MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Learning to Control Partial Differential Equations:
Regularized Fitted Q-Iteration Approach

Farahmand, A.-M.; Nabi, S.; Grover, P.; Nikovski, D.N.
TR2016-145 December 2016

Abstract

This paper formulates a class of partial differential equation (PDE) control problems as a
reinforcement learning (RL) problem. We design an RL-based algorithm that directly works
with the state of PDE, an infinite dimensional vector, thus allowing us to avoid the model
order reduction, commonly used in the conventional PDE controller design approaches. We
apply the method to the problem of flow control for time-varying 2D convection-diffusion
PDE, as a simplified model for heating, ventilating, air conditioning (HVAC) control design
in a room.

IEEE Conference on Decision and Control (CDC)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright (© Mitsubishi Electric Research Laboratories, Inc., 2016
201 Broadway, Cambridge, Massachusetts 02139

Learning to Control Partial Differential Equations:
Regularized Fitted Q-Iteration Approach

Amir-massoud Farahmand, Saleh Nabi, Piyush Grover, Daniel N. Nikovski

Abstract— This paper formulates a class of partial differential
equation (PDE) control problems as a reinforcement learning
(RL) problem. We design an RL-based algorithm that directly
works with the state of PDE, an infinite dimensional vector, thus
allowing us to avoid the model order reduction, commonly used
in the conventional PDE controller design approaches. We apply
the method to the problem of flow control for time-varying 2D
convection-diffusion PDE, as a simplified model for heating,
ventilating, air conditioning (HVAC) control design in a room.

I. INTRODUCTION

This paper formulates a class of partial differential equa-
tion (PDE) control problems as a reinforcement learning
(RL) problem. Reinforcement learning is the problem of
adaptively finding an optimal policy (i.e., controller) for
an unknown nonlinear stochastic dynamical system with-
out the knowledge of the dynamics—using only interaction
data [22], [21]. We design an algorithm that can directly
work with the state of PDE, an infinite dimensional vector,
thus allowing us to potentially overcome the limitations of
classical approaches to PDE control. As an example, we
consider the problem of optimal control for time-varying 2D
convection-diffusion PDE, as a simplified model for heating,
ventilating, air conditioning (HVAC) control design in a
room.

Conventional approaches to PDE control can be classified
into two categories. In the reduce-then-design approach, a
finite-dimensional ordinary differential equation (ODE) is
derived using numerical approximation techniques. Model
order reduction is often carried out at this stage, and a linear
controller is then designed, typically optimizing a quadratic
cost functional [1]. Alternatively, in the design-then-reduce
approach one directly designs a controller for the PDE, for
example using distributed parameter LQR theory, and then
later use numerical approximations to find the reduced order
control gains [2], [3], [4].

The conventional approaches, while elegant, have some
drawbacks, especially when they must be deployed to con-
trol a real-world system such as an HVAC system. The
first drawback is that the controller is typically only valid
in a small neighborhood of the baseline solution. If the
boundary conditions are significantly changed, for instance
if some furniture is added to the room or even a person
enters the room, the controller should be re-designed to
maintain the performance, which is often impractical. This
re-designing requires the knowledge and time of a control

All co-authors are with Mitsubishi Electric Research Laboratories
(MERL), Cambridge, MA, USA. { farahmand, nabi, grover,
nikovski}@merl.com

engineer who has expertise in designing PDE controllers.
The other drawback is that the linear control design ignores
potentially useful nonlinear phenomenon inherent in fluid
dynamics problems [11]. Designing a controller based on
this simplified model might lead to a suboptimal solution.

To address these issues, we take a data-driven approach
to design PDE controllers. We show that the PDE control
problem can be seen as an RL problem, therefore allowing
us to use powerful RL algorithms that can handle very high-
dimensional state spaces [7], [15], [8]. These algorithms
have shown great success in controlling complex dynamical
systems that violate the usual assumptions in control theory
such as the linearity of the dynamics or nonlinearity with
a particular known structure. For example, finding a high-
performing controller to solve an Atari game using the screen
image as the input signal, which can be represented by a
several thousand dimensional vector, is indeed an optimal
control problem for a nonlinear dynamical system that does
not have a clear algebraically manipulatable dynamics. This
is a complex dynamical system for which conventional
control theory tools cannot be used, but has been successfully
formulated and solved in the RL framework [15]. This and
other successes motivated us to investigate the use of RL
to solve the complex problem of PDE control, as an alter-
native to the more conventional approaches. The proposed
approach does not require any knowledge of the PDE, even
its structural form, and only uses data to find the controller.

We propose to use an Approximate Value Iteration (AVI)
algorithm to find a close to optimal controller. An AVI al-
gorithm iteratively approximates the optimal value function,
which can then be used to find the optimal controller (or
policy, as it is called in the RL literature). As the state
of PDE is an infinite dimensional vector (or a very high-
dimensional vector in simulations), the value function is also
defined on an infinite dimensional state space. This makes the
value function approximation quite different from the usual
problems for which RL algorithms have been applied so far,
as almost all of them are designed to deal with problems
with finite, and often low, dimensional state spaces. The
challenge is to design a method that can easily deal with
very high-dimensional state spaces, e.g., 2500 dimensions in
our experiments.

To address this challenge, we notice the similarity of an
infinite dimensional object such as the temperature scalar
field in a 2D (or 3D) convection-diffusion problem with a

2D (or 3D) image in computer vision problems.' Both of
them are scalar (or vector) fields, one defining the solution
of a PDE and the other defining the colour of an image.
Moreover, both of them often have much spatial regularities,
such as local smoothness, too. Indeed visualizing the solution
of a PDE is nothing but seeing it as an image. This similarity
motivates us to design RL algorithms that directly work with
the PDE’s infinite dimensional state vector and treat it as if
the state is an image.

We propose to solve the RL problem by the Regularized
Fitted Q-Iteration (RFQI) algorithm [7] that uses a repro-
ducing kernel Hilbert space (RKHS) [20], defined over an
infinite dimensional domain, as its function space. The use of
an RKHS enables us to have a flexible function approximator
that can easily work with infinite dimensional input spaces
(or very high-dimensional approximations of them).

II. PDE CONTROL AS A MARKOV DECISION
PROCESS

In this section we explain how a PDE control problem can
be formulated as a Markov Decision Process (MDP), which
is a mathematical framework to define an RL problem [22].

A finite-action discounted MDP is a 4-tuple
(X, A, P,R,v), where X is a measurable state space,
A is a finite set of actions, P : X x A — M(X) is the
transition probability kernel, and R : X x A — M(R) is
the immediate reward distribution. The constant 0 < v < 1
is the discount factor. We use r(x, a) to denote the expected
value of the random variable R ~ R(:|z,a).

We now identify these quantities within the context of
PDE control. For concreteness, we consider a time-varying
convection-diffusion PDE as a model to describe spatio-
temporal evolution of temperature field in presence of a
velocity field, but the basic idea behind seeing PDE control
as an RL problem is more general and can be applied to
other PDEs too.

Consider a domain Z C R? (or R?), which might represent
a confined region, e.g., a room. We denote 0Z as its bound-
ary, and we assume it has proper regularities. The time set is
denoted by I, e.g., I = R,. Let us denote the temperature
field by a time-dependent scalar field T : Z x I — R, and
v: ZxI — R? (or R?) as the vector field describing velocity
field. Denote S : Z x I — R as the time-varying source.

The convection-diffusion equation is

%i’t):PieVZT—V(vT)-I—S(z,t)7 (1)
in which Pe = % is the Péclet number with L being the
characteristic length of the domain, v, being the character-
istic velocity, and D being the thermal diffusivity constant.
V2 and V- represent Laplacian and divergence operators,
respectively. The velocity field is divergence free to respect
the continuity (conservation of mass), i.e., V - v = 0. For
a given velocity and source field, the temperature field is

'Even though an image has a finite dimensional representation (e.g., a
500 x 500-dimensional vector in an Euclidean space), it is effectively as
high-dimensional as e.g., the temperature and/or flow field of a PDE.

T(-,t) € T, in which T is the space of all temperature
fields for a fixed time. We also use S to denote the space of
all S(-,t). If there is no chance of confusion, we may simply
use T', v, and S to refer to T'(-,t), v(-,t), and S(-,t) for a
particular ¢.

Let us partition the boundary 0Z to 0Z; and 0Zs, and
impose the Dirichlet and Neumann boundary conditions:

T(z,t) = Ty(z,1), Vz € 02,
i VT(z,t) = 0. Yz € 02,

The Neumann boundary condition signifies an insulated
temperature surface and the Dirichlet boundary condition
defines a prescribed temperature surface, e.g., provided by
the HVAC unit.

We consider the control problem in which we can control
the PDE by changing the boundary temperature T (z,t) (for
z € 0Z;) and flow velocity v. For example, the boundary
temperature can be changed by turning on/off heaters or
coolers. The flow can be controlled by using fans on the
walls. For simplicity of our simulations, we consider the case
that we can choose v from a given set of divergence-free
flows, but in reality v is determined by the Navier-Stokes
equation.

We only consider the case that the control commands (7}
and v) belong to a finite action (i.e., control) set A with
|A| < oo:

A= {(Tg,v*) :

This should be interpreted as choosing action a at time ¢
leads to setting the boundary condition as T3(-,t) = T and
the flow velocity as v(:,t) = v®(-).

The dynamics of the PDE at time ¢ is fully described when
v, T, and S are all known. The function v is a part of the
action that we choose. So the rest define the state of the
system, which we denote by a vector z = (T, S). The state
space is X £ {z = (T,8) : T€T,S€S}.

We can compactly write the PDE as

ox

57 = 9(a(n).a(®),
in which both the domain and its boundary condition are
implicitly incorporated in the definition of function g.> To
simplify and make it compatible with the MDP framework,
we deal with a discrete-time version of the previous set of
equations, which can be obtained by integration from time ¢
to time ¢ 4+ 1. So we have

a=1,... A},

Ti41 = f($t7@t)~

The choice of 1 as the time step is arbitrary and could be
replaced by any At, but for simplicity we assume it is indeed
equal to 1.

More generally, one can describe the temporal evolution
of the PDE by a transition probability kernel:

Xipr ~ P([X(2), a(t))-

2Here we assume that the evolution of S(z, t) can be described by a PDE
itself. We can also deal with stochastic PDEs.

We use X instead of z in order to emphasize that
it is a random variable. For deterministic dynamics,
P(z|X(t),a(t)) = d(x — f(X(t),a(t)), in which § is
Dirac’s delta function that puts a probability mass of 1 at
FX(8),alt)).

We do not often have access to f or P, but for the moment
suppose that we have access to this function, maybe through
a numerical simulator. We soon discuss how this assumption
is not necessary in RL.

After defining the state space X and the transition prob-
ability kernel P (or the function f : X x A — X for
deterministic systems), we specify the reward function 7 :
X x A — R. We would like this function to reflect the
desirability of the current state of the system as well as the
cost of the selected action.

An example of how the reward function can be defined is
as follows: Consider that the comfort zone of people in the
room is denoted by Z, C Z, and let 7™ be the desirable
temperature field. This might be a constant or a spatially-
varying field temperature profile. One possible definition of
the reward function is then

r(z,a) = — /Z |T(2) — T*(2)|*dz + Caction(a) | ,

P

in which ceion(a) is the cost of choosing the action. This
might include the cost of heater or cooler operation and the
cost of turning on the fan.

We might also include other terms too. For example, if
people dislike the blowing of the fan to their body, we can
simply include a cost term in the form of — [2, lv®(2)]|? to
penalize such choice of action. In general, we can include
any function of x and a (or even the next state x’) in the
definition of the reward function, without being restricted
to be in a specific analytically amenable form, for example,
quadratic form common in LQR.

A measurable mapping 7 : X — A is called a deter-
ministic Markov stationary policy, or simply policy in short.
Following a policy 7 in an MDP means that at each time
step ¢, we have A; = 7(X3).

For a policy m, the action-value function Q7 is defined
as follows: Let (R;);>1 be the sequence of rewards when
the Markov chain starts from a state-action (X;, A1) drawn
from a positive probability distribution over X x 4 and the
agent follows policy 7. Then the action-value function Q™ :
X x A— R at state-action (z,a) is defined as

o0
S 4R, ’Xl Ay = a‘| .

t=1

Q"(z,a) £E

For a discounted MDP, we define the optimal action-value
functions by

Q" (z,a) =sup Q™ (z,a)

for all state-actions (z,a) € X x.A. A policy 7* is optimal if
it achieves the best values in every state, i.e., if Q’T* =Q*.

We say that a policy 7 is greedy with respect to (w.r.t.) an
action-value function @ if 7(x) = argmax . 4 Q(x, a) for all

x € X. We define function #(z;Q) £ argmax,. 4 Q(z,a)
(for all z € X) that returns a greedy policy of an action-value
function @) (If there exist multiple maximizers, a maximizer
is selected in an arbitrary deterministic manner). Greedy
policies are important because a greedy policy w.r.t. the
optimal action-value function Q* is an optimal policy. Hence,
knowing @Q* is sufficient for behaving optimally.

The Bellman optimality operator 7% : B(X x A) —
B(X x A) is defined as

(T Q))& rlz.) +7 | maxQly.a')Pldlr.a).
(2)

The Bellman optimality operator has a nice property that its
fixed point is the optimal action-value function, i.e., Q* =
T*Q*. In the next section, we describe a method to find
an approximate solution to the fixed-point of the Bellman
optimality operator.

III. REGULARIZED FITTED Q-ITERATION

The Regularized Fitted Q-Iteration (RFQI) algorithm [7]
is an instance of the family of Approximate Value Iteration
(AVI) algorithms [5], [18], [17], [10], [15]. RFQI is a flexible
algorithm that can work with a variety of function spaces.
Because it uses regularization, it can control the complexity
of the estimated value function, so avoiding pitfalls such as
overfitting when a large function space is used.

We present RFQI when it uses a reproducing kernel
Hilbert space (RKHS) [20] to represent the value function.
There are three reasons for this choice: 1) RKHSs are
flexible family of function spaces with nice approximation
theoretic properties. For example, an RKHS corresponding to
a universal kernel is dense (w.r.t. the supremum norm) in the
space of continuous functions on RZ. 2) The use of RKHS
leads to computationally feasible optimization problems, as
we shortly see. 3) By treating the solution of a PDE as if it
is an image, we can define and compute the RKHS’s kernel,
similar to how it is done for computer vision problems.
We briefly describe RFQI. For more details, refer to [7] or
Chapter 5 of [6].

The RFQI algorithm is an iterative algorithm that ap-
proximately performs the Value Iteration (VI). A generic VI
algorithm iteratively performs

Qry1=T7Qy.

Since T* is a contraction mapping with Q* as its fixed point,
in the limit Q, — Q™.

For MDPs with large state space, performing the exact VI
is often impractical. In such cases, we can try AVI instead:

Q1 =~ T*Qy,

in which Q1 is represented by a function from a function
space FIAI : X x A — R. The function space F4! is
potentially much smaller than the space of all measurable
functions on X x A. The choice of FI4! is an important
aspect of an AVI algorithm. Roughly speaking, if T*Qy
can be well-approximated within F !, AVI procedure would

perform fine. This suggests that we should pick 7/ that can
represent a large class of functions. One such example is the
Sobolev space W* (X' x A), and another is an RKHS with a
universal kernel [20]. We work with RKHS-based variants in
this work. The AVI procedure and some particular variants
of it have been theoretically analyzed. For error propagation
analysis of AVI procedures, refer to [16], [9]. For statistical
analysis of some variants of AVI, refer to [17], [7], [6].

In addition to the challenge of dealing with a large state
space, we may also face the problem that the integral in
the definition of 7@ (2) cannot be computed easily. For
instance this might be because we do not have direct access
to P, but instead we only have data from interacting with
the dynamical system (RL setting). Another possibility is
that the model is available, but it is too complex for the
exact computation of the integral. In these situations, we
assume that we only have a sample R; ~ R(-|X;, A;) drawn
from the reward distribution and a sample X/ ~ P(:| X;, A;)
drawn from the next-state distribution for a finite set of state-
action pairs {(X;, 4;)}" ;.

Notice that for any fixed measurable function @,

E | R(r,0) + 7 max QX') | X =2, A= a| = (T°Q)(x,a),
a’'e

that is, the conditional expectation of samples in the form
of R(x,a) + ymaxgaeca Q(X’,a’) is indeed the same as
T*@Qy,. Finding this expectation is the problem of regression,
which is well-studied in the machine learning and statistics
literature [14], [13], [24]. RFQI is an AVI algorithm that uses

regularized least-squares regression estimation.

RFQI works as follows (Algorithm 1). At iteration k,
we are given a dataset P = {(X;, Ai, Ry, X]) 1y with
X; ~ vy, a sampling distribution over the state space X,
the action A; ~ m(:|X;), a behaviour policy, the reward
R; ~ R(:|X;, 4;), and the next state X ~ P(-|X;, 4;).
The RKHS-based RFQI uses a function space FlAl =
H : X x A — R corresponding to a kernel function
K: (X xA x (X x A — R. At each iteration, given
the solution () of the previous iteration, it computes a
new Qi1 by solving the following regularized least squares
regression problem:

2

Q(Xy, As) — [Rz‘ + v max Qx (X7, a/)}
a’eA

. 1 &
Qr+1 < argmin—
Qen T ;
+ A QI3 - 3)

Here \g,, > 0 is the regularization coefficient.

The function space H, being a Hilbert space, can be
infinite dimensional. But for Hilbert spaces that have the
reproducing kernel property, one can prove a representer
theorem [19] stating that the solution of this optimization
problem, even when H is infinite dimensional, has a finite
representation in the form of:

Qmu%@=f)&“&m&AmuM»
1=1

for some vector at+D) = (@FTY QYT ¢ R,

Since RFQI works iteratively, it is reasonable to assume
that @ has a similar representation (with a(*) instead of

Algorithm 1 Regularized Fitted Q-Iteration (K ,F |A|,)\Q’n)

/I K; Number of iterations
I D&O), . DnK7 : Datasets
/I FIAl: The action-value function space
/' AQ,n: The regularization coefficient
Qo 0
for k=0to K —1do
Generate training samples D%k)
Q41 + Regularized Regression(Qy, AQ.n; Dgﬁ))
end for .
return Qg and 7 (-) = #(-; QK)

a**t1)). For notational simplicity, assume that the same
dataset is used in all iterations. Moreover, suppose that
the initial value function is zero, i.e., QO = 0. We can
now replace Qk and Qk;_l,_l in the optimization problem (3)
by their expansions. We use the fact that for Q(x,a) =
S K ((Xi, Ai), (z,a)), the RKHS squared norm is
|Qll3 = a"Ka, with K being the Grammian matrix to
be defined shortly. After some algebraic manipulations, we
get that the solution of (3) is

(8] =
(K +nAD)7 (r+9Kfa®) &k >1.

Here 7 = (Ry,...,R,)". To define K,Kz € R™ ™ first
denote A;"(k)A = argmax, . 4 Qr(X],a’), ie., the greedy
action w.r.t.)y at the next-state X /. We then have

[Klij = K (X3, A), (X5, 45))
K iy =k (X459, (X, 4))).

If datasets are different at each iteration, we need to slightly
change the definitions of K and K ; (See Section 5.2 of [6]).

This computation is performed for K iterations to ob-
tain the estimate Q (z,a) = >, afK ((X;, Ay), (z,a))
of the optimal action-value function Q*. The obtained
policy is the greedy policy of Qk. ie., #(z;Qx) =
argmax,c 4 Qr (2, a).

The choice of RKHS kernel K is flexible. One possible
choice is the squared exponentgal (i.e., Gaussian) kernel,
ie., K(z1,m0) = exp(— 122220 "in which ¢ > 0 is the
bandwidth parameter and ||-|| ,- is the norm defined over the
state space. This norm measures how close two states x;
and zo are. Since states of a PDE are a scalar or vector
field such as the temperature and airflow fields over Z, the
norm is defined on an infinite dimensional vector space. To
compute this norm, we treat states as if they are images, i.e., a
very high but finite dimensional vector with a specific spatial
structure. This opens up the possibility of using several
distance measures between images that have been studied
in the computer vision literature. We may also use norms
that have been developed in the fluid mechanics commu-
nity [23]. The kernel between state-action pairs (x,a) may
be defined as K((]Jl, al), (5(?2, (Lz)) = K(.Z‘l, xz)K'(al, ag), in
which K’(a1,a2) is a kernel defined over the actions. In our
experiments, we simply use Euclidean distance between two

Fig. 1. Heat Invader domain. A heat source starts from a random initial
position and moves towards the floor. The agent can turn two cooling fans
ON or OFF.

images, thus ignoring the spatial structure within the scalar
field. We also use K'(a1,a2) = I{a; = as}.

Finally we would like to remark that one may change the
dataset Dﬁtk) at each iteration. For example, we may use the
obtained policy 7y, instead of a fixed behaviour policy 7, to
generate new samples for the next iteration. In that case, the
probability distribution vy is not fixed through all iterations.
In the reported experiments, we use a single D, for all
iterations. We may also change the function space FAl and
the regularization coefficient A\, at different iterations, so
that we adapt to the regularities of the action-value functions
at different iterations. For more detail about RFQI and its
theoretical properties, refer to Chapter 5 of [6].

IV. EXPERIMENTS

We perform our experiments on a time-varying
convection-diffusion domain, which we call Heat Invader
problem, see Figure 1. In the heat invader problem, a heat
source enters a room at a randomly chosen location at
the top half of the room. This heat source moves with a
constant speed (downward and leftward) across the room
until it leaves from the floor. As a result of this moving
heat disturbance, the temperature field of the room, which
is governed by a convection-diffusion PDE, changes. Heat
invader can be thought of as a person entering the room and
moving across the room, thus disturbing the temperature
field. There are two cooling fans, which can be turned ON
or OFF, on the floor. These can be used to fight off the heat
invader. The goal is to choose when each of them should be
ON or OFF in order to make the room “comfortable” while
minimizing the energy.’

The state of the system x at time t depends on the
temperature field T'(-,t). T is a scalar field, so in theory
it is an infinite dimensional object. In our simulations, we
use a finite volume solver (FiPy by [12]) with a 50 x 50
grid to represent the room, so 7' is represented by a 2500

3The name of Heat Invader is inspired from the Space Invader game on
Atari 2600, which has been one of the games that is recently attempted
to be solved using a related RL algorithm [15]. Heat Invader is the PDE
version of the Atari game.

dimensional real-valued vector.! The heat invader defines
the source S in (1). At the location of the heat invader, a
rectangle whose width is 1/5th of the room’s, the value of
S(z,t) =1, and it is zero elsewhere. Since the heat invader
moves with a downward/leftward velocity, this defines a
time-varying source. We choose the Péclet number Pe = 500
in our experiments. Later we describe what input we feed to
the RFQI algorithm.

The action set A = {(T¢,v*) : a=1,...,|A|} in our
experiments has four elements corresponding to a being one
of OFF/OFF, ON/OFF, OFF/ON, and ON/ON settings of
the left/right cooling fans. When either of them is ON, the
Dirichlet boundary condition of the temperature, T)%, at the
corresponding side of the floor is set to —0.5, and O on the
other side (unless both are ON). Moreover, the fan induces
a constant upward airflow at the same side of the room as
the fan is. That is, v*(z,y) = Oe, + 5e, for all z in the
left or right side of the room, and zero on the opposite side
(éz/y 18 the unit vector in the x or y direction). This is a
divergence-free field.

Of course, a real fan does not necessarily induce a
constant flow v“, but for simplicity of our simulations, and
to avoid solving the Navier-Stokes equations, we assumed
these specific divergence-free vector fields. Note that since
we effectively control both the temperature on the boundary
and the velocity field, the current formulation is indeed a
nonlinear (bilinear) control problem due to V - (v7T') term in
the convection-diffusion

The reward function (the negative of cost) encodes our
belief about what a comfortable room setting should be, in
addition to the operation cost of the cooling fans. If the
temperature field at any given point in the room is within a
specific threshold of the desired temperature, there would not
be any cost associated. Otherwise, that point is considered
undesirable, and it contributes to the cost. The part of the
reward due to the uncomfortable temperature is the average
value of this criteria over the whole room. The part related
to the operation cost is linear in the number of cooling fans
that are ON. More precisely,

r(T,a) = — /Z {|T(2) — T*(2)| > Ao} da(2)

0 a = (OFF,0OFF)
Cactuator @ € {(ON,OFF), (OFF, ON)} (4)
2Cctuator - @ = (ON,ON)

In our experiments, we set the desired temperature profile
T*(z) uniformly equal to 0, the threshold AT esnola = 0.5,
and caepaor = 0.025. Here p is a uniform probability
measure, i.e., the volume of Z according to p is 1. Note
that this reward function is not linear or quadratic in 7. We
set the discount factor v = 0.9.

We consider two policies that are obtained using RFQI and
several policies that are manually designed. The first RFQI-

4We performed some simple grid studies. A finer 100 x 100 discretization
has essentially the same behaviour, so to save the computation time we
performed our experiments only on 50 x 50 grid.

based policy is the one that uses the whole scalar field T’
as its state z. This is a very close approximation of the true
state of the system. We refer to this policy as “state”.

In an application to an HVAC system, however, the current
technology does not allow us to have access to the whole
temperature field of the room. Instead, we only observe a
smaller subset of that field. An example is when we can read
the temperature on the walls, for instance using an infrared
camera. In our experiments, we read the temperature from
four walls, two of which are virtual. The first two are the
left and right walls of the room.” The other two are virtual
walls located at 15 grid cells away from the left and the right
walls. These virtual walls are non-intrusive because they do
not affect the temperature field or the velocity field. These
4 x 50-dimensional temperature readings define the input to
the RFQI algorithm. We refer to this case as the RFQI with
“walls”.

We generate the batch of data D, =
{(X;, As, R, X!)}_;, to be used by the RFQI algorithm,
as follows: We randomly generate the initial position of
the heat invader at time ¢ = 0 close to the top of the
room. The initial temperature 7'(-;0) is set to zero at
time ¢ = 0. We let the temperature diffuse according
to the convection-diffusion equation for one time step
(since there is no convection field, it is only the diffusion
term that acts at this time step). This results in the
temperature field 7'(-;1), which is a close approximation
of the true state of the system. We choose action A;
uniformly random from the set of all possible actions
A = {(OFF/OFF), (ON/OFF), (OFF/ON), (ON/ON)} to
obtain the new temperature field at time ¢ = 2. The reward
at time ¢t = 1 is Ry = r(T'(:;2), A1) with r being defined
in (4). Meanwhile the heat invader moves with a velocity
that is constant independent of its initial position. Depending
on whether we use the “state” representation or the “walls”
representation, we either use 7'(-;¢) or its projections on
the walls as X;. After 40 steps, which defines one episode,
we reset the state of the environment to its initial value and
then pick a new random location for the heat invader.® This
procedure is repeated until we obtain n data points.

Table I compares several RL-based and non-learning-
based policies. The table shows both the average reward per
episode (i.e., ZtT:fl R;) and the return (i.e., ZtT:fl IRy
with Ty being the episode’s length, which is 40 in our
experiments.’ In this table, we report the negative value of
the average reward or return, so that all values are shown as
positive. As a result, smaller values are better. For non-RL-
based algorithms, the empirical average is computed based
on 40 independent runs. For the RL-based solutions (RFQI
(state) and RFQI (walls) in the table), we first generate

SThe left and right walls have the Neumann boundary condition.

The heat invader takes at most 25 steps to start from the top of the room
until it leaves it. The value of ¢ = 40 is chosen accordingly, so that the
state of the system gets approximately settled if no action is taken.

7Even though the discounted MDP formulation is for infinite horizon
problems, for evaluation we truncate the episode at the horizon 7', mainly
to save the computation cost.

TABLE I

PERFORMANCE COMPARISON FOR SEVERAL DIFFERENT POLICIES. THE

EMPIRICAL AVERAGES AND STANDARD DEVIATIONS ARE SHOWN.

Policy Name Average Reward Return

(OFF/OFF) 0.380 + 0.007 2.172 + 0.041
(OFF/ON) 0.207 + 0.03 1.537 +£0.137
(ON/OFF) 0.204 + 0.03 1.531 +£0.164
(ON/ON) 0.0755 £ 0.006 0.977 £ 0.031
Random (all) 0.090 + 0.017 1.334 +£0.150
Random (always ON) 0.0752 £ 0.007 1.163 £ 0.091
Simple Controller 0.0724 £ 0.0024 | 1.152 £ 0.051
Smart Controller 0.0498 +0.0032 | 0.979 £ 0.047
RFQI (state) with n = 20, 000 0.0417 £ 0.0019 | 0.901 £ 0.029
RFQI (walls) with n = 20,000 | 0.0557 +0.0095 | 0.964 £ 0.048

a dataset with n = 20,000, then compute the policy.

Afterwards, we evaluate the policy by running it from 20
random initial states. We repeat this procedure 20 times.

We first evaluate several trivial policies. The first one is
denoted by (OFF/OFF), and is the policy that never turns any
of the cooling fans ON. This is the behaviour of the room
when the HVAC system does not react to the heat invader.
Both the average reward and the return are quite large.
Not surprisingly the performances of policies (OFF/ON),
(ON/OFF), and (ON/ON) are much better than (OFF/OFF),
with (ON/ON) being the superior among them. The reason
is that (OFF/ON) and (ON/OFF) rely on the slow diffusion
process to cool down the side of the room whose cooling
fan is off, while (ON/ON) can cool both sides at the same
time. On the other hand, (ON/ON) is not efficient in terms of
operation cost of turning on the cooling fans, cf. the second
term of the reward function (4).

The next two policies randomly choose the actions at each
time step. Their difference is that Random (all) uniformly
chooses between all four actions, but Random (always ON)
only chooses between the actions that have at least one ON
cooling fans. Both policies are more effective than (OFF/ON)
or (ON/OFF). The reason is that by randomly switching
between turning on the cooling fans on the left and right side
of the room, the discomfort zone created by the heat invader
would be cooled down soon. The Random (all) controller,
however, chooses OFF/OFF with probability 1/4, so it is
slower in eliminating the discomfort.

The average rewards of (ON/ON) and Random (always
ON) are comparable, but their returns are different. The
reason is that because of discounting by v = 0.9, making the
room comfortable as soon as possible is preferable and has a
smaller (negative) return. It also does not matter much if the
cooling fans are left ON at steps far in the future because
their contributions to the operation cost are discounted. So
even though (ON/ON) leads to higher average operation cost,
its faster cleaning up of the discomfort regions make it better
(in return sense) than a slower Random (either all or always
ON). Notice that since none of these policies takes into
account the location of the heat invader, it is reasonable to
expect that they would not be optimal.

We now study the results of two non-trivial manually-

Algorithm 2 Smart Controller (7))

// Input: The temperature field T°
// Output: An action
{Computing the mean comfortable temperature violation in the left and
right side of the room}
Tp =[5, {IT(2) = T*(2)| > ATihreshola Fp(2)-
Tr = fzﬂ H{|T(Z) - T* (Z)l > Aﬂhreshold}d#(z)~
if max{7r,Tr} < cactuator then
return a = (OFF, OFF)
end if
if min{77,Tr} > 2cactuator then
return a = (ON, ON)
end if
if Tr, > Tr then
return a = (ON, OFF)
else
return a = (OFF, ON)
end if

designed policies that take the location of the heat invader
into account. These policies directly react to the discomfort
level caused by the heat invader. The first one, called “Simple
controller”, measures the mean temperature in the left half of
the room and compares it with the mean temperature in the
right half of the room. Depending on which one is higher,
the corresponding cooling fan would be ON.

Simple controller does not take into account the operation
cost of the cooling fans. It also does not take into account
the fact that whenever the temperature of a point is within
the threshold ATipresholds it does not contribute to the reward
function. Moreover, this policy is myopic, i.e., it does not
consider the future states of the system in deciding whether
to turn either the left or right cooling fans ON. We would
like to remark that this policy has access to the temperature
field of the whole room, similar to the “state” case above.

The second policy, called “Smart controller”, described
in Algorithm 2, addresses some of these issues. It only
considers the ATpeshola-threshold effect of the temperature.
It also takes into account the operation cost by not turning the
cooling fans ON whenever the maximum possible reduction
in the thermal discomfort is less than the operation cost of
turning them ON. In other words, this policy is more mindful
of the structure of the reward function than Simple controller.
Nonetheless, this policy is still myopic and does not plan for
the future horizons.

We see the difference of Smart controller from Simple
controller (as well as Random (always ON) or (ON/ON)) in
both the average reward and return. Smart controller is aware
that within threshold ATieshold, the temperature of a point
does not contribute to the reward function. It also considers
the operation cost. The result is that both of its measures of
performance is much better than any other controller that we
have studied so far.

We now turn to the RFQI-based policies (state and walls)
with the number of data points n = 20, 000. We see that the
RFQI-based policy that has access to the state information
performs significantly better than all other policies in this
experiment, both in terms of average reward (which it does
not optimize) and return (which it does indeed optimize).

The reason for this superiority, comparing to e.g., Smart
controller, is that it is not a myopic policy and considers the
effect of its actions not only on the immediate reward, but on
the future rewards too. When the RFQI algorithm has only
access to a subspace of the temperature, i.e., the “walls” case,
the performance degrades noticeably. The expected return
becomes comparable to the Smart controller’s, but its average
reward is worse. Even in this case, however, the return, which
is the measure that is optimized by RFQI, is as good as any
other non-RL-based controller. Since both Smart and Simple
controllers use the “state” information, their informational
input is richer than the input given to RFQI (walls).

We study the effect of the number of samples on the
performance of RFQI-based policies. Figure 2 compares
two RFQI-based policies (“state” and “walls”) with two
manually-designed policies. The horizontal axes of both
graphs indicate the number of training samples n used for
the RFQI-based policies. The Simple and Smart controllers
do not depend on n. On the left graph, we show the average
reward obtained per each episode, and on the right graph, we
show the expected return. As before, the data is generated by
following a random behaviour policy to obtain 20,000 data
points. Each 40 data points correspond to a single episode
with a random initial starting point for the heat invader.
So each episode is independent from the previous ones,
while the samples within each episode are dependent. After
collecting data, we only use a subset of the data points (i.e.,
n € {1240, 2000, 3160, 5000, 7960, 12600, 20000}) to obtain
the policy using the RFQI algorithm. Depending on whether
we consider the “state” or “walls” scenario, we pass all or
just a subset of all the temperature field as the input to the
RFQI algorithm. After obtaining each policy, we evaluate it
with 20 independent initial state. We repeat this procedure
for 20 independent runs. The graphs depict the empirical
average of the average reward per episode (left) and return
(right).

The graphs indicate the progress in the quality of learned
policies. When there are not many data points available, the
performance is not very good, as expected for a learning-
based approach. For instance, when we only use 1240 data
points to obtain the policy, the average return is around
—1.15 to —1.10, which is comparable to the return of
Random (always ON) and Simple controller, but worse
than Smart controller’s. The average reward, which is not
explicitly optimized by RFQI, is comparable to Random (all),
but worse than Simple controller’s. When the number of
samples increases, the performance increases too. Eventually
the “state”-based policy surpasses Smart controller at around
7960 samples. The “walls”-based policy, however, takes
longer to be comparable to Smart controller in terms of
return, and it never outperforms it in term of the average
reward. Note that Smart controller uses the state information,
while the “walls”-based one does not.

V. CONCLUSIONS AND FUTURE WORK

In this work we proposed to formulate a class of PDE
control problems as RL problems. We suggested to directly

—0.04 :

—0.05f i
©
st
@© —0.06f i
=
()
— .
Q -0.07f 1
o ;
@©
=
[
> -0.08 1
<

= state

—0.09H -
] — walls

Simple controller
T Smart controller

- Il Il Il Il T T T
0.1(1)240 2000 3160 5000 7960 12600 20000
Number of samples

—0.90H

-0.95{3

-1.15

T T

T
— state
| = walls
Simple controller|: :
1T Smart controller |: ;

_120\ L L L " L L
1240 2000 3160 5000 7960 12600 20000

Number of samples

Fig. 2. The average reward per episode (left) and the return (right) of several policies as a function of the number of training points. The red curve shows
the RFQI-based policy that uses the whole temperature field, while the blue one shows the policy that has access only to the temperature on “walls”. For
comparison, the performances of two manually-designed controllers are shown too. The error bars depict one standard error.

work with the state of PDE, instead of reducing the PDE to
an ODE and then designing a controller. The advantage of
this approach is that it is data-driven, so the knowledge of the
PDE is not required. Moreover since we directly work with
the state of PDE, we can potentially handle more complex
problems such as the control of flows with high Reynolds
number, which is challenging for the reduce-then-design-
based methods. Studying these flows is a direction for future
research.

Our approach is not limited to an RKHS-based solution,
or even an RFQI-based method. By seeing the PDE control
as a very high-dimensional image-like RL problem, we can
use a variety of algorithms that can handle such problems,
e.g., deep neural network-based AVI algorithms [15].

Finally notice that in our current simulations we consider
that the airflow field v is given. Performing a more realistic
simulation that finds v itself by solving the Navier-Stokes
equation would be more realistic and interesting.

REFERENCES

[1] Sunil Ahuja, Amit Surana, and Eugene Cliff. Reduced-order models
for control of stratified flows in buildings. In American Control
Conference (ACC), pages 2083-2088. IEEE, 2011.

Jeff Borggaard, John A. Burns, Amit Surana, and Lizette Zietsman.
Control, estimation and optimization of energy efficient buildings. In
American Control Conference (ACC), pages 837-841, 2009.

John A Burns, Xiaoming He, and Weiwei Hu. Feedback stabilization
of a thermal fluid system with mixed boundary control. Computers &
Mathematics with Applications, 2016.

John A Burns and Weiwei Hu. Approximation methods for boundary
control of the Boussinesq equations. In /EEE Conference on Decision
and Control (CDC), pages 454-459, 2013.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch
mode reinforcement learning. Journal of Machine Learning Research
(JMLR), 6:503-556, 2005.

Amir-massoud Farahmand. Regularization in Reinforcement Learning.
PhD thesis, University of Alberta, 2011.

Amir-massoud Farahmand, Mohammad Ghavamzadeh, Csaba
Szepesvéri, and Shie Mannor. Regularized fitted Q-iteration for
planning in continuous-space Markovian Decision Problems. In
Proceedings of American Control Conference (ACC), pages 725-730,
June 20009.

[2

[ir}

[3]

[4

—

[5

—

[6

—

[7

—

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]
[22]
[23]

[24]

Amir-massoud Farahmand, Mohammad Ghavamzadeh, Csaba
Szepesvdri, and Shie Mannor. Regularized policy iteration with
nonparametric function spaces. Journal of Machine Learning
Research (JMLR), 17(139):1-66, 2016.

Amir-massoud Farahmand, Rémi Munos, and Csaba Szepesvari. Error
propagation for approximate policy and value iteration. In Advances in
Neural Information Processing Systems (NIPS - 23), pages 568-576.
2010.

Amir-massoud Farahmand and Doina Precup. Value pursuit iteration.
In Advances in Neural Information Processing Systems (NIPS - 25),
pages 1349-1357, 2012.

DPG Foures, Colm-cille Caulfield, and Peter J. Schmid. Optimal
mixing in two-dimensional plane poiseuille flow at finite Péclet
number. Journal of Fluid Mechanics, 748:241-277, 2014.

Jonathan E. Guyer, Daniel Wheeler, and James A. Warren. FiPy:
Partial differential equations with Python. Computing in Science and
Engineering, 11(3):6-15, 2009.

Laszl6 Gyorfi, Michael Kohler, Adam Krzyzak, and Harro Walk.
A Distribution-Free Theory of Nonparametric Regression. Springer
Verlag, New York, 2002.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Ele-
ments of Statistical Learning: Data Mining, Inference, and Prediction.
Springer, 2001.

Volodymyr Mnih et al. Human-level control through deep reinforce-
ment learning. Nature, 518(7540):529-533, 02 2015.

Rémi Munos. Performance bounds in L, norm for approximate value
iteration. SIAM Journal on Control and Optimization, pages 541-561,
2007.

Rémi Munos and Csaba Szepesvari. Finite-time bounds for fitted value
iteration. Journal of Machine Learning Research (JMLR), 9:815-857,
2008.

Martin Riedmiller. Neural fitted Q iteration — first experiences with a
data efficient neural reinforcement learning method. In /6th European
Conference on Machine Learning, pages 317-328, 2005.

Bernhard Scholkopf, Ralf Herbrich, and Alex J. Smola. A generalized
representer theorem. In Proceedings of the 14th Annual Conference
on Computational Learning Theory (COLT), pages 416-426, 2001.
Ingo Steinwart and Andreas Christmann. Support Vector Machines.
Springer, 2008.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. The MIT Press, 1998.

Csaba Szepesvari. Algorithms for Reinforcement Learning. Morgan
Claypool Publishers, 2010.

Jean-Luc Thiffeault. Using multiscale norms to quantify mixing and
transport. Nonlinearity, 25(2):R1, 2012.

Larry Wasserman. All of Nonparametric Statistics. Springer, 2007.

	Title Page
	page 2

	/projects/www/html/publications/docs/TR2016-145.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8

