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Abstract
The field of speech recognition is in the midst
of a paradigm shift: end-to-end neural networks
are challenging the dominance of hidden Markov
models as a core technology. Using an attention
mechanism in a recurrent encoder-decoder archi-
tecture solves the dynamic time alignment prob-
lem, allowing joint end-to-end training of the
acoustic and language modeling components. In
this paper we extend the end-to-end framework
to encompass microphone array signal process-
ing for noise suppression and speech enhance-
ment within the acoustic encoding network. This
allows the beamforming components to be opti-
mized jointly within the recognition architecture
to improve the end-to-end speech recognition ob-
jective. Experiments on the noisy speech bench-
marks (CHiME-4 and AMI) show that our mul-
tichannel end-to-end system outperformed the
attention-based baseline with input from a con-
ventional adaptive beamformer.

1. Introduction
Existing automatic speech recognition (ASR) systems are
based on a complicated hybrid of separate components, in-
cluding acoustic, phonetic, and language models (Jelinek,
1976). Such systems are typically based on deep neural
network acoustic models combined with hidden Markov
models to represent the language and phonetic context-
dependent state and their temporal alignment with the
acoustic signal (DNN-HMM) (Bourlard & Morgan, 1994;
Hinton et al., 2012). As a simpler alternative, end-to-end
speech recognition paradigm has attracted great research

interest (Chorowski et al., 2014; 2015; Chan et al., 2016;
Graves & Jaitly, 2014; Miao et al., 2015). This paradigm
simplifies the above hybrid architecture by subsuming it
into a single neural network. Specifically, an attention-
based encoder-decoder framework (Chorowski et al., 2014)
integrates all of those components using a set of recurrent
neural networks (RNN), which map from acoustic feature
sequences to character label sequences.

However, existing end-to-end frameworks have focused
on clean speech, and do not include speech enhancement,
which is essential to good performance in noisy environ-
ments. For example, recent industrial applications (e.g.,
Amazon echo) and benchmark studies (Barker et al., 2016;
Kinoshita et al., 2016) show that multichannel speech en-
hancement techniques, using beamforming methods, pro-
duce substantial improvements as a pre-processor for con-
ventional hybrid systems, in the presence of strong back-
ground noise. In light of the above trends, this paper ex-
tends the existing attention-based encoder-decoder frame-
work by integrating multichannel speech enhancement.
Our proposed multichannel end-to-end speech recognition
framework is trained to directly translate from multichan-
nel acoustic signals to text.

A key concept of the multichannel end-to-end framework
is to optimize the entire inference procedure, including
the beamforming, based on the final ASR objectives, such
as word/character error rate (WER/CER). Traditionally,
beamforming techniques such as delay-and-sum and filter-
and-sum are optimized based on a signal-level loss func-
tion, independently of speech recognition task (Benesty
et al., 2008; Van Veen & Buckley, 1988). Their use in ASR
requires ad-hoc modifications such as Wiener post-filtering
or distortionless constraints, as well as steering mecha-
nisms determine a look direction to focus the beamformer
on the target speech (Wölfel & McDonough, 2009). In con-
trast, our framework incorporates recently proposed neu-
ral beamforming mechanisms as a differentiable compo-
nent to allow joint optimization of the multichannel speech
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enhancement within the end-to-end system to improve the
ASR objective.

Recent studies on neural beamformers can be categorized
into two types: (1) beamformers with a filter estimation
network (Xiao et al., 2016a; Li et al., 2016) and (2) beam-
formers with a mask estimation network (Heymann et al.,
2016; Erdogan et al., 2016). Both methods obtain an en-
hanced signal based on the formalization of the conven-
tional filter-and-sum beamformer in the time-frequency do-
main. The main difference between them is how the mul-
tichannel filters are produced by the neural network. In the
former approach, the multichannel filter coefficients are di-
rect outputs of the network. In the latter approach, a net-
work first estimates time-frequency masks, which are used
to compute expected speech and noise statistics. Then,
using these statistics, the filter coefficients are computed
based on the well-known MVDR (minimum variance dis-
tortionless response) formalization (Capon, 1969). In both
approaches, the estimated filter coefficients are then ap-
plied to the multichannel noisy signal to enhance the speech
signal. Note that the mask estimation approach has the
advantage of leveraging well-known techniques, but it re-
quires parallel data composed of aligned clean and noisy
speech, which are usually difficult to obtain without data
simulation.

Recently, it has been reported that the mask estimation-
based approaches (Yoshioka et al., 2015; Heymann et al.,
2016; Erdogan et al., 2016) achieve great performance in
noisy speech recognition benchmarks (e.g., CHiME 3 and
4 challenges)1. Although this paper proposes to incorpo-
rate both mask and filter estimation approaches in an end-
to-end framework, motivated by those successes, we fo-
cus more on the mask estimation, implementing it along
with the MVDR estimation as a differentiable network.
Our MVDR formulation estimates the speech image at the
reference microphone and includes selection of the refer-
ence microphone using an attention mechanism. By us-
ing channel-independent mask estimation along with this
reference selection, the model can generalize to different
microphone array geometries (number of channels, micro-
phone locations, and ordering), unlike the filter estimation
approach. Finally, because the masks are latent variables
in the end-to-end training, we no longer need parallel clean
and noisy speech.

The main advantages of our proposed multichannel end-to-
end speech recognition system are:

1. Overall inference from speech enhancement to recog-
nition is jointly optimized for the ASR objective.

1Yoshioka et al. 2015 uses a clustering technique to perform
mask estimation rather than the neural network-based techniques,
but it uses the same MVDR formulation for filter estimation.

Figure 1. The structure of an attention-based encoder-decoder
framework. The encoder transforms an input sequence O into
a high-level feature sequence H , and then the decoder generates
a character sequence Y through the attention mechanism.

2. The trained system can be used for input signals with
arbitrary number and order of channels.

3. Parallel clean and noisy data are not required. We
can optimize the speech enhancement component with
noisy signals and their transcripts.

2. Overview of attention-based
encoder-decoder networks

This section explains a conventional attention-based
encoder-decoder framework, which is used to directly deal
with variable length input and output sequences. The
framework consists of two RNNs, called encoder and de-
coder respectively, and an attention mechanism, which con-
nects the encoder and decoder, as shown in Figure 1. Given
a T -length sequence of input features O = {ot ∈ RDO |t =
1, · · · , T}, the network generates an N -length sequence of
output labels Y = {yn ∈ V|n = 1, · · · , N}, where ot is a
DO-dimensional feature vector (e.g., log Mel filterbank) at
input time step t, and yn is a label symbol (e.g., character)
at output time step n in label set V .

First, given an input sequence O, the encoder network
transforms it to an L-length high-level feature sequence
H = {hl ∈ RDH |l = 1, · · · , L}, where hl is a DH-
dimensional state vector at a time step l of encoder’s top
layer. In this work, the encoder network is composed of a
bidirectional long short-term memory (BLSTM) recurrent
network. To reduce the input sequence length, we apply
a subsampling technique (Bahdanau et al., 2016) to some
layers. Therefore, l represents the frame index subsampled
from t and L is less than T .

Next, the attention mechanism integrates all encoder out-
puts H into a DH-dimensional context vector cn ∈ RDH
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based on an L-dimensional attention weight vector an ∈
[0, 1]L, which represents a soft alignment of encoder out-
puts at an output time step n. In this work, we adopt
a location-based attention mechanism (Chorowski et al.,
2015), and an and cn are formalized as follows:

fn = F ∗ an−1, (1)

kn,l = wTtanh(VSsn + VHhl + VFfn,l + b), (2)

an,l =
exp(αkn,l)∑L
l=1 exp(αkn,l)

, cn =

L∑
l=1

an,lhl, (3)

where w ∈ R1×DW , VH ∈ RDW×DH , VS ∈ RDW×DS ,
VF ∈ RDW×DF are trainable weight matrices, b ∈ RDW

is a trainable bias vector, F ∈ RDF×1×Df is a trainable
convolution filter. sn ∈ RDS is a DS-dimensional hidden
state vector obtained from an upper decoder network at n,
and α is a sharpening factor (Chorowski et al., 2015). ∗
denotes the convolution operation.

Then, the decoder network incrementally updates a hidden
state sn and generates an output label yn as follows:

sn = Update(sn−1, cn−1, yn−1), (4)
yn = Generate(sn, cn), (5)

where the Generate(·) and Update(·) functions are com-
posed of a feed forward network and an LSTM-based re-
current network, respectively.

Now, we can summarize these procedures as follows:

P (Y |O) =
∏
n

P (yn|O, y1:n−1), (6)

H = Encoder(O), (7)
cn = Attention(an−1, sn, H), (8)
yn = Decoder(cn, y1:n−1), (9)

where Encoder(·) = BLSTM(·), Attention(·) corre-
sponds to Eqs. (1)-(3), and Decoder(·) corresponds to
Eqs. (4) and (5). Here, special tokens for start-of-sentence
(sos) and end-of-sentence (eos) are added to the label set V .
The decoder starts the recurrent computation with the (sos)
label and continues to generate output labels until the (eos)
label is emitted. Figure 1 illustrates such procedures.

Based on the cross-entropy criterion, the loss function is
defined using Eq. (6) as follows:

L = − lnP (Y ∗|O) = −
∑
n

lnP (y∗n|O, y∗1:n−1), (10)

where Y ∗ is the ground truth of a whole sequence of output
labels and y∗1:n−1 is the ground truth of its subsequence
until an output time step n− 1.

In this framework, the whole networks including the en-
coder, attention, and decoder can be optimized to generate

(a) Beamforming with
filter estimation network

(b) Beamforming with
mask estimation network

Figure 2. Structures of neural beamformers. (a) Filter estimation
network, which directly estimates the filter coefficients. (b) Mask
estimation network, which estimates time-frequency masks, and
then get filter coefficients based on the MVDR formalization.

the correct label sequence. This consistent optimization of
all relevant procedures is the main motivation of the end-
to-end framework.

3. Neural beamformers
This section explains neural beamformer techniques, which
are integrated with the encoder-decoder network in the fol-
lowing section. This paper uses frequency-domain beam-
formers rather than time-domain ones, which achieve sig-
nificant computational complexity reduction in multichan-
nel neural processing (Li et al., 2016; Sainath et al., 2016).
In the frequency domain representation, a filter-and-sum
beamformer obtains an enhanced signal as follows:

x̂t,f =

C∑
c=1

gt,f,cxt,f,c, (11)

where xt,f,c ∈ C is an STFT coefficient of c-th channel
noisy signal at a time-frequency bin (t, f). gt,f,c ∈ C is
a corresponding beamforming filter coefficient. x̂t,f ∈ C
is an enhanced STFT coefficient, and C is the numbers of
channels.

In this paper, we adopt two types of neural beamformers,
which basically follow Eq. (11); 1) filter estimation net-
work and 2) mask estimation network. Figure 2 illustrates
the schematic structure of each approach. The main differ-
ence between them is how to compute the filter coefficient
gt,f,c. The following subsections describe each approach.

3.1. Filter estimation network approach

The filter estimation network directly estimates a time-
variant filter coefficients {gt,f,c}T,F,C

t=1,f=1,c=1 as the outputs
of the network, which was originally proposed in (Li et al.,
2016). F is the dimension of STFT features.
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This approach uses a single real-valued BLSTM network to
predict the real and imaginary parts of the complex-valued
filter coefficients at an every time step. Therefore, we in-
troduce multiple (2 × C) output layers to separately com-
pute the real and imaginary parts of the filter coefficients
for each channel. Then, the network outputs time-variant
filter coefficients gt,c = {gt,f,c}Ff=1 ∈ CF at a time step t
for c-th channel as follows;

Z = BLSTM({x̄t}Tt=1), (12)

<(gt,c) = tanh(W<
c zt + b<c ), (13)

=(gt,c) = tanh(W=
c zt + b=c ), (14)

where Z = {zt ∈ RDZ |t = 1, · · · , T}is a sequence of DZ-
dimensional output vectors of the BLSTM network. x̄t =
{<(xt,f,c),=(xt,f,c)}F,C

f=1,c=1 ∈ R2FC is an input feature
of a 2FC-dimensional real-value vector for the BLSTM
network. This is obtained by concatenating the real and
imaginary parts of all STFT coefficients in all channels.
<(gt,c) and =(gt,c) is the real and imaginary part of fil-
ter coefficients, W<

c ∈ RF×DZ and W=
c ∈ RF×DZ are the

weight matrices of the output layer for c-th channel, and
b<c ∈ RF and b=c ∈ RF are their corresponding bias vec-
tors. Using the estimated filters gt,c, the enhanced STFT
coefficients x̂t,f are obtained based on Eq. (11).

This approach has several possible problems due to its for-
malization. The first issue is the high flexibility of the esti-
mated filters {gt,f,c}T,F,C

t=1,f=1,c=1, which are composed of
a large number of unconstrained variables (2TFC) esti-
mated from few observations. This causes problems such
as training difficulties and over-fitting. The second issue is
that the network structure depends on the number and order
of channels. Therefore, a new filter estimation network has
to be trained when we change microphone configurations.

3.2. Mask estimation network approach

The key point of the mask estimation network approach
is that it constrains the estimated filters based on well-
founded array signal processing principles. Here, the
network estimates the time-frequency masks, which are
used to compute the time-invariant filter coefficients
{gf,c}F,C

f=1,c=1 based on the MVDR formalizations. This
is the main difference between this approach and the fil-
ter estimation network approach described in Section 3.1.
Also, mask-based beamforming approaches have achieved
great performance in noisy speech recognition benchmarks
(Yoshioka et al., 2015; Heymann et al., 2016; Erdogan
et al., 2016). Therefore, this paper proposes to use a mask-
based MVDR beamformer, where overall procedures are
formalized as a differentiable network for the subsequent
end-to-end speech recognition system. Figure 3 summa-
rizes the overall procedures to compute the filter coeffi-
cients, which is a detailed flow of Figure 2 (b).

Figure 3. Overall procedures to compute filter coefficients in
mask estimation network approach.

3.2.1. MASK-BASED MVDR FORMALIZATION

One of the MVDR formalizations computes the time-
invariant filter coefficients g(f) = {gf,c}Cc=1 ∈ CC in
Eq. (11) as follows (Souden et al., 2010):

g(f) =
ΦN(f)−1ΦS(f)

Tr(ΦN(f)−1ΦS(f))
u, (15)

where ΦS(f) ∈ CC×C and ΦN(f) ∈ CC×C are the cross-
channel power spectral density (PSD) matrices (also known
as spatial covariance matrices) for speech and noise signals,
respectively. u ∈ RC is the one-hot vector representing a
reference microphone, and Tr(·) is the matrix trace opera-
tion. Note that although the formula contains a matrix in-
verse, the number of channels is relatively small, and so the
forward pass and derivatives can be efficiently computed.

Based on (Yoshioka et al., 2015; Heymann et al., 2016), the
PSD matrices are robustly estimated using the expectation
with respect to time-frequency masks as follows:

ΦS(f) =
1∑T

t=1m
S
t,f

T∑
t=1

mS
t,fxt,fx†t,f , (16)

ΦN(f) =
1∑T

t=1m
N
t,f

T∑
t=1

mN
t,fxt,fx†t,f , (17)

where xt,f = {xt,f,c}Cc=1 ∈ CC is the spatial vector of
an observed signal for each time-frequency bin, mS

t,f ∈
[0, 1] and mN

t,f ∈ [0, 1] are the time-frequency masks for
speech and noise, respectively. † represents the conjugate
transpose.
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3.2.2. MASK ESTIMATION NETWORK

In the mask estimation network approach, we use two real-
valued BLSTM networks; one for a speech mask and the
other for a noise mask. Each network outputs the time-
frequency mask as follows:

ZS
c = BLSTMS({x̄t,c}Tt=1), (18)

mS
t,c = sigmoid(WSzS

t,c + bS), (19)

ZN
c = BLSTMN({x̄t,c}Tt=1), (20)

mN
t,c = sigmoid(WNzN

t,c + bN), (21)

where ZS
c = {zS

t,c ∈ RDZ |t = 1, · · · , T} is the output se-
quence of DZ-dimensional vectors of the BLSTM network
to obtain a speech mask over c-th channel’s input STFTs.
ZN
c is the BLSTM output sequence for a noise mask. x̄t,c =
{<(xt,f,c),=(xt,f,c)}Ff=1 ∈ R2F is an input feature of a
2F -dimensional real-value vector. This is obtained by con-
catenating the real and imaginary parts of all STFT features
at c-th channel. mS

t,c = {mS
t,f,c}Ff=1 ∈ [0, 1]F and mN

t,c

are the estimated speech and noise masks for every c-th
channel at a time step t, respectively. WS,WN ∈ RF×DZ

are the weight matrices of the output layers to finally output
speech and noise masks, respectively, and bS,bN ∈ RF are
their corresponding bias vectors.

After computing the speech and noise masks for each chan-
nel, the averaged masks are obtained as follows:

mS
t =

1

C

C∑
c=1

mS
t,c, mN

t =
1

C

C∑
c=1

mN
t,c. (22)

We use these averaged masks to estimate the PSD matri-
ces as described in Eqs. (16) and (17). The MVDR beam-
former through this BLSTM mask estimation is originally
proposed in (Heymann et al., 2016), but our neural beam-
former further extends it with attention-based reference se-
lection, which is described in the next subsection.

3.2.3. ATTENTION-BASED REFERENCE SELECTION

To incorporate the reference microphone selection in a neu-
ral beamformer framework, we use a soft-max for the vec-
tor u in Eq. (15) derived from an attention mechanism. In
this approach, the reference microphone vector u is esti-
mated from time-invariant feature vectors qc and rc as fol-
lows:

k̃c = vTtanh(VQqc + VRrc + b̃), (23)

uc =
exp(βk̃c)∑C
c=1 exp(βk̃c)

, (24)

where v ∈ R1×DV ,VZ ∈ RDV×2DZ ,VR ∈ RDV×2F are
trainable weight parameters, b̃ ∈ RDV is a trainable bias
vector. β is the sharpening factor. We use two types of

features; 1) the time-averaged state vector qc ∈ R2DZ ex-
tracted from the BLSTM networks for speech and noise
masks in Eqs. (18) and (20), i.e.,

qc =
1

T

T∑
t=1

{zS
t,c, z

N
t,c}, (25)

and 2) the PSD feature rc ∈ R2F , which incorporates the
spatial information into the attention mechanism. The fol-
lowing equation represents how to compute rc:

rc =
1

C − 1

C∑
c′=1,c′ 6=c

{<(φS
f,c,c′),=(φS

f,c,c′)}Ff=1, (26)

where φSf,c,c′ ∈ C is the entry in c-th row and c′-th column
of the speech PSD matrix ΦS(f) in Eq. (16). The PSD ma-
trix represents correlation information between channels.
To select a reference microphone, the spatial correlation re-
lated to speech signals is more informative, and therefore,
we only use the speech PSD matrix ΦS(f) as a feature.

Note that, in this mask estimation based MVDR beam-
former, masks for each channel are computed separately
using the same BLSTM network unlike Eq. (12), and the
mask estimation network is independent of channels. Simi-
larly, the reference selection network is also independent of
channels, and the beamformer deals with input signals with
arbitrary number and order of channels without re-training
or re-configuration of the network.

4. Multichannel end-to-end ASR
In this work, we propose a multichannel end-to-end speech
recognition, which integrates all components with a single
neural architecture. We adopt neural beamformers (Section
3) as a speech enhancement part, and the attention-based
encoder-decoder (Section 2) as a speech recognition part.

The entire procedure to generate the sequence of output la-
bels Ŷ from the multichannel inputs {Xc}Cc=1 is formalized
as follows:

X̂ = Enhance({Xc}Cc=1), (27)

Ô = Feature(X̂), (28)

Ĥ = Encoder(Ô), (29)

ĉn = Attention(ân−1, ŝn, Ĥ), (30)
ŷn = Decoder(ĉn, ŷ1:n−1). (31)

Enhance(·) is a speech enhancement function realized by
the neural beamformer based on Eq. (11) with the filter or
mask estimation network (Section 3.1 or 3.2).

Feature(·) is a feature extraction function. In this work,
we use a normalized log Mel filterbank transform to obtain
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ôt ∈ RDO computed from the enhanced STFT coefficients
x̂t ∈ CF as an input of attention-based encoder-decoder:

pt = {<(x̂t,f )2 + =(x̂t,f )2}Ff=1, (32)

ôt = Norm(log(Mel(pt))), (33)

where pt ∈ RF is a real-valued vector of the power spec-
trum of the enhanced signal at a time step t, Mel(·) is
the operation of DO × F Mel matrix multiplication, and
Norm(·) is the operation of global mean and variance nor-
malization so that its mean and variance become 0 and 1.

Encoder(·), Attention(·), and Decoder(·) are defined in
Eqs. (7), (8), and (9), respectively, with the sequence of the
enhanced log Mel filterbank like features Ô as an input.

Thus, we can build a multichannel end-to-end speech
recognition system, which converts multichannel speech
signals to texts with a single network. Note that because all
procedures, such as enhancement, feature extraction, en-
coder, attention, and decoder, are connected with differ-
entiable graphs, we can optimize the overall inference to
generate a correct label sequence.

Relation to prior works

There have been several related studies of neural beam-
formers based on the filter estimation (Li et al., 2016;
Xiao et al., 2016a) and the mask estimation (Heymann
et al., 2016; Erdogan et al., 2016; Xiao et al., 2016b).
The main difference is that such preceding studies use a
component-level training objective within the conventional
hybrid frameworks, while our work focuses on the entire
end-to-end objective. For example, Heymann et al., 2016;
Erdogan et al., 2016 use a signal-level objective (binary
mask classification or regression) to train a network given
parallel clean and noisy speech data. Li et al., 2016; Xiao
et al., 2016a;b use ASR objectives (HMM state classifica-
tion or sequence discriminative training), but they are still
based on the hybrid approach. Speech recognition with
raw multichannel waveforms (Hoshen et al., 2015; Sainath
et al., 2016) can also be seen as using a neural beamformer,
where the filter coefficients are represented as network pa-
rameters, but again these methods are still based on the hy-
brid approach.

As regards end-to-end speech recognition, all existing stud-
ies are based on a single channel setup. For example, most
studies focus on a standard clean speech recognition setup
without speech enhancement. (Chorowski et al., 2014;
Graves & Jaitly, 2014; Chorowski et al., 2015; Chan et al.,
2016; Miao et al., 2015; Zhang et al., 2016; Kim et al.,
2016; Lu et al., 2016). Amodei et al., 2016 discusses end-
to-end speech recognition in a noisy environment, but this
method deals with the noise robustness by preparing vari-
ous types of simulated noisy speech for training data, and

does not incorporate multichannel speech enhancement in
their networks.

5. Experiments
We study the effectiveness of our multichannel end-to-
end system compared to a baseline end-to-end system with
noisy speech or beamformed inputs. We use the two mul-
tichannel speech recognition benchmarks, CHiME-4 (Vin-
cent et al., 2016) and AMI (Hain et al., 2007).

CHiME-4 is a speech recognition task in public noisy en-
vironments, consisting of speech recorded using a tablet
device with 6-channel microphones. It consists of real and
simulated data. The training set consists of 3 hours of real
speech data uttered by 4 speakers and 15 hours of simula-
tion speech data uttered by 83 speakers. The development
set consists of 2.9 hours of real and simulation speech data
uttered by 4 speakers, respectively. The evaluation set con-
sists of 2.2 hours of real and simulation speech data uttered
by 4 speakers, respectively. We excluded the 2nd channel
signals, which is captured at the microphone located on the
backside of the tablet, and used 5 channels for the follow-
ing multichannel experiments (C = 5).

AMI is a speech recognition task in meetings, consisting
of speech recorded using 8-channel circular microphones
(C = 8). It consists of only real data. The training set con-
sists of about 78 hours of speech data uttered by 135 speak-
ers. the development and evaluation sets consist of about 9
hours of speech data uttered by 18 and 16 speakers, respec-
tively. The amount of training data (i.e., 78 hours) is larger
than one for CHiME-4 (i.e., 18 hours), and we mainly used
CHiME-4 data to demonstrate our experiments.

5.1. Configuration

5.1.1. ENCODER-DECODER NETWORKS

We used 40-dimensional log Mel filterbank coefficients as
an input feature vector for both noisy and enhanced speech
signals (DO = 40). In this experiment, we used 4-layer
BLSTM with 320 cells in the encoder (DH = 320), and
1-layer LSTM with 320 cells in the decoder (DS = 320).
In the encoder, we subsampled the hidden states of the first
and second layers and used every second of hidden states
for the subsequent layer’s inputs. Therefore, the number
of hidden states at the encoder’s output layer is reduced to
L = T/4. After every BLSTM layer, we used a linear
projection layer with 320 units to combine the forward and
backward LSTM outputs. For the attention mechanism, 10
centered convolution filters (DF = 10) of width 100 (Df =
100) were used to extract the convolutional features. We
set the attention inner product dimension as 320 (DW =
320), and used the sharpening factor α = 2. To boost the
optimization in a noisy environment, we adopted a joint
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CTC-attention multi-task loss function (Kim et al., 2016),
and set the CTC loss weight as 0.1.

For decoding, we used a beam search algorithm similar to
(Sutskever et al., 2014) with the beam size 20 at each out-
put step to reduce the computation cost. CTC scores were
also used to re-score the hypotheses with 0.1 weight. We
adopted a length penalty term (Chorowski et al., 2015) to
the decoding objective and set the penalty weight as 0.3. In
the CHiME-4 experiments, we only allowed the hypothe-
ses whose length were within 0.3×L and 0.75×L during
decoding, while the hypothesis lengths in the AMI exper-
iments were automatically determined based on the above
scores. Note that we pursued a pure end-to-end setup with-
out using any external lexicon or language models, and
used CER as an evaluation metric.

5.1.2. NEURAL BEAMFORMERS

256 STFT coefficients and the offset were computed from
25ms-width hamming window with 10ms shift (F = 257).
Both filter and mask estimation network approaches used
similar a 3-layer BLSTM with 320 cells (DZ = 320) with-
out the subsampling technique. For the reference selec-
tion attention mechanism, we used the same attention in-
ner product dimension (DV = 320) and sharpening factor
β = 2 as those of the encoder-decoder network.

5.1.3. SHARED CONFIGURATIONS

All the parameters are initialized with the range [-0.1, 0.1]
of a uniform distribution. We used the AdaDelta algorithm
(Zeiler, 2012) with gradient clipping (Pascanu et al., 2013)
for optimization. We initialized the AdaDelta hyperparam-
eters ρ = 0.95 and ε = 1−8. Once the loss over the
validation set was degraded, we decreased the AdaDelta
hyperparameter ε by multiplying it by 0.01 at each subse-
quent epoch. The training procedure was stopped after 15
epochs. During the training, we adopted multi-condition
training strategy, i.e., in addition to the optimization with
the enhanced features through the neural beamformers, we
also used the noisy multichannel speech data as an input
of encoder-decoder networks without through the neural
beamformers to improve the robustness of the encoder-
decoder networks. All the above networks are implemented
by using Chainer (Tokui et al., 2015).

5.2. Results

Table 1 shows the recognition performances of CHiME-
4 with the five systems: NOISY, BEAMFORMIT, FIL-
TER NET, MASK NET (REF), and MASK NET (ATT).
NOISY and BEAMFORMIT were the baseline single-
channel end-to-end systems, which did not include the
speech enhancement part in their frameworks. Their end-
to-end networks were trained only with noisy speech data

Table 1. Character error rate [%] for CHiME-4 corpus.

MODEL
DEV

SIMU
DEV

REAL
EVAL
SIMU

EVAL
REAL

NOISY 25.0 24.5 34.7 35.8
BEAMFORMIT 21.5 19.3 31.2 28.2

FILTER NET 19.1 20.3 28.2 32.7
MASK NET (REF) 15.5 18.6 23.7 28.8
MASK NET (ATT) 15.3 18.2 23.7 26.8

by following a conventional multi-condition training strat-
egy (Vincent et al., 2016). During decoding, NOISY used
single-channel noisy speech data from ’isolated 1ch track’
in CHiME-4 as an input, while BEAMFORMIT used the
enhanced speech data obtained from 5-channel signals with
BeamformIt (Anguera et al., 2007), which is well-known
delay-and-sum beamformer, as an input.

FILTER NET, MASK NET (REF), and MASK NET
(ATT) were the multichannel end-to-end systems described
in Section 4. To evaluate the validity of the reference selec-
tion, we prepared MASK NET (ATT) based on the mask-
based beamformer with attention-based reference selection
described in Section 3.2.3, and MASK NET (REF) with
5-th channel as a fixed reference microphone, which is lo-
cated on the center front of the tablet device.

Table 1 shows that BEAMFORMIT, FILTER NET,
MASK NET (REF), and MASK NET (ATT) outperformed
NOISY, which confirms the effectiveness of combining
speech enhancement with the attention-based encoder-
decoder framework. The comparison of MASK NET
(REF) and MASK NET (ATT) validates the use of the
attention-based mechanism for reference selection. FIL-
TER NET, which is based on the filter estimation network
described in Section 3.1, also improved the performance
compared to NOISY, but worse than MASK NET (ATT).
This is because it is difficult to optimize the filter estima-
tion network due to a lack of restriction to estimate filter
coefficients, and it needs some careful optimization, as sug-
gested by (Xiao et al., 2016a). Finally, MASK NET (ATT)
achieved better recognition performance than BEAMFOR-
MIT, which proves the effectiveness of our joint integration
rather than a pipe-line combination of speech enhancement
and (end-to-end) speech recognition.

To further investigate the effectiveness of our proposed
multichannel end-to-end framework, we also conducted
the experiment on the AMI corpus. Table 2 compares
the recognition performance of the three systems: NOISY,
BEAMFORMIT, and MASK NET (ATT). In NOISY, we
used noisy speech data from the 1st channel in AMI as
an input to the system. Table 2 shows that, even in
the AMI, our proposed MASK NET (ATT) achieved bet-
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Table 2. Character error rate [%] for AMI corpus.

MODEL DEV EVAL

NOISY 41.8 45.3
BEAMFORMIT 44.9 51.3

MASK NET (ATT) 35.7 39.0

ter recognition performance than the attention-based base-
lines (NOISY and BEAMFORMIT), which also confirms
the effectiveness of our proposed multichannel end-to-end
framework. Note that BEAMFORMIT was worse than
NOISY even with the enhanced signals. This phenomenon
is sometimes observed in noisy speech recognition that the
distortion caused by sole speech enhancement degrades the
performance without re-training. Our end-to-end system
jointly optimizes the speech enhancement part with the
ASR objective, and can avoid such degradations.

5.3. Influence on the number and order of channels

As we discussed in Section 3.2, one unique character-
istic of our proposed MASK NET (ATT) is the robust-
ness/invariance against the number and order of channels
without re-training. Table 3 shows an influence of the
CHiME-4 validation accuracies on the number and order
of channels. The validation accuracy was computed con-
ditioned on the ground truth labels y∗1:n−1 in Eq. (10) dur-
ing decoder’s recursive character generation, which has a
strong correlation with CER. The second column of the ta-
ble represents the channel indices, which were used as an
input of the same MASK NET (ATT) network.

Comparison of 5 6 4 3 1 and 3 4 1 5 6 shows that the or-
der of channels did not affect the recognition performance
of MASK NET (ATT) at all, as we expected. In addition,
even when we used fewer three or four channels as an in-
put, MASK NET (ATT) still outperformed NOISY (single
channel). These results confirm that our proposed multi-
channel end-to-end system can deal with input signals with
arbitrary number and order of channels, without any re-
configuration and re-training.

5.4. Visualization of beamformed features

To analyze the behavior of our developed speech enhance-
ment component with a neural beamformer, Figure 4 vi-
sualizes the spectrograms of the same CHiME-4 utter-
ance with the 5-th channel noisy signal, enhanced signal
with BeamformIt, and enhanced signal with our proposed
MASK NET (ATT). We could confirm that the Beamfor-
mIt and MASK NET (ATT) successfully suppressed the
noises comparing to the 5-th channel signal by eliminat-

Table 3. CHiME-4 validation accuracies [%] for MASK NET
(ATT) with different numbers and orders of channels.

MODEL CHANNEL DEV

NOISY ISOLATED 1CH TRACK 87.9

MASK NET (ATT) 5 6 4 3 1 91.2
MASK NET (ATT) 3 4 1 5 6 91.2

MASK NET (ATT) 5 6 4 1 91.1
MASK NET (ATT) 5 6 4 90.9

Figure 4. Comparison of the log-magnitude spectrograms of the
same CHiME-4 utterance with the 5-th channel noisy signal, en-
hanced signal with BeamformIt, and enhanced signal with our
proposed MASK NET (ATT).

ing blurred red areas overall. In addition, by focusing on
the insides of black boxes, the harmonic structure, which
was corrupted in the 5-th channel signal, was recovered in
BeamformIt and MASK NET (ATT).

This result suggests that our proposed MASK NET (ATT)
successfully learned a noise suppression function similar
to the conventional beamformer, although it is optimized
based on the end-to-end ASR objective, without explicitly
using clean data as a target.

6. Conclusions
In this paper, we extended an existing attention-based
encoder-decoder framework by integrating a neural beam-
former and proposed a multichannel end-to-end speech
recognition framework. It can jointly optimize the over-
all inference in multichannel speech recognition (i.e., from
speech enhancement to speech recognition) based on the
end-to-end ASR objective, and it can generalize to dif-
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ferent numbers and configurations of microphones. The
experimental results on challenging noisy speech recogni-
tion benchmarks, CHiME-4 and AMI, show that the pro-
posed framework outperformed the end-to-end baseline
with noisy and delay-and-sum beamformed inputs.

The current system still has data sparseness issues due to
the lack of lexicon and language models, unlike the con-
ventional hybrid approach. Therefore, the results reported
in the paper did not reach the state-of-the-art performance
in these benchmarks, but they are still convincing to show
the effectiveness of the proposed framework. Our most im-
portant future work is to overcome these data sparseness is-
sues by developing adaptation techniques of an end-to-end
framework with the incorporation of linguistic resources.
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