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Abstract
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at pilots. Through mutual information analysis, we show that the proposed method achieves
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state estimation at pilots. Through mutual information analysis, we show that the proposed
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1. Introduction

Phase noise, e.g., induced by laser linewidth [1] and fiber nonlinearity [2], has been one of major impairments in
coherent optical communications. To tackle the phase noise impairments, blind carrier phase estimation (CPE) [3-7]
has been adopted in various practical systems. Although pilot-aided CPE [8] and turbo CPE [9] may be able to achieve
better performance, blind CPE based on Viterbi& Viterbi (V&V) method is often used in practice due to its hardware
simplicity, in particular for low-order modulation schemes such as quadrature phase-shift keying (QPSK).

The V&V blind CPE has relatively large residual phase noise, and moreover it can cause frequent cycle slips [10—12]
due to phase ambiguity. Beygi et al. [13] studied constellation design robust to the residual phase noise. Cao et al. [14]
proposed a phase noise-aware log-likelihood ratio (LLR) calculation based on a Tikhonov model. An alternative LLR
calculation method, employing linear or bilinear transform [15], was also investigated to improve robustness against
residual phase noise. Cycle slip issues have been dealt with by turbo slip recovery [16], which uses a hidden Markov
model of stochastic cycle slips. Zhang et al. [17] used pilots to mitigate cycle slips. Schmalen [18] proposed a new
low-density parity-check (LDPC) code structure, which is robust to cycle slips.

In this paper, we propose a novel soft-decision cycle slip recovery method, which is suitable for parallel hardware
implementation. The proposed method uses pilots to refine the LLR calculation by taking the residual phase noise and
cycle slip probability into account. Through generalized mutual information (GMI) [19] analysis, we show that up to
0.6 dB gain can be achieved by the proposed method in the presence of the cycle slip probability higher than 10~%.

2. Cycle Slip and Residual Phase Noise

Fig. 1 shows a schematic of the blind CPE, followed by the soft-decision cycle slip recovery. As the proposed method
uses the statistical information of slip rate ps and the residual phase noise variance 62 of the blind CPE, we first inves-
tigate the slip probability and the residual phase noise in the conventional blind CPE. We consider QPSK transmission
and the 4-th power CPE method having an averaging filter window of length 2L + 1.

In Fig. 2, we show the cycle slip probability ps and mean-square error (MSE) Gez of phase estimation for the blind
CPE with L = 31 under additive white Gaussian noise (AWGN) channels in the presence of Wiener process phase
noise, whose variance is Gg = 27AVT, € {1072,1073,1074,107}. Here, Av and T; are an effective linewidth and
symbol duration, respectively. For example, Gg = 10~* corresponds to a laser linewidth of 477 kHz for 30 GBd.

From Fig. 2, we can observe that frequent slip rates ps > 10~ can occur in low signal-to-noise ratio (SNR) regimes,
even for small phase noise variance of Gg < 107*. This is because the cycle slip is dominated by the noise enhancement
[10] even without phase noise. Such noise enhancement can be reduced by increasing the averaging filter window size,
as shown in Fig. 3, where the slip rate and MSE curves are present for the half window lengths of L € {31,63,127} at
0'13 = 10~%. Although longer window size can reduce the slip probability, the MSE does not improve much. Moreover,
we are often unable to use a large window size in practical hardware because high-speed parallel processing becomes
more difficult to implement for longer averaging windows.

Consequently, a major challenge arises in the cases when filter length is constrained and the SNR is low. Therefore,
this paper focuses on a practically reasonable filter with half window length L = 31 and a target spectral efficiency of
1.0-1.5 b/s/Hz/pol, whose required SNR in Shannon limit ranges from 0 dB to 3.5 dB in AWGN channels when no
phase noise is present.



3. Pilot-Aided Soft-Decision Cycle Slip Recovery

The signal after the blind CPE is modeled as y, = x,exp{j(6, + Fs,)} + w,, where y, is the symbol feeding into
the demodulator, x,, is the transmitted QPSK symbol, 6, is the residual phase noise, which follows the Gaussian
distribution N(0,62), and w, is an additive noise following the circular-symmetric complex Gaussian distribution
CN(0, 62), at the n-th symbol. Here, s, represents the slip state due to the phase ambiguity of the blind CPE. To account
for the residual phase noise, we use a moment-matching method as exp(j6,) € CN(u, 1 — u?) with u = exp(—0c2/2),
and the LLR values calculated at the demodulator in Fig. 1 are first scaled by u?>c?/(c? +1— u?).

The LLR is further modified by using pilot-aided soft-decision recovery depicted in Fig. 4, where we consider the
slip states s, as a Markov process. Using the soft-decision slip state probability Pr(s,|y,) given by LLR values at M
nearest pilots, the LLR at data symbols are refined in parallel. Since the probability that the slip state s,,,, stays the
same state s, decays exponentially as a function of m, we use weighted LLRs from M pilots by the m-th power of
state transition matrix T. For the Markov process with a slip rate ps, the state transition matrix can be pre-computed
as Tlq] = 7[(1 —q)%,q(1 — q),4%,q(1 — q)], where .7[] denotes the Toeplitz matrix and ¢ = 1 — /T — ps. Using the
Toeplitz property, T™[g] is easily calculated by T[¢'] with ¢’ = (1 — (1 —2g)™)/2 ~ mgq. This LLR modification can
be carried out in a fully parallel manner because no decision feedback or sequential update is required.

4. Performance Results

Here, we analyze the GMI performance of the proposed soft-decision cycle slip recovery for the 4-th power CPE with
L = 31. Fig. 5 shows the GMI curves at different phase noise variance o € {107%,107%,107>}. We use two adjacent
pilots (M = 2) to make an estimate of slip states, and a pilot insertion interval of N = 100 symbols. Note that the
GMI penalty from the Shannon limit is significant because the residual phase noise and slip rates are non-negligible
as shown in Fig. 2. Nevertheless, one can see that the proposed soft-decision slip recovery achieves 0.5-0.8 dB gain
at a target spectral efficiency of 1.0-1.5 b/s/Hz/pol, in the presence of large phase noise Gg =103,

Fig. 6 shows the impact of pilot insertion interval N. We can see that short intervals improve the tolerance against
cycle slips in low SNR regimes, whereas longer intervals can improve the GMI in higher SNRs due to lower overhead.
When we compare the soft- and hard-decision recovery at a best pilot insertion interval N, 0.3-0.6 dB gain can be ob-
tained by the proposed scheme for the target spectral efficiency. Although more gain can be seen in a spectral efficiency
lower than 1.0 b/s/Hz/pol, we shall use lower-order modulation with higher code rates for those SNR regimes.

5. Conclusions

We have proposed a new soft-decision cycle slip recovery method which is suitable for parallel hardware implemen-
tation. Using LLR modification by adjacent pilots, we can improve the tolerance against cycle slips. Through GMI
analysis, we have shown that the proposed scheme outperforms the hard-decision counterpart by up to 0.5 dB in the
presence of frequent cycle slips, caused by the blind CPE with a short window.
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Fig. 1: Blind CPE and soft-decision cycle slip recovery.
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Fig. 2: Slip rate and MSE of 4-th power CPE with L =31
for QPSK at 67 =27AVT; € {1072,107%,1074,107°}.
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Fig. 3: Slip rate and MSE of 4-th power CPE with L €
{31,63,127} for QPSK at 62 = 10~*.
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Fig. 4: Fully parallel M-pilot cycle slip recovery.
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Fig. 5: GMI of 2-pilot soft- and hard-decision slip recov-
ery with pilot insertion interval N = 100 for 4-th power
CPE with L =31and QPSK at 62 € {1073,107%,10°}.
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Fig. 6: GMI of 3-pilot soft- and hard-decision slip
recovery with different pilot insertion interval N €
{10,20,100,200} for L = 31 and QPSK at 62 = 107>
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