new results shown
in Figs. 5 and 7 of this paper. Both simulation procedures
are identical, except for two factors. In this paper, we used
an improved step-size factor p for the least-mean-square
equalizer and also corrected the transmitter pulse shape. For
the second factor, more specifically, in [24], we have included
an additional sample-hold function followed by an RRC filter
for the pulse shape, while in this paper we used a delta function
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followed by an RRC filter to meet the Nyquist condition. These
modified factors led to approximately 0.35 dB and 0.5 dB im-
provements in the span loss budget in the linear region and at
the peak, respectively, regardless of the modulation formats. In
addition, we modified the following three modulation formats.
1) 5b4D-2A8PSK is improved by using different parity-check
equations as described in Section II-C. 2) We previously used a
sub-optimal code for 32SP-16QAM. We now use an optimized
code described in [8]. 3) For 7 bits/symbol TDH modulation
of 6b4D-2A8PSK and DP-16QAM, we refined the power ratio
to achieve the highest budget.

IV. SEPARATED NONLINEAR EFFECTS

In order to understand the source of the benefit of 4D
constant modulus modulation, we conducted additional sim-
ulations with separated nonlinear components, based on the
method proposed in [38]. Using this method, we can evaluate
the nonlinear transmission performance with selective nonlin-
ear effects of SPM, XPM, and XPolM.

In Fig. 10, we plot the calculated Q-factor as a function of
the OSNR for 6b4D-2A8PSK and DP-Star-8QAM in the DM
link (same simulation parameters as Section III-A). Here, we
use the recently proposed Q-factor definition based on GMI
not pre-FEC BER, as follows [33]:

Q& = {0.5- JH(GMI)}?, (12)

where J~1(-) is the inverse J function, widely used in extrinsic
information transfer chart analysis [28]. The inverse J function
is well approximated by

I? + b1 I 0o<I<I*

J—l(])g a1l + 01 +C1\[7 N E)
—agln[bg(l—l)]—(32l, I*SISL

I = 0.3646,

ap = 1.09542, b1 = 0.214217, ¢ = 2.33727,

az = 0.706692, by =0.386013, co = —1.75017.

The above Q-factor based on GMI in (12) is a generalized ex-
tension from the conventional Q-factor based on BER in (2) so
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Fig. 10. Q-factor as a function of OSNR for 6b4D-2A8PSK and DP-Star-
8QAM with separated nonlinear effects at a launch power of —4 dBm.

that we can measure the effective SNR to achieve same post-
FEC BER performance with SD-FEC systems. While both
definitions provide exactly same Q performance in binary-
input AWGN channels, the generalized Q-factor can predict
SNR gain more accurately compared to the conventional Q-
factor for BICM systems using high-order high-dimensional
modulation and SD-FEC coding.

The curves denoted with ‘AWGN’ in Fig. 10 show the
case when the nonlinear effects are ignored, and the curves
represented with ‘SPM’, ‘XPM’, and ‘XPolM’ indicate that
these nonlinear components are added individually. The curve
with ‘SPM+XPM+XPoIM’ shows the case when all of these
nonlinear effects are taken into account. The launch power
is set to be —4 dBm, which gives the maximum span loss
budget for DP-Star-8QAM. OSNR of 15.2 dB corresponds to
a normalized GMI of 0.85 at this launch power.

Fig. 11 re-plots the simulated Q versus separated nonlinear-
ity under the condition of 15.2 dB OSNR. Q in the linear case
(AWGN) is higher for 6b4D-2A8PSK than DP-Star-8QAM
by 0.4 dB. The contributions from SPM and XPM in 6b4D-
2A8PSK are much smaller than those in DP-Star-8QAM. It
verifies that 4D-2A8PSK family can be robust against XPM
and SPM nonlinearity. On the other hand, the contribution
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Fig. 11. Q-factor for 6b4D-2A8PSK and DP-Star-8QAM with separated
nonlinear effects at a launch power of —4 dBm and OSNR of 15.2 dBm.

of XPoIM is similar in 6b4D-2A8PSK and DP-Star-8QAM
(more specifically, Q degradation from AWGN is comparable
for both modulation formats). This is because power in the in-
dividual polarization in 6b4D-2A8PSK fluctuates over symbol
time even though this has a 4D constant modulus property.
This result is consistent with the report in [35], where another
4D constant modulus modulation format 8PolSK shows a
significant reduction in SPM and XPM, but not XPolM.

As explained in Section ITI-A, we assumed PMD to be zero.
In reality, PMD varies from fiber plant to fiber plant, and
XPolM is generally decreased by higher PMD [39]. As shown
in Figs. 10-11, the dominant nonlinear degradation for 4D-
2A8PSK comes from XPolM, and hence, the benefit of 4D-
2A8PSK family may be even more significant in the presence
of high PMD.

V. DSP ALGORITHM

So far, in order to analyze the fundamental potential of
4D-2A8PSK family, we used an idealized data-directed least-
mean-square equalizer. In this section, we briefly address the
performance impact with more realistic equalizers [40], [41]
for practical implementation.

First, we consider a conventional radius-directed equalizer
(RDE) [41] for 6b4D-2A8PSK, where the decision on the ring
is carried out on each polarization independently. In this case,
we observed a degradation of 0.12 dB and 0.10 dB in span loss
budget compared to the idealized least-mean-square equalizer,
respectively, at a launch power of —10 dBm and —4 dBm.

We then took advantage of 4D constant modulus property,
by using the relative power of polarizations for soft decision of
the ring radii. For soft-decision information, we used a sigmoid
function S(z) = 1/(1 4+ e~*/%), where a is a parameter
to determine the softness, and = is a relative power of two
polarizations. In this manner, we could compensate for the
degradation by 0.07 dB from the conventional RDE. Overall,
the net degradation due to the realistic adaptive equalizer
compared to the ideal one is no greater than 0.05 dB.

VI. CONCLUSION

We reviewed the recently proposed 5, 6, and 7 bits/symbol
4D modulation format family based on 2A8PSK. A series
of nonlinear transmission simulation results revealed that this
modulation format family outperforms the conventional mod-
ulation formats at each corresponding spectral efficiency, in
particular for highly nonlinear DM links. It was also confirmed
that the primary benefit of the 4D constant modulus property
comes from the reduction of SPM and XPM. In addition,
we showed that the realistic adaptive equalizer will result in
no more than 0.05 dB penalty when the constant modulus
property is exploited for the radius decision. Since these
modulation formats differ just in the parity bits, they can
be realized with very similar hardware over different spectral
efficiency between DP-QPSK and DP-16QAM.
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