
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Coupled Generative Adversarial Nets
Liu, Ming-Yu; Tuzel, C. Oncel;

TR2016-156 December 05, 2016

Abstract
We propose the coupled generative adversarial nets (CoGAN) framework for generating pairs
of corresponding images in two different domains. The framework consists of a pair of gener-
ative adversarial nets, each responsible for generating images in one domain. We show that
by enforcing a simple weight-sharing constraint, the CoGAN learns to generate pairs of cor-
responding images without existence of any pairs of corresponding images in the two domains
in the training set. In other words, the CoGAN learns a joint distribution of images in the
two domains from images drawn separately from the marginal distributions of the individual
domains. This is in contrast to the existing multi-modal generative models, which require
corresponding images for training. We apply the CoGAN to several pair image generation
tasks. For each task, the GoGAN learns to generate convincing pairs of corresponding images.
We further demonstrate the applications of the CoGAN framework for the domain adaptation
and cross-domain image generation tasks.

Advances in Neural Information Processing Systems (NIPS)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2016
201 Broadway, Cambridge, Massachusetts 02139

Coupled Generative Adversarial Networks

Ming-Yu Liu
Mitsubishi Electric Research Labs (MERL),

mliu@merl.com

Oncel Tuzel
Mitsubishi Electric Research Labs (MERL),

oncel@merl.com

Abstract

We propose coupled generative adversarial network (CoGAN) for learning a joint
distribution of multi-domain images. In contrast to the existing approaches, which
require tuples of corresponding images in different domains in the training set,
CoGAN can learn a joint distribution without any tuple of corresponding images.
It can learn a joint distribution with just samples drawn from the marginal distri-
butions. This is achieved by enforcing a weight-sharing constraint that limits the
network capacity and favors a joint distribution solution over a product of marginal
distributions one. We apply CoGAN to several joint distribution learning tasks, in-
cluding learning a joint distribution of color and depth images, and learning a joint
distribution of face images with different attributes. For each task it successfully
learns the joint distribution without any tuple of corresponding images. We also
demonstrate its applications to domain adaptation and image transformation.

1 Introduction

The paper concerns the problem of learning a joint distribution of multi-domain images from data. A
joint distribution of multi-domain images is a probability density function that gives a density value
to each joint occurrence of images in different domains such as images of the same scene in different
modalities (color and depth images) or images of the same face with different attributes (smiling and
non-smiling). Once a joint distribution of multi-domain images is learned, it can be used to generate
novel tuples of images. In addition to movie and game production, joint image distribution learning
finds applications in image transformation and domain adaptation. When training data are given as
tuples of corresponding images in different domains, several existing approaches [1, 2, 3, 4] can be
applied. However, building a dataset with tuples of corresponding images is often a challenging task.
This correspondence dependency greatly limits the applicability of the existing approaches.

To overcome the limitation, we propose the coupled generative adversarial networks (CoGAN)
framework. It can learn a joint distribution of multi-domain images without existence of corresponding
images in different domains in the training set. Only a set of images drawn separately from the
marginal distributions of the individual domains is required. CoGAN is based on the generative
adversarial networks (GAN) framework [5], which has been established as a viable solution for image
distribution learning tasks. CoGAN extends GAN for joint image distribution learning tasks.

CoGAN consists of a tuple of GANs, each for one image domain. When trained naively, the CoGAN
learns a product of marginal distributions rather than a joint distribution. We show that by enforcing a
weight-sharing constraint the CoGAN can learn a joint distribution without existence of corresponding
images in different domains. The CoGAN framework is inspired by the idea that deep neural networks
learn a hierarchical feature representation. By enforcing the layers that decode high-level semantics
in the GANs to share the weights, it forces the GANs to decode the high-level semantics in the
same way. The layers that decode low-level details then map the shared representation to images in
individual domains for confusing the respective discriminative models. CoGAN is for multi-image
domains but, for ease of presentation, we focused on the case of two image domains in the paper.
However, the discussions and analyses can be easily generalized to multiple image domains.

29th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

ar
X

iv
:1

60
6.

07
53

6v
2

 [
cs

.C
V

]
 2

0
Se

p
20

16

We apply CoGAN to several joint image distribution learning tasks. Through convincing visualization
results and quantitative evaluations, we verify its effectiveness. We also show its applications to
unsupervised domain adaptation and image transformation.

2 Generative Adversarial Networks

A GAN consists of a generative model and a discriminative model. The objective of the generative
model is to synthesize images resembling real images, while the objective of the discriminative model
is to distinguish real images from synthesized ones. Both the generative and discriminative models
are realized as multilayer perceptrons.

Let x be a natural image drawn from a distribution, pX , and z be a random vector in Rd. Note that we
only consider that z is from a uniform distribution with a support of [−1 1]d, but different distributions
such as a multivariate normal distribution can be applied as well. Let g and f be the generative and
discriminative models, respectively. The generative model takes z as input and outputs an image,
g(z), that has the same support as x. Denote the distribution of g(z) as pG. The discriminative model
estimates the probability that an input image is drawn from pX . Ideally, f(x) = 1 if x ∼ pX and
f(x) = 0 if x ∼ pG. The GAN framework corresponds to a minimax two-player game, and the
generative and discriminative models can be trained jointly via solving

max
g

min
f
V (f, g) ≡ Ex∼pX

[− log f(x)] + Ez∼pZ
[− log(1− f(g(z)))]. (1)

In practice (1) is solved by alternating the following two gradient update steps:

Step 1: θt+1
f = θt

f − λt∇θf
V (f t, gt), Step 2: θt+1

g = θt
g + λt∇θgV (f t+1, gt)

where θf and θg are the parameters of f and g, λ is the learning rate, and t is the iteration number.

Goodfellow et al. [5] show that, given enough capacity to f and g and sufficient training iterations,
the distribution, pG, converges to pX . In other words, from a random vector, z, the network g can
synthesize an image, g(z), that resembles one that is drawn from the true distribution, pX .

3 Coupled Generative Adversarial Networks

CoGAN as illustrated in Figure 1 is designed for learning a joint distribution of images in two different
domains. It consists of a pair of GANs—GAN1 and GAN2; each is responsible for synthesizing
images in one domain. During training, we force them to share a subset of parameters. This results in
that the GANs learn to synthesize pairs of corresponding images without correspondence supervision.

Generative Models: Let x1 and x2 be images drawn from the marginal distribution of the 1st
domain, x1 ∼ pX1

and the marginal distribution of the 2nd domain, x2 ∼ pX2
, respectively. Let g1

and g2 be the generative models of GAN1 and GAN2, which map a random vector input z to images
that have the same support as x1 and x2, respectively. Denote the distributions of g1(z) and g1(z) by
pG1

and pG2
. Both g1 and g2 are realized as multilayer perceptrons:

g1(z) = g
(m1)
1

(
g
(m1−1)
1

(
. . . g

(2)
1

(
g
(1)
1 (z)

)))
, g2(z) = g

(m2)
2

(
g
(m2−1)
2

(
. . . g

(2)
2

(
g
(1)
2 (z)

)))
where g(i)1 and g(i)2 are the ith layers of g1 and g2 and m1 and m2 are the numbers of layers in g1 and
g2. Note that m1 need not equal m2. Also note that the support of x1 need not equal to that of x2.

Through layers of perceptron operations, the generative models gradually decode information from
more abstract concepts to more material details. The first layers decode high-level semantics and the
last layers decode low-level details. Note that this information flow direction is opposite to that in a
discriminative deep neural network [6] where the first layers extract low-level features while the last
layers extract high-level features.

Based on the idea that a pair of corresponding images in two domains share the same high-level
concepts, we force the first layers of g1 and g2 to have identical structure and share the weights.
That is θ

g
(i)
1

= θ
g
(i)
2
, for i = 1, 2, ..., k where k is the number of shared layers, and θ

g
(i)
1

and θ
g
(i)
2

are the parameters of g(i)1 and g(i)2 , respectively. This constraint forces the high-level semantics to
be decoded in the same way in g1 and g2. No constraints are enforced to the last layers. They can
materialize the shared high-level representation differently for fooling the respective discriminators.

2

Generators Discriminators

weight sharing

GAN1

GAN2

Figure 1: CoGAN consists of a pair of GANs: GAN1 and GAN2. Each has a generative model for synthesizing
realistic images in one domain and a discriminative model for classifying whether an image is real or synthesized.
We tie the weights of the first few layers (responsible for decoding high-level semantics) of the generative models,
g1 and g2. We also tie the weights of the last few layers (responsible for encoding high-level semantics) of the
discriminative models, f1 and f2. This weight-sharing constraint allows CoGAN to learn a joint distribution of
images without correspondence supervision. A trained CoGAN can be used to synthesize pairs of corresponding
images—pairs of images sharing the same high-level abstraction but having different low-level realizations.

Discriminative Models: Let f1 and f2 be the discriminative models of GAN1 and GAN2 given by

f1(x1) = f
(n1)
1

(
f
(n1−1)
1

(
. . . f

(2)
1

(
f
(1)
1 (x1)

)))
, f2(x2) = f

(n2)
2

(
f
(n2−1)
2

(
. . . f

(2)
2

(
f
(1)
2 (x2)

)))
where f (i)1 and f (i)2 are the ith layers of f1 and f2 and n1 and n2 are the numbers of layers. The
discriminative models map an input image to a probability score, estimating the likelihood that the
input is drawn from a true data distribution. The first layers of the discriminative models extract
low-level features, while the last layers extract high-level features. Because the input images are
realizations of the same high-level semantics in two different domains, we force f1 and f2 to have
the same last layers, which is achieved by sharing the weights of the last layers via θ

f
(n1−i)
1

=

θ
f
(n2−i)
2

, for i = 0, 1, ..., l − 1 where l is the number of weight-sharing layers in the discriminative

models, and θ
f
(i)
1

and θ
f
(i)
2

are the network parameters of f (i)1 and f (i)2 , respectively. The weight-
sharing constraint in the discriminators helps reduce the total number of parameters in the network,
but it is not essential for learning a joint distribution.

Learning: The CoGAN framework corresponds to a constrained minimax game given by

max
g1,g2

min
f1,f2

V (f1, f2, g1, g2), subject to θ
g
(i)
1

= θ
g
(i)
2
, for i = 1, 2, ..., k (2)

θ
f
(n1−j)
1

= θ
f
(n2−j)
2

, for j = 0, 1, ..., l − 1

where the value function V is given by

V (f1, f2, g1, g2) = Ex1∼pX1
[− log f1(x1)] + Ez∼pZ

[− log(1− f1(g1(z)))]

+ Ex2∼pX2
[− log f2(x2)] + Ez∼pZ

[− log(1− f2(g2(z)))]. (3)

In the game, there are two teams and each team has two players. The generative models form a
team and work together for synthesizing a pair of images in two different domains for confusing the
discriminative models. The discriminative models try to differentiate images drawn from the training
data distribution in the respective domains from those drawn from the respective generative models.
The collaboration between the players in the same team is established from the weight-sharing
constraint. Similar to GAN, CoGAN can be trained by back propagation with the alternating gradient
update steps. The details of the learning algorithm are given in the supplementary materials.

Remarks: CoGAN learning requires training samples drawn from the marginal distributions, pX1

and pX2
. It does not rely on samples drawn from the joint distribution, pX1,X2

, where corresponding
supervision would be available. Our main contribution is in showing that with just samples drawn
separately from the marginal distributions, CoGAN can learn a joint distribution of images in the
two domains. Both weight-sharing constraint and adversarial training are essential for enabling
this capability. Unlike autoencoder learning [3], which encourages a generated pair of images
to be identical to the target pair of corresponding images in the two domains for minimizing the
reconstruction loss1, the adversarial training only encourages the generated pair of images to be

1This is why [3] requires samples from the joint distribution for learning the joint distribution.

3

Figure 2: Left (Task A): generation of digit and corresponding edge images. Right (Task B): generation of digit
and corresponding negative images. Each of the top and bottom pairs was generated using the same input noise.
We visualized the results by traversing in the input space.

of weight-sharing layers in the discriminative models
0 1 2 3

Av
g.

 p
ix

el
 a

gr
ee

m
en

t r
at

io
s

0.88

0.9

0.92

0.94

0.96

Task B: pair generation of digit and negative images

Generative models share 1 layer.
Generative models share 2 layers.
Generative models share 3 layers.
Generative models share 4 layers.

of weight-sharing layers in the discriminative models
0 1 2 3

av
g.

 p
ix

el
 a

gr
ee

m
en

t r
at

io
s

0.88

0.9

0.92

0.94

0.96

Task A: pair generation of digit and edge images

Figure 3: The figures plot the average pixel agreement ratios of the CoGANs with different weight-sharing
configurations for Task A and B. The larger the pixel agreement ratio the better the pair generation performance.
We found that the performance was positively correlated with the number of weight-sharing layers in the
generative models but was uncorrelated to the number of weight-sharing layers in the discriminative models.
CoGAN learned the joint distribution without weight-sharing layers in the discriminative models.

individually resembling to the images in the respective domains. With this more relaxed adversarial
training setting, the weight-sharing constraint can then kick in for capturing correspondences between
domains. With the weight-sharing constraint, the generative models must utilize the capacity more
efficiently for fooling the discriminative models, and the most efficient way of utilizing the capacity
for generating a pair of realistic images in two domains is to generate a pair of corresponding images
since the neurons responsible for decoding high-level semantics can be shared.

CoGAN learning is based on existence of shared high-level representations in the domains. If such a
representation does not exist for the set of domains of interest, it would fail.

4 Experiments

In the experiments, we emphasized there were no corresponding images in the different domains in the
training sets. CoGAN learned the joint distributions without correspondence supervision. We were
unaware of existing approaches with the same capability and hence did not compare CoGAN with
prior works. Instead, we compared it to a conditional GAN to demonstrate its advantage. Recognizing
that popular performance metrics for evaluating generative models all subject to issues [7], we
adopted a pair image generation performance metric for comparison. Many details including the
network architectures and additional experiment results are given in the supplementary materials. An
implementation of CoGAN is available in https://github.com/mingyuliutw/cogan.

Digits: We used the MNIST training set to train CoGANs for the following two tasks. Task A is
about learning a joint distribution of a digit and its edge image. Task B is about learning a joint
distribution of a digit and its negative image. In Task A, the 1st domain consisted of the original
handwritten digit images, while the 2nd domain consisted of their edge images. We used an edge
detector to compute training edge images for the 2nd domain. In the supplementary materials, we also
showed an experiment for learning a joint distribution of a digit and its 90-degree in-plane rotation.

We used deep convolutional networks to realized the CoGAN. The two generative models had an iden-
tical structure; both had 5 layers and were fully convolutional. The stride lengths of the convolutional
layers were fractional. The models also employed the batch normalization processing [8] and the
parameterized rectified linear unit processing [9]. We shared the parameters for all the layers except
for the last convolutional layers. For the discriminative models, we used a variant of LeNet [10].

4

https://github.com/mingyuliutw/cogan

The inputs to the discriminative models were batches containing output images from the generative
models and images from the two training subsets (each pixel value is linearly scaled to [0 1]).

We divided the training set into two equal-size non-overlapping subsets. One was used to train GAN1

and the other was used to train GAN2. We used the ADAM algorithm [11] for training and set the
learning rate to 0.0002, the 1st momentum parameter to 0.5, and the 2nd momentum parameter to
0.999 as suggested in [12]. The mini-batch size was 128. We trained the CoGAN for 25000 iterations.
These hyperparameters were fixed for all the visualization experiments.

The CoGAN learning results are shown in Figure 2. We found that although the CoGAN was
trained without corresponding images, it learned to render corresponding ones for both Task A and
B. This was due to the weight-sharing constraint imposed to the layers that were responsible for
decoding high-level semantics. Exploiting the correspondence between the two domains allowed
GAN1 and GAN2 to utilize more capacity in the networks to better fit the training data. Without the
weight-sharing constraint, the two GANs just generated two unrelated images in the two domains.

Weight Sharing: We varied the numbers of weight-sharing layers in the generative and discriminative
models to create different CoGANs for analyzing the weight-sharing effect for both tasks. Due to
lack of proper validation methods, we did a grid search on the training iteration hyperparameter
and reported the best performance achieved by each network. For quantifying the performance, we
transformed the image generated by GAN1 to the 2nd domain using the same method employed
for generating the training images in the 2nd domain. We then compared the transformed image
with the image generated by GAN2. A perfect joint distribution learning should render two identical
images. Hence, we used the ratios of agreed pixels between 10K pairs of images generated by
each network (10K randomly sampled z) as the performance metric. We trained each network 5
times with different initialization weights and reported the average pixel agreement ratios over the 5
trials for each network. The results are shown in Figure 3. We observed that the performance was
positively correlated with the number of weight-sharing layers in the generative models. With more
sharing layers in the generative models, the rendered pairs of images resembled true pairs drawn
from the joint distribution more. We also noted that the performance was uncorrelated to the number
of weight-sharing layers in the discriminative models. However, we still preferred discriminator
weight-sharing because this reduces the total number of network parameters.

Comparison with Conditional GANs: We compared the CoGAN with the conditional GANs [13].
We designed a conditional GAN with the generative and discriminative models identical to those in
the CoGAN. The only difference was the conditional GAN took an additional binary variable as input,
which controlled the domain of the output image. When the binary variable was 0, it generated an
image resembling images in the 1st domain; otherwise, it generated an image resembling images in
the 2nd domain. Similarly, no pairs of corresponding images were given during the conditional GAN
training. We applied the conditional GAN to both Task A and B and hoped to empirically answer
whether a conditional model can be used to learn to render corresponding images with correspondence
supervision. The pixel agreement ratio was used as the performance metric. The experiment results
showed that for Task A, CoGAN achieved an average ratio of 0.952, outperforming 0.909 achieved
by the conditional GAN. For Task B, CoGAN achieved a score of 0.967, which was much better
than 0.778 achieved by the conditional GAN. The conditional GAN just generated two different
digits with the same random noise input but different binary variable values. These results showed
that the conditional model failed to learn a joint distribution from samples drawn from the marginal
distributions. We note that for the case that the supports of the two domains are different such as the
color and depth image domains, the conditional model cannot even be applied.

Faces: We applied CoGAN to learn a joint distribution of face images with different. We trained
several CoGANs, each for generating a face with an attribute and a corresponding face without the
attribute. We used the CelebFaces Attributes dataset [14] for the experiments. The dataset covered
large pose variations and background clutters. Each face image had several attributes, including
blond hair, smiling, and eyeglasses. The face images with an attribute constituted the 1st domain; and
those without the attribute constituted the 2nd domain. No corresponding face images between the
two domains was given. We resized the images to a resolution of 132× 132 and randomly sampled
128 × 128 regions for training. The generative and discriminative models were both 7 layer deep
convolutional neural networks.

The experiment results are shown in Figure 4. We randomly sampled two points in the 100-
dimensional input noise space and visualized the rendered face images as traveling from one pint to

5

Figure 4: Generation of face images with different attributes using CoGAN. From top to bottom, the figure
shows pair face generation results for the blond-hair, smiling, and eyeglasses attributes. For each pair, the 1st
row contains faces with the attribute, while the 2nd row contains corresponding faces without the attribute.

the other. We found CoGAN generated pairs of corresponding faces, resembling those from the same
person with and without an attribute. As traveling in the space, the faces gradually change from one
person to another. Such deformations were consistent for both domains. Note that it is difficult to
create a dataset with corresponding images for some attribute such as blond hair since the subjects
have to color their hair. It is more ideal to have an approach that does not require corresponding
images like CoGAN. We also noted that the number of faces with an attribute was often several times
smaller than that without the attribute in the dataset. However, CoGAN learning was not hindered by
the mismatches.

Color and Depth Images: We used the RGBD dataset [15] and the NYU dataset [16] for learning
joint distribution of color and depth images. The RGBD dataset contains registered color and depth
images of 300 objects captured by the Kinect sensor from different view points. We partitioned the
dataset into two equal-size non-overlapping subsets. The color images in the 1st subset were used for
training GAN1, while the depth images in the 2nd subset were used for training GAN2. There were
no corresponding depth and color images in the two subsets. The images in the RGBD dataset have
different resolutions. We resized them to a fixed resolution of 64× 64. The NYU dataset contains
color and depth images captured from indoor scenes using the Kinect sensor. We used the 1449
processed depth images for the depth domain. The training images for the color domain were from

6

Figure 5: Generation of color and depth images using CoGAN. The top figure shows the results for the RGBD
dataset: the 1st row contains the color images, the 2nd row contains the depth images, and the 3rd and 4th rows
visualized the depth profile under different view points. The bottom figure shows the results for the NYU dataset.

all the color images in the raw dataset except for those registered with the processed depth images.
We resized both the depth and color images to a resolution of 176 × 132 and randomly cropped
128× 128 patches for training.

Figure 5 showed the generation results. We found the rendered color and depth images resembled
corresponding RGB and depth image pairs despite of no registered images existed in the two domains
in the training set. The CoGAN recovered the appearance–depth correspondence unsupervisedly.

5 Applications

In addition to rendering novel pairs of corresponding images for movie and game production, the
CoGAN finds applications in the unsupervised domain adaptation and image transformation tasks.

Unsupervised Domain Adaptation (UDA): UDA concerns adapting a classifier trained in one
domain to classify samples in a new domain where there is no labeled example in the new domain
for re-training the classifier. Early works have explored ideas from subspace learning [17, 18] to
deep discriminative network learning [19, 20, 21]. We show that CoGAN can be applied to the UDA
problem. We studied the problem of adapting a digit classifier from the MNIST dataset to the USPS
dataset. Due to domain shift, a classifier trained using one dataset achieves poor performance in the
other. We followed the experiment protocol in [17, 20], which randomly samples 2000 images from
the MNIST dataset, denoted as D1, and 1800 images from the USPS dataset, denoted as D2, to define
an UDA problem. The USPS digits have a different resolution. We resized them to have the same
resolution as the MNIST digits. We employed the CoGAN used for the digit generation task. For
classifying digits, we attached a softmax layer to the last hidden layer of the discriminative models.
We trained the CoGAN by jointly solving the digit classification problem in the MNIST domain
which used the images and labels in D1 and the CoGAN learning problem which used the images
in both D1 and D2. This produced two classifiers: c1(x1) ≡ c(f

(3)
1 (f

(2)
1 (f

(1)
1 (x1)))) for MNIST

and c2(x2) ≡ c(f
(3)
2 (f

(2)
2 (f

(1)
2 (x2)))) for USPS. No label information in D2 was used. Note that

f
(2)
1 ≡ f (2)2 and f (3)1 ≡ f (3)2 due to weight sharing and c denotes the softmax layer. We then applied
c2 to classify digits in the USPS dataset. The classifier adaptation from USPS to MNIST can be
achieved in the same way. The learning hyperparameters were determined via a validation set. We
reported the average accuracy over 5 trails with different randomly selected D1 and D2.

Table 1 reports the performance of the proposed CoGAN approach with comparison to the state-
of-the-art methods for the UDA task. The results for the other methods were duplicated from [20].
We observed that CoGAN significantly outperformed the state-of-the-art methods. It improved the
accuracy from 0.64 to 0.90, which translates to a 72% error reduction rate.

Cross-Domain Image Transformation: Let x1 be an image in the 1st domain. Cross-domain image
transformation is about finding the corresponding image in the 2nd domain, x2, such that the joint

7

Method [17] [18] [19] [20] CoGAN
From MNIST 0.408 0.467 0.478 0.607 0.912 ±0.008to USPS
From USPS 0.274 0.355 0.631 0.673 0.891 ±0.008to MNIST

Average 0.341 0.411 0.554 0.640 0.902

Table 1: Unsupervised domain adaptation performance comparison. The
table reported classification accuracies achieved by competing algorithms.

Figure 6: Cross-domain image
transformation. For each pair, left
is the input; right is the trans-
formed image.

probability density, p(x1,x2), is maximized. Let L be a loss function measuring difference between
two images. Given g1 and g2, the transformation can be achieved by first finding the random vector
that generates the query image in the 1st domain z∗ = argminz L(g1(z),x1). After finding z∗, one
can apply g2 to obtain the transformed image, x2 = g2(z∗). In Figure 6, we show several CoGAN
cross-domain transformation results, computed by using the Euclidean loss function and the L-BFGS
optimization algorithm. We found the transformation was successful when the input image was
covered by g1 (The input image can be generated by g1.) but generated blurry images when it is not
the case. To improve the coverage, we hypothesize that more training images and a better objective
function are required, which are left as future work.

6 Related Work

Neural generative models has recently received an increasing amount of attention. Several ap-
proaches, including generative adversarial networks[5], variational autoencoders (VAE)[22], attention
models[23], moment matching[24], stochastic back-propagation[25], and diffusion processes[26],
have shown that a deep network can learn an image distribution from samples. The learned networks
can be used to generate novel images. Our work was built on [5]. However, we studied a different
problem, the problem of learning a joint distribution of multi-domain images. We were interested
in whether a joint distribution of images in different domains can be learned from samples drawn
separately from its marginal distributions of the individual domains. We showed its achievable via
the proposed CoGAN framework. Note that our work is different to the Attribute2Image work[27],
which is based on a conditional VAE model [28]. The conditional model can be used to generate
images of different styles, but they are unsuitable for generating images in two different domains
such as color and depth image domains.

Following [5], several works improved the image generation quality of GAN, including a Laplacian
pyramid implementation[29], a deeper architecture[12], and conditional models[13]. Our work
extended GAN to dealing with joint distributions of images.

Our work is related to the prior works in multi-modal learning, including joint embedding space
learning [30] and multi-modal Boltzmann machines [1, 3]. These approaches can be used for
generating corresponding samples in different domains only when correspondence annotations are
given during training. The same limitation is also applied to dictionary learning-based approaches [2,
4]. Our work is also related to the prior works in cross-domain image generation [31, 32, 33], which
studied transforming an image in one style to the corresponding images in another style. However,
we focus on learning the joint distribution in an unsupervised fashion, while [31, 32, 33] focus on
learning a transformation function directly in a supervised fashion.

7 Conclusion

We presented the CoGAN framework for learning a joint distribution of multi-domain images. We
showed that via enforcing a simple weight-sharing constraint to the layers that are responsible for
decoding abstract semantics, the CoGAN learned the joint distribution of images by just using
samples drawn separately from the marginal distributions. In addition to convincing image generation
results on faces and RGBD images, we also showed promising results of the CoGAN framework for
the image transformation and unsupervised domain adaptation tasks.

8

References
[1] Nitish Srivastava and Ruslan R Salakhutdinov. Multimodal learning with deep boltzmann machines. In

NIPS, 2012.

[2] Shenlong Wang, Lei Zhang, Yan Liang, and Quan Pan. Semi-coupled dictionary learning with applications
to image super-resolution and photo-sketch synthesis. In CVPR, 2012.

[3] Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and Andrew Y Ng. Multimodal
deep learning. In ICML, 2011.

[4] Jianchao Yang, John Wright, Thomas S Huang, and Yi Ma. Image super-resolution via sparse representation.
IEEE TIP, 2010.

[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS, 2014.

[6] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. In NIPS, 2012.

[7] Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of generative models. In
ICLR, 2016.

[8] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. arXiv:1502.03167, 2015.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In ICCV, 2015.

[10] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 1998.

[11] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

[12] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. In ICLR, 2016.

[13] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv:1411.1784, 2014.

[14] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
ICCV, 2015.

[15] Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. A large-scale hierarchical multi-view rgb-d object
dataset. In ICRA, 2011.

[16] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and support
inference from rgbd images. In ECCV, 2012.

[17] Mingsheng Long, Jianmin Wang, Guiguang Ding, Jiaguang Sun, and Philip Yu. Transfer feature learning
with joint distribution adaptation. In ICCV, 2013.

[18] Basura Fernando, Tatiana Tommasi, and Tinne Tuytelaars. Joint cross-domain classification and subspace
learning for unsupervised adaptation. Pattern Recognition Letters, 65:60–66, 2015.

[19] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep domain confusion:
Maximizing for domain invariance. arXiv:1412.3474, 2014.

[20] Artem Rozantsev, Mathieu Salzmann, and Pascal Fua. Beyond sharing weights for deep domain adaptation.
arXiv:1603.06432, 2016.

[21] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette,
Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks. JMLR, 2016.

[22] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In ICLR, 2014.

[23] Karol Gregor, Ivo Danihelka, Alex Graves, and Daan Wierstra. Draw: A recurrent neural network for
image generation. In ICML, 2015.

[24] Yujia Li, Kevin Swersky, and Richard Zemel. Generative moment matching networks. ICML, 2016.

[25] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approxi-
mate inference in deep generative models. ICML, 2014.

[26] Jascha Sohl-Dickstein, Eric A Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In ICML, 2015.

[27] Xinchen Yan, Jimei Yang, Kihyuk Sohn, and Honglak Lee. Attribute2image: Conditional image generation
from visual attributes. arXiv:1512.00570, 2015.

[28] Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-supervised
learning with deep generative models. In NIPS, 2014.

9

[29] Emily L Denton, Soumith Chintala, Rob Fergus, et al. Deep generative image models using a laplacian
pyramid of adversarial networks. In NIPS, 2015.

[30] Ryan Kiros, Ruslan Salakhutdinov, and Richard S Zemel. Unifying visual-semantic embeddings with
multimodal neural language models. arXiv:1411.2539, 2014.

[31] Junho Yim, Heechul Jung, ByungIn Yoo, Changkyu Choi, Dusik Park, and Junmo Kim. Rotating your face
using multi-task deep neural network. In CVPR, 2015.

[32] Scott E Reed, Yi Zhang, Yuting Zhang, and Honglak Lee. Deep visual analogy-making. In NIPS, 2015.

[33] Alexey Dosovitskiy, Jost Tobias Springenberg, and Thomas Brox. Learning to generate chairs with
convolutional neural networks. In CVPR, 2015.

10

A Additional Experiment Results

A.1 Rotation

We applied CoGAN to a task of learning a joint distribution of images with different in-plane rotation
angles. We note that this task is very different to the other tasks discussed in the paper. In the
other tasks, the image contents in the same spatial region in the corresponding images are in direct
correspondence. In this task, the content in one spatial region in one image domain is related to the
content in a different spatial region in the other image domain. Through this experiment, we planed
to verify whether CoGAN can learn a joint distribution of images related by a global transformation.

For this task, we partitioned the MNIST training set into two disjoint subsets. The first set consisted
of the original digit images, which constitute the first domain. We applied a 90 degree rotation to all
the digits in the second set to construct the second domain. There were no corresponding images
in the two domains. The CoGAN architecture used for this task is shown in Table 2. Different to
the other tasks, the generative models in the CoGAN were based on fully connected layers, and the
discriminative models only share the last layer. This design was due to lack of spatial correspondence
between the two domains. We used the same hyperparameters to train the CoGAN. The results are
shown in Figure 7. We found that the CoGAN was able to capture the in-plane rotation. For the same
noise input, the digit generated by GAN2 is a 90 degree rotated version of the digit generated by
GAN1.

Table 2: CoGAN for generating digits with different in-plane rotation angles

Generative models
Layer Domain 1 Domain 2 Shared?

1 FC-(N1024), BN, PReLU FC-(N1024), BN, PReLU Yes
2 FC-(N1024), BN, PReLU FC-(N1024), BN, PReLU Yes
3 FC-(N1024), BN, PReLU FC-(N1024), BN, PReLU Yes
4 FC-(N1024), BN, PReLU FC-(N1024), BN, PReLU Yes
5 FC-(N784), Sigmoid FC-(N784), Sigmoid No

Discriminative models
Layer Domain 1 Domain 2 Shared?

1 CONV-(N20,K5x5,S1), POOL-(MAX,2) CONV-(N20,K5x5,S1), POOL-(MAX,2) No
2 CONV-(N50,K5x5,S1), POOL-(MAX,2) CONV-(N50,K5x5,S1), POOL-(MAX,2) No
3 FC-(N500), PReLU FC-(N500), PReLU No
4 FC-(N1), Sigmoid FC-(N1), Sigmoid Yes

Figure 7: Generation of digit and 90-degree rotated digit images. We visualized the CoGAN results by rendering
pairs of images, using the vectors that corresponded to paths connecting two pints in the input noise space. For
each of the sub-figures, the top row was from GAN1 and the bottom row was from GAN2. Each of the top and
bottom pairs was rendered using the same input noise vector. We observed that CoGAN learned to synthesized
corresponding digits with different rotation angles.

A.2 Weight Sharing

We analyzed the effect of weight sharing in the CoGAN framework. We conducted an experiment
where we varied the numbers of weight-sharing layers in the generative and discriminative models

11

to create different CoGAN architectures and trained them with the same hyperparameters. Due to
lack of proper validation methods, we did a grid search on the training iteration and reported the
best performance achieved by each network configuration for both Task A and B2. For each network
architecture, we run 5 trails with different random network initialization weights. We then rendered
10000 pairs of images for each learned network. A pair of images consisted of an image in the first
domain (generated by GAN1) and an image in the second domain (generated by GAN2), which were
rendered using the same z.

For quantifying the performance of each weight-sharing scheme, we transformed the images generated
by GAN1 to the second domain by using the same method employed for generating the training
images in the second domain. We then compared the transformed images with the images generated
by GAN2. The performance was measured by the average of the ratios of agreed pixels between the
transformed image and the corresponding image in the other domain. Specifically, we rounded the
transformed digit image to a binary image and we also rounded the rendered image in the second
domain to a binary image. We then compared the pixel agreement ratio—the number of corresponding
pixels that have the same value in the two images divided by the total image size. The performance
of a trail was given by the pixel agreement ratio of the 10000 pairs of images. The performance of a
network configuration was given by the average pixel agreement ratio over the 5 trails. We reported
the performance results for Task A in Table 3 and the performance results for Task B in Table 4.

From the tables, we observed that the pair image generation performance was positively correlated
with the number of weight-sharing layers in the generative models. With more shared layers in the
generative models, the rendered pairs of images were resembling more to true pairs drawn from
the joint distribution. We noted that the pair image generation performance was uncorrelated to the
number of weight-sharing layers in the discriminative models. However, we still preferred applying
discriminator weight sharing because this reduces the total number of parameters.

Table 3: The table shows the performance of pair generation of digits and corresponding edge images (Task A)
with different CoGAN weight-sharing configurations. The results were the average pixel agreement ratios over
10000 images over 5 trials.

Avg. pixel agreement ratio Weight-sharing layers in the generative models
5 5,4 5,4,3 5,4,3,2

Weight-sharing 0.894 ± 0.020 0.937 ± 0.004 0.943 ± 0.003 0.951 ± 0.004
layers in the 4 0.904 ± 0.018 0.939 ± 0.002 0.943 ± 0.005 0.950 ± 0.003
discriminative 4,3 0.888 ± 0.036 0.934 ± 0.005 0.946 ± 0.003 0.941 ± 0.024
models 4,3,2 0.903 ± 0.009 0.925 ± 0.021 0.944 ± 0.006 0.952 ± 0.002

Table 4: The table shows the performance of pair generation of digits and corresponding negative images (Task
B) with different CoGAN weight-sharing configurations. The results were the average pixel agreement ratios
over 10000 images over 5 trials.

Avg. pixel agreement ratio Weight-sharing layers in the generative models
5 5,4 5,4,3 5,4,3,2

Weight-sharing 0.932 ± 0.011 0.946 ± 0.013 0.970 ± 0.002 0.979 ± 0.001
layers in the 4 0.906 ± 0.066 0.953 ± 0.008 0.970 ± 0.003 0.978 ± 0.001
discriminative 4,3 0.908 ± 0.028 0.944 ± 0.012 0.965 ± 0.009 0.976 ± 0.001
models 4,3,2 0.917 ± 0.022 0.934 ± 0.011 0.955 ± 0.010 0.969 ± 0.008

A.3 Comparison with the Conditional Generative Adversarial Nets

We compared the CoGAN framework with the conditional generative adversarial networks (GAN)
framework for joint image distribution learning. We designed a conditional GAN where the generative
and discriminative models were identical to those used in the CoGAN in the digit experiments. The
only difference was that the conditional GAN took an additional binary variable as input, which
controlled the domain of the output image. The binary variable acted as a switch. When the value of
the binary variable was zero, it generated images resembling images in the first domain. Otherwise,
it generated images resembling those in the second domain. The output layer of the discriminative

2We noted that the performances were not sensitive to the number of training iterations.

12

Table 5: Network architecture of the conditional GAN
Layer Generative models
input z and conditional variable c ∈ {0, 1}

1 FCONV-(N1024,K4x4,S1), BN, PReLU
2 FCONV-(N512,K3x3,S2), BN, PReLU
3 FCONV-(N256,K3x3,S2), BN, PReLU
4 FCONV-(N128,K3x3,S2), BN, PReLU
5 FCONV-(N1,K6x6,S1), Sigmoid

Layer Discriminative models
1 CONV-(N20,K5x5,S1), POOL-(MAX,2)
2 CONV-(N50,K5x5,S1), POOL-(MAX,2)
3 FC-(N500), PReLU
4 FC-(N3), Softmax

Table 6: Performance Comparison. For each task, we reported the average pixel agreement ratio scores and
standard deviations over 5 trails, each trained with a different random initialization of the network connection
weights.

Experiment Task A: Digit and Edge Images Task B: Digit and Negative Images
Conditional GAN 0.909 ± 0.003 0.778 ± 0.021

CoGAN 0.952 ± 0.002 0.967 ± 0.008

Figure 8: Digit Generation with Conditional Generative Adversarial Nets. Left: generation of digit and
corresponding edge images. Right: generation of digit and corresponding negative images. We visualized the
conditional GAN results by rendering pairs of images, using the vectors that corresponded to paths connecting
two pints in the input space. For each of the sub-figures, the top row was from the conditional GAN with the
conditional variable set to 0, and the bottom row was from the conditional GAN with the conditional variable set
to 1. That is each of the top and bottom pairs was rendered using the same input vector except for the conditional
variable value. The conditional variable value was used to control the domain of the output images. From the
figure, we observed that, although the conditional GAN learned to generate realistic digit images, it failed to
learn the correspondence in the two domains. For the edge task, the conditional GAN rendered images of the
same digits with a similar font. The edge style was not well-captured. For the negative image generation task,
the conditional GAN simply failed to capture any correspondence. The rendered digits with the same input
vector but different conditional variable values were not related.

model was a softmax layer with three neurons. If the first neuron was on, it meant the input to the
discriminative model was a synthesized image from the generative model. If the second neuron was

13

on, it meant the input was a real image from the first domain. If the third neuron was on, it meant
the input was a real image from the second domain. The goal of the generative model was to render
images resembling those from the first domain when the binary variable was zero and to render
images resembling those from the second domain when the binary variable was one. The details of
the conditional GAN network architecture is shown in Table 5.

Similarly to CoGAN learning, no correspondence was given during the conditional GAN learning.
We applied the conditional GAN to the two digit generation tasks and hoped to answer whether a
conditional model can be used to render corresponding images in two different domains without pairs
of corresponding images in the training set. We used the same training data and hyperparameters as
those used in the CoGAN learning. We trained the CoGAN for 25000 iterations3 and used the trained
network to render 10000 pairs of images in the two domains. Specifically, each pair of images was
rendered with the same z but with different conditional variable values. These images were used to
compute the pair image generation performance of the conditional GAN measured by the average
of the pixel agreement ratios. For each task, we trained the conditional GAN for 5 times, each with
a different random initialization of the network weights. We reported the average scores and the
standard deviations.

The performance results are reported in Table 6. It can be seen that the conditional GAN achieved
0.909 for Task A and 0.778 for Task B, respectively. They were much lower than the scores of 0.952
and 0.967 achieved by the CoGAN. Figure 8 visualized the conditional GAN’s pair generation results,
which suggested that the conditional GAN had difficulties in learning to render corresponding images
in two different domains without pairs of corresponding images in the training set.

3 We note the generation performance of the conditional GAN did not change much after 5000 iterations.

14

B CoGAN Learning Algorithm

We present the learning algorithm for the coupled generative adversarial networks in Algorithm 1.
The algorithm is an extension of the learning algorithm for the generative adversarial networks (GAN)
to the case of training two GANs with weight sharing constraints. The convergence property follows
the results shown in [5].

Algorithm 1 Mini-batch stochastic gradient descent for training coupled generative adversarial nets.

1: Initialize the network parameters θ
f
(i)
1

’s θ
f
(i)
2

’s θ
g
(i)
1

’s and θ
g
(i)
2

’s with the shared network
connection weights set to the same values.

2: for t = 0, 1, 2, ...,maximum number of iterations do
3: Draw N samples from pZ , {z1, z2, ..., zN}
4: Draw N samples from pX1

, {x1
1,x

2
1, ...,x

N
1 }

5: Draw N samples from pX2
, {x1

2,x
2
2, ...,x

N
2 }

6: Compute the gradients of the parameters of the discriminative model, f t1, ∆θ
f
(i)
1

;

∇θ
f
(i)
1

1

N

N∑
j=1

− log f t1(xj
1)− log

(
1− f t1

(
gt1(zj)

))
7: Compute the gradients of the parameters of the discriminative model, f t2, ∆θ

f
(i)
2

;

∇θ
f
(i)
2

1

N

N∑
j=1

− log f t2(xj
2)− log

(
1− f t2

(
gt2(zj)

))
8: Average the gradients of the shared parameters of the discriminative models.
9: Compute f t+1

1 and f t+1
2 according to the gradients.

10: Compute the gradients of the parameters of the generative model, gt1, ∆θ
g
(i)
1

;

∇θ
g
(i)
1

1

N

N∑
j=1

− log
(

1− f t+1
1

(
gt1(zj)

))
11: Compute the gradients of the network parameters of the generative model, g2, ∆θ

g
(i)
2

;

∇θ
g
(i)
2

1

N

N∑
j=1

− log
(

1− f t+1
2

(
gt2(zj)

))
12: Average the gradients of the shared parameters of the generative models.
13: Compute gt+1

1 and gt+1
2 according to the gradients.

14: end for

15

C Training Datasets

In Figure 9, Figure 10, Figure 11, and Figure 12, we show several example images of the training
images used for the pair image generation tasks in the experiment section. Table 7, Table 8, Table 9,
and Table 10 contain the statistics of the training datasets for the experiments.

Figure 9: Training images for the digit experiments. Left (Task A): The images in the first row are from the
original MNIST digit domain, while those in the second row are from the edge image domain. Right (Task B):
The images in the first row are from the original MNIST digit domain, while those in the second row are from
the negative image domain.

Figure 10: Training images from the Celeba dataset [14].

Figure 11: Training images from the RGBD dataset [15].

Figure 12: Training images from the NYU dataset [16].

Table 7: Numbers of training images in Domain 1 and Domain 2 in the MNIST experiments.
Task A Task B

Pair generation of digits and Pair generation of digits and
corresponding edge images corresponding negative images

of images in Domain 1 30,000 30,000
of images in Domain 2 30,000 30,000

Table 8: Numbers of training images of different attributes in the pair face generation experiments.

Attribute Smiling Blond hair Glasses
of images with the attribute 97,669 29,983 13,193

of images without the attribute 104,930 172,616 189,406

Table 9: Numbers of RGB and depth training images in the RGBD experiments.

of RGB images 93,564
of depth images 93,564

Table 10: Numbers of RGB and depth training images in the NYU experiments.

of RGB images 514,192
of depth images 1,449

16

D Networks

In CoGAN, the generative models are based on the fractional length convolutional (FCONV) layers,
while the discriminative models are based on the standard convolutional (CONV) layers with the ex-
ceptions that the last two layers are based on the fully-connected (FC) layers. The batch normalization
(BN) layers [8] are applied after each convolutional layer, which are followed by the parameterized
rectified linear unit (PReLU) processing [9]. The sigmoid units and the hyperbolic tangent units are
applied to the output layers of the generative models for generating images with desired pixel range
values.

Table 11: CoGAN for digit generation

Generative models
Layer Domain 1 Domain 2 Shared?

1 FCONV-(N1024,K4x4,S1), BN, PReLU FCONV-(N1024,K4x4,S1), BN, PReLU Yes
2 FCONV-(N512,K3x3,S2), BN, PReLU FCONV-(N512,K3x3,S2), BN, PReLU Yes
3 FCONV-(N256,K3x3,S2), BN, PReLU FCONV-(N256,K3x3,S2), BN, PReLU Yes
4 FCONV-(N128,K3x3,S2), BN, PReLU FCONV-(N128,K3x3,S2), BN, PReLU Yes
5 FCONV-(N1,K6x6,S1), Sigmoid FCONV-(N1,K6x6,S1), Sigmoid No

Discriminative models
Layer Domain 1 Domain 2 Shared?

1 CONV-(N20,K5x5,S1), POOL-(MAX,2) CONV-(N20,K5x5,S1), POOL-(MAX,2) No
2 CONV-(N50,K5x5,S1), POOL-(MAX,2) CONV-(N50,K5x5,S1), POOL-(MAX,2) Yes
3 FC-(N500), PReLU FC-(N500), PReLU Yes
4 FC-(N1), Sigmoid FC-(N1), Sigmoid Yes

Table 12: CoGAN for face generation

Generative models
Layer Domain 1 Domain 2 Shared?

1 FCONV-(N1024,K4x4,S1), BN, PReLU FCONV-(N1024,K4x4,S1), BN, PReLU Yes
2 FCONV-(N512,K4x4,S2), BN, PReLU FCONV-(N512,K4x4,S2), BN, PReLU Yes
3 FCONV-(N256,K4x4,S2), BN, PReLU FCONV-(N256,K4x4,S2), BN, PReLU Yes
4 FCONV-(N128,K4x4,S2), BN, PReLU FCONV-(N128,K4x4,S2), BN, PReLU Yes
5 FCONV-(N64,K4x4,S2), BN, PReLU FCONV-(N64,K4x4,S2), BN, PReLU Yes
6 FCONV-(N32,K4x4,S2), BN, PReLU FCONV-(N32,K4x4,S2), BN, PReLU No
7 FCONV-(N3,K3x3,S1), TanH FCONV-(N3,K3x3,S1), TanH No

Discriminative models
Layer Domain 1 Domain 2 Shared?

1 CONV-(N32,K5x5,S2), BN, PReLU CONV-(N32,K5x5,S2), BN, PReLU No
2 CONV-(N64,K5x5,S2), BN, PReLU CONV-(N64,K5x5,S2), BN, PReLU No
3 CONV-(N128,K5x5,S2), BN, PReLU CONV-(N128,K5x5,S2), BN, PReLU Yes
4 CONV-(N256,K3x3,S2), BN, PReLU CONV-(N256,K3x3,S2), BN, PReLU Yes
5 CONV-(N512,K3x3,S2), BN, PReLU CONV-(N512,K3x3,S2), BN, PReLU Yes
6 CONV-(N1024,K3x3,S2), BN, PReLU CONV-(N1024,K3x3,S2), BN, PReLU Yes
7 FC-(N2048), BN, PReLU FC-(N2048), BN, PReLU Yes
8 FC-(N1), Sigmoid FC-(N1), Sigmoid Yes

17

Table 13: CoGAN for color and depth image generation for the RGBD object dataset

Generative models
Layer Domain 1 Domain 2 Shared?

1 FCONV-(N1024,K4x4,S1), BN, PReLU FCONV-(N1024,K4x4,S1), BN, PReLU Yes
2 FCONV-(N512,K4x4,S2), BN, PReLU FCONV-(N512,K4x4,S2), BN, PReLU Yes
3 FCONV-(N256,K4x4,S2), BN, PReLU FCONV-(N256,K4x4,S2), BN, PReLU Yes
4 FCONV-(N128,K4x4,S2), BN, PReLU FCONV-(N128,K4x4,S2), BN, PReLU Yes
5 FCONV-(N64,K4x4,S2), BN, PReLU FCONV-(N64,K4x4,S2), BN, PReLU Yes
6 FCONV-(N32,K3x3,S1), BN, PReLU FCONV-(N32,K3x3,S1), BN, PReLU No
7 FCONV-(N3,K3x3,S1), TanH FCONV-(N1,K3x3,S1), Sigmoid No

Discriminative models
Layer Domain 1 Domain 2 Shared?

1 CONV-(N32,K5x5,S2), BN, PReLU CONV-(N32,K5x5,S2), BN, PReLU No
2 CONV-(N64,K5x5,S2), BN, PReLU CONV-(N64,K5x5,S2), BN, PReLU No
3 CONV-(N128,K5x5,S2), BN, PReLU CONV-(N128,K5x5,S2), BN, PReLU Yes
4 CONV-(N256,K3x3,S2), BN, PReLU CONV-(N256,K3x3,S2), BN, PReLU Yes
5 CONV-(N512,K3x3,S2), BN, PReLU CONV-(N512,K3x3,S2), BN, PReLU Yes
6 CONV-(N1024,K3x3,S2), BN, PReLU CONV-(N1024,K3x3,S2), BN, PReLU Yes
7 FC-(N2048), BN, PReLU FC-(N2048), BN, PReLU Yes
8 FC-(N1), Sigmoid FC-(N1), Sigmoid Yes

Table 14: CoGAN for color and depth image generation for the NYU indoor scene dataset

Generative models
Layer Domain 1 Domain 2 Shared?

1 FCONV-(N1024,K4x4,S1), BN, PReLU FCONV-(N1024,K4x4,S1), BN, PReLU Yes
2 FCONV-(N512,K4x4,S2), BN, PReLU FCONV-(N512,K4x4,S2), BN, PReLU Yes
3 FCONV-(N256,K4x4,S2), BN, PReLU FCONV-(N256,K4x4,S2), BN, PReLU Yes
4 FCONV-(N128,K4x4,S2), BN, PReLU FCONV-(N128,K4x4,S2), BN, PReLU Yes
5 FCONV-(N64,K4x4,S2), BN, PReLU FCONV-(N64,K4x4,S2), BN, PReLU Yes
6 FCONV-(N32,K4x4,S2), BN, PReLU FCONV-(N32,K4x4,S2), BN, PReLU No
7 FCONV-(N3,K3x3,S1), TanH FCONV-(N1,K3x3,S1), Sigmoid No

Discriminative models
Layer Domain 1 Domain 2 Shared?

1 CONV-(N32,K5x5,S2), BN, PReLU CONV-(N32,K5x5,S2), BN, PReLU No
2 CONV-(N64,K5x5,S2), BN, PReLU CONV-(N64,K5x5,S2), BN, PReLU No
3 CONV-(N128,K5x5,S2), BN, PReLU CONV-(N128,K5x5,S2), BN, PReLU Yes
4 CONV-(N256,K3x3,S2), BN, PReLU CONV-(N256,K3x3,S2), BN, PReLU Yes
5 CONV-(N512,K3x3,S2), BN, PReLU CONV-(N512,K3x3,S2), BN, PReLU Yes
6 CONV-(N1024,K3x3,S2), BN, PReLU CONV-(N1024,K3x3,S2), BN, PReLU Yes
7 FC-(N2048), BN, PReLU FC-(N2048), BN, PReLU Yes
8 FC-(N1), Sigmoid FC-(N1), Sigmoid Yes

18

E Visualization

Figure 13: Left: generation of digit and corresponding edge images. Right: generation of digit and corresponding
negative images. We visualized the CoGAN results by rendering pairs of images, using the vectors that
corresponded to paths connecting two pints in the input noise space. For each of the sub-figures, the top row
was from GAN1 and the bottom row was from GAN2. Each of the top and bottom pairs was rendered using
the same input noise vector. We observed that for both tasks the CoGAN learned to synthesized corresponding
images in the two domains. This was interesting because there were no corresponding images in the training
datasets. The correspondences were figured out during training in an unsupervised fashion.

19

Figure 14: Generation of faces with blond hair and without blond hair.

20

Figure 15: Generation of faces with blond hair and without blond hair.

21

Figure 16: Generation of faces with blond hair and without blond hair.

22

Figure 17: Generation of smiling and non-smiling faces.

23

Figure 18: Generation of smiling and non-smiling faces.

24

Figure 19: Generation of smiling and non-smiling faces.

25

Figure 20: Generation of faces with eyeglasses and without eyeglasses.

26

Figure 21: Generation of faces with eyeglasses and without eyeglasses.

27

Figure 22: Generation of faces with eyeglasses and without eyeglasses.

28

Figure 23: Generation of RGB and depth images of objects. The 1st row contains the color images. The 2nd row
contains the depth images. The 3rd and 4th rows visualized the point clouds under different view points.

29

Figure 24: Generation of RGB and depth images of objects. The 1st row contains the color images. The 2nd row
contains the depth images. The 3rd and 4th rows visualized the point clouds under different view points.

30

Figure 25: Generation of RGB and depth images of indoor scenes.

31

Figure 26: Generation of RGB and depth images of indoor scenes.

32

	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2016-156.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32

