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Abstract

We consider the problem of estimating the transition probability kernel to be used by a model-
based reinforcement learning (RL) algorithm. We argue that estimating a generative model
that minimizes a probabilistic loss, such as the log-loss, might be an overkill because such a
probabilistic loss does not take into account the underlying structure of the decision problem
and the RL algorithm that intends to solve it. We introduce a loss function that takes the
structure of the value function into account. We provide a finite-sample upper bound for
the loss function showing the dependence of the error on model approximation error and the
number of samples.
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Abstract

We consider the problem of estimating the transition probability kernel to be used by a
model-based reinforcement learning (RL) algorithm. We argue that estimating a generative
model that minimizes a probabilistic loss, such as the log-loss, might be an overkill because
such a probabilistic loss does not take into account the underlying structure of the decision
problem and the RL algorithm that intends to solve it. We introduce a loss function that
takes the structure of the value function into account. We provide a finite-sample upper
bound for the loss function showing the dependence of the error on model approximation
error and the number of samples.

1. Introduction

Model-based reinforcement learning (RL) (Sutton and Barto, 1998; Szepesvari, 2010) is
based on the idea that one might learn a good policy for an RL agent by first learning
a good model of the environment and then using the learned model to find the policy
(with the possibility of interleaving these two phases as in Dyna by Sutton 1990). More
concretely, suppose that we are given a dataset D, = {(X;, 4;, R, X/)}7, with X ~
P*(-|Xi, A;i), the true transition probability kernel of a Markov Decision Process (MDP),
and R; ~ R(-|X;, A;), the true reward kernel of the MDP. The model learning phase is
to estimate P* by P and r(x,a) = E[R(:|z,a)] by #. The learned model is then used to
generate new samples, see e.g., (Sutton et al., 2008; Farahmand et al., 2009b; Hester and
Stone, 2013; Deisenroth et al., 2015). A standard RL/Planning algorithm can use these
samples to find a close to optimal policy, possibly by first finding an approximation to the
optimal (action-)value function. In the rest of this work, we only focus on learning P*.

How can we learn a good model P of P*? Since P* is a conditional probability distri-
bution/density, one might be tempted to use one of the standard distribution estimation
techniques. Some generic approaches are Maximum Likelihood Estimation (MLE), Max-
imum Entropy (MaxEnt) estimation, the Maximum A Posteriori (MAP) estimation, and
Bayesian posterior inference.
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Let us focus on the MLE. The ML estimator is the minimizer of the empirical negative-
log loss, which in turn is an empirical approximation to the KL divergence between the true
model and the estimate, i.e., P + argminpc ys KL(Py||P) = argmax pe 1 1 > x,ep, 1og P(X;)
with D, = {X;}}, and X; ~ P*, the true distribution of data, and M being the proba-
bility model space (this formulation is for unconditional distribution; the conditional one is
similar). If the true model P* belongs to the model space M, one might show that under
certain conditions P — P* (in some well-defined sense, for example, in the total variation
or the KL distance). This would be more than enough for the purpose of using the model
for planning (cf. (2) in Section 2). This approach is what most model-based RL algorithms
use to estimate the model P of P*.

Nevertheless, requiring such a guarantee on the error behaviour of the learned model
according to a probabilistic loss such as the KL-divergence might be an overkill for the
purpose of planning. To intuitively understand why this might be the case, consider the
following hypothetical situations.

Consider a visually-enabled robot that is supposed to learn how to navigate within a
building. If we consider the camera image as a part of the state of the robot, trying to learn
a transition probability kernel means that we have to learn how the camera image changes
when the robot takes actions.! This is a very high-dimensional state space and trying to
learn such a conditional distribution with a high accuracy, in the log-loss sense, is difficult.
Nonetheless, modeling the probability distribution at that level of accuracy is not required
to learn a policy that can navigate the robot in the building just fine. It is enough to have
a crude model that describes the geometry of the building and possibly the objects. This
“navigator” robot does not really need to know the detail of paintings on the walls, the
texture of objects, and many other visual details of the building. On the other hand, if the
goal is to have an interior “decorator” robot that suggests how to redecorate the building
to make it visually appealing, all those visual information is likely required.

The difference between the navigator robot and the decorator one is not in the transition
model of their environment, but is in the decision problem that they have to solve. The
difference in the decision problem is reflected in the difference in the reward functions and
as a result in the value functions. It is desirable to have a model learning formalism that
takes the decision problem, or at least some aspects of it, into account.

Furthermore, the implicit assumption that model approximation error can be made
zero, that is P* belongs to M used for estimation, may not be correct for many estimators.
When we have the model approximation error, the model learning method must make a
compromise in the choice of the estimate: None of the models in M would be the same as
P* (e.g., in the almost sure sense), so the estimation method has to choose a model with a
minimum error with respect to (w.r.t.) some loss function. The choice of the loss function
becomes important. A loss function that is designed for a particular decision problem
in hand provides a better approximation, for the task of solving the very same decision
problem, than a probabilistic one that does not take the decision problem into account.

These arguments suggest that generic distribution estimation approaches such as MLE,
which minimizes the KL-divergence w.r.t. the empirical distribution, might not be the best

1. The state should also include robot’s internal variables such as its joint parameters. One may also argue
that we have to include some aspects of the past images in the state too. For the simplicity of the
discussion, we only consider the current visual observation as the state of the agent.
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candidate for learning a model to be used within a model-based RL framework. Can we
design a better “decision-aware” loss function that takes the decision problem into account?

In the rest of this paper, we describe an approach that incorporates some aspects of the
underlying decision problem into model learning. We go beyond the probabilistic losses in
model learning and define a loss function that considers the structure of the value function.
We call the approach that minimizes such a loss function Value-Aware Model Learning
(VAML). We also report a finite-sample error upper bound that shows the effect of the
model approximation error and the number of training samples. This ensures the soundness
of the algorithm that minimizes the proposed loss. Due to space limitation, we skip some
of the derivations, all the proofs and the empirical results. These will be reported later.

2. Value-Aware Model Learning

Let Planner be an algorithm that receives a model P and outputs a policy m, i.e., m +
Planner(75). Here we assume that the reward function is already known to Planner, so we
do not explicitly pass it as an argument. For a user-defined initial probability distribution
p € M(X), with M(X) being the space of probability distributions defined on the state

space X, we evaluate the performance of 7 by

J(r) = / dp(2)V™ ().

The goal of a successful model learner can be defined as follows: Given a dataset D,, =
{(Xi, A, X))}, with Z; = (X, 4i) ~ v(X x A) € M(X x A), potentially different from
p, and X! ~ P*(-|X;, A;), find P such that J(r) for w < Planner(P) is as large as possible.

This is a very generic goal. To make it more concrete, we have to make a few choices.
First suppose that Planner uses the Bellman optimality operator defined based on P to
find a Q*, that is T : Qr—r+ ’yﬁmaxa Q, and then outputs ™ = ﬁ(~;@*), the greedy
policy w.r.t. Q*. The use of the Bellman [optimality] operator is central to value-based
approaches such as the class of (Approximate) Value Iteration (Ernst et al., 2005; Munos
and Szepesvari, 2008; Farahmand et al., 2009a; Mnih et al., 2015) and (Approximate) Pol-
icy Iteration (Lagoudakis and Parr, 2003; Lazaric et al., 2012; Farahmand et al., 2016)
algorithms.

This is still a very general case, so we focus on the more specified goal of finding a P
such that the difference between T*¢) and T*Q is not large. We may write this as

(PP V(@ a) = | [P*(fz,0) = P(la,a)| V)| = [(P*(losa) = Plza), V)

- ‘ / [p*(dm'u,a)—ﬁ(qux,a)} V'), (1)

in which we substituted max, Q(-,a) with V to simplify the presentation. The quantity
c(ﬁ,P*;V)(x,a) is the pointwise error of applying the Bellman operator based on the
learned model on V' compared to the true Bellman operator. We may sometimes use P, ()
with z = (z,a) € Z = X x A to refer to P(-|z,a), so P,V = [ P(dy|z,a)V (dy).

It might be argued that since

(Pl ) = PCL,a), V)] < 1P (frsa) = POl ) IV oo 2)
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learning P such that the ¢1-norm of its difference with the true P* is small would be enough
for having a model that is good to approximate the Bellman operator. This can be achieved
by minimizing the KL divergence because Pinsker’s inequality shows that for two probability
distributions P; and P, we have

[1P1 = Polly < v/2KL(P1[[P2). 3)

These two upper bounds together justify the use of MLE for model learning for RL problems
since MLE is the minimizer of the empirical approximation of the KL divergence, as shown
in Section 1. This is the argument, sometimes implicit, behind most model-based RL
algorithms that use a log-loss or a similar “probabilistic” loss to estimate the model.

Finding a minimizer for the KL divergence, Hellinger distance, ¢; loss, or other losses
that depend only on the probability distributions, however, ignores the underlying decision
problem, which is specified through the reward/value function. As an extreme example,
suppose that r(z) = ¢ for all x € X, so V™ is constant for all policies, and the optimal
policy would not have any preference over any of the actions. So even if X is a very large
space (e.g., a subset of R? with a large d), and however complex P* is (e.g., the dynamics is
not very regular), learning a P sufficient to find the optimal policy is indeed very easy: Any
transition probability distribution suffices to find the optimal policy. In contrast, |P —P*||;
goes to zero at a convergence rate that depends on dimension d and regularities of P*, and
can be very slow, e.g., O(n~1/2¢). An estimator for P* that ignores this extra information
requires more samples in order to provide a guarantee that the error in the model-based
planning is small.> Moreover, and maybe more importantly, if the true transition kernel
P* does not belong to the model space M from which P is estimated, we can only hope
to find the “closest” model within M to P*. The notion of closeness, however, depends on
the distance measure. A distance measure that explicitly takes into account the decision
problem and what really matters for Planner is superior to the one that does not.

Returning to (1), there are three hurdles that should be addressed. The first is that
¢(P,P*;V)(z,a) is defined as a pointwise measure of error, but we would like to learn a
model that is valid for the whole state-action space X x A. The second is that P*, which is
the main object of interest, is not known after all. Instead we have D,, = {(X;, 4;, X/)}",
and as a result the empirical conditional distribution P, (|z,a) = 13" | § x11x,,4; (|2, a).
The third is that the loss is defined for a particular V' but the model is going to be applied
to a sequences of V' that is not known a priori.

We can easily address the first concern by defining the cost functional (i.e., loss) as
the expected squared pointwise loss w.r.t. a probability distribution v € M(X x A). To
address the second concern, we might follow the usual recipe in machine learning and
statistics, the empirical risk minimization, by replacing the true state transition kernel P*
with the observed empirical distribution P,, and v € M(X x A) with the empirical measure
V() = 5 2imt 0(xs,a0 ()

To handle the problem of not knowing V', we suggest two approaches, the first one only
briefly. One solution is to interleave the estimation of V' and P: First choose Vy = r, which

2. The relationship between the probabilistic loss and the LHS of (2) is a bit more subtle than what we
portrayed here, but this should be enough for our current discussion.
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is assumed to be known (or can be estimated). Given Vk, estimate 75k+1 by minimizing

2
Pr11 < argmin Z
PeEM  (X;,A:)eDn

Vi(X /77 (dz'| X5, Ag) Vi (2

After finding 75k+1, we use a value-based Planner with the model 75k+1 to find a new Vk,+1,
Vk+1 — Planner(ﬁkﬂ) This procedure is repeated. The idea is that the estimated
Pk+1 would be enough to generate bampleb required for ﬁndlng a good Vk+1 if Planner is an
approximate value iteration that applies T* (based on Pk+1) only once. We do not study
this approach any further in this work.
Another solution is to take a robust approach w.r.t. the choice of value function. We
define the loss function to reflect the fact that our goal is to find a P that is suitable for all
V in a given value function space F. Therefore, we define

2
C%W(ﬁ,P*) = [ dv(zx,a) 51;[])__‘/ 73* d2'|x,a) — (d:r |z, a)] V(z') (4)

To understand this loss better, let us focus on a single state-action pair (z,a) and study
the pointwise loss. Note that even though

sup |[P*(-2,0) = P(z, )]V ()| < |PCle,a) = P(lasa)| sup VI, (5)
VeF L ver

the LHS is often much smaller than its upper bound for many choices of F. They would
only become equal when F is the space of bounded measurable functions, which is much
larger than the usual function spaces that we often deal with, e.g., defined based on a finite
set of basis functions.?

As the goal is to minimize the LHS of (5), and because its RHS can be a loose upper
bound for most choices of F, directly optimizing the LHS can lead to better models com-
pared to minimizing the ¢; loss or the KL distance (minimized by MLE), which itself is yet
another level of upper bounding according to (3).

The loss function (4) reflects the influence of the value function on the model-learning
objective. If we happen to know that V has certain regularities, e.g., it belongs to the
Sobolev space W¥(R?) or a reproducing kernel Hilbert space, this loss function lets us focus
on learning a model that can discriminate between such value functions, and not more.

After substituting the distributions with their empirical counterparts, we obtain

R R 1 2
En(P) = B, (PP = - sup | [ [Pz, 49 = Plas'x,,4)] Vi)
(Xz» ED7L ver
l 2

= Z sup ‘V(XZ') — /ﬁ(dx/|Xi,Ai)V(:U/)
n (Xi,A))eDn VT

3. One might argue that it would be better to define the loss function as cg,,j(’ﬁ,’P*) =
2

supy e » e (P, P*; V) = supy . » [ dv(z, a) ‘f [ (dz'|z,a) — P(dx'|m,a)} V(m')’ , that is, to have supre-

mum over V outside the integral over state-actions. We do not pursue this path as it is not as computa-

tionally appealing as the current formulation. Investigating this alternative formulation is an interesting
topic for future research.
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The output of VAML is

P + argmin cgm(P). (6)

PeM
To completely specify the algorithm, we have to select 7 and M. There are several possible
choices, which in general should be informed by our prior knowledge about the underly-
ing problem and guided by a model selection procedure. Due to space limitation, we only
mention that one can obtain a gradient descent-based algorithm if we use linear function
approximator for F = Fp = {Vyg(z) = ¢ (2)0 : 0 €R?,||0]|, < B} with ¢ : X — RP be-

ing the value features, and the exponential families M = {Pw cwe RV } in which P,

is defined by model features ¢’ : X x A x X — RF and the weight vector w € R?, i.e.,
A ’ . exp(d)’T (a:’|x,a)w)
Pw(dx |ZL‘,(Z) - fexp(¢’T(a:”|J:,a)w)dx”
use of linear function approximators is a common practice in the RL literature. The expo-
nential families are also very general and can represent a wide variety of distributions (Canu

and Smola, 2006; Sriperumbudur et al., 2014)

dz’. Both of these choices are general and flexible. The

3. Statistical Analysis of VAML

We report a (simplified) finite error upper bound that shows that VAML is indeed a sound
algorithm in the sense that it finds a P that has a small error (4), given enough data points
n and under standard capacity conditions on M.

Theorem 1 Given a dataset of i.i.d. samples D, = {(X;, A;, X])}_| with (X;, Ai) ~ v
and X! ~ P*(-|Xi, A;), let P be the solution of (6). Assume that the metric entropy of M
w.r.t. the empirical Ly-norm satisfies log N (u, M, La(Ps,,,)) < O(u~2%). Furthermore, let
F be a finite dimensional linear function space with bounded features. For any fized § > 0,
with probability at least 1 — §, we have

E [sup ‘(752 — P})Vﬂ < inf E [sup |(Pz — P})V\Q] +0 < M) :
VeF PeM  |ver n
This upper bound shows the usual model (or function) approximation error (first term)
and the estimation error (second term). The estimation error of O(n~1/2) is the usual
behaviour of the supremum of the empirical processes for models that are not very large.
Maybe more interesting is the eﬁ'ec:c of the model approximation error. The bound

shows that the error of the estimated P is comparable to the error of the best choice in
the model class M, i.e., infpc p E [supyer [(Pz — P})Vﬂ . This is reassuring since VAML

was motivated by the fact that the important property of an estimated model P should be
that |(P, — P*)V| is small only for V € F that might be encountered by the algorithm.
An important question is how the model learning error affects the performance loss of
the outcome policy 7 Planner(75). We see that the terms appearing in the performance
loss upper bound of a result such as Theorem 7 of Avila Pires and Szepesvari (2016) is in a
form closely related to the pointwise loss (1), whose Lg-norm is controlled by our theorem.
The aforementioned result is for the supremum norm. Developing the L,-norm type of

result for the setup considered in this work is an interesting future research direction.
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