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Abstract

Accurate state-of-power (SOP) estimates are critical for building battery systems with op-
timized performance and longer life in electric vehicles (EVs) and hybrid electric vehicles
(HEVs). This paper proposes a novel parameter identification method and its implementa-
tion on SOP prediction for lithium-ion batteries. The extremum seeking algorithm is devel-
oped for identifying the parameters of batteries on the basis of an electrical circuit model
incorporating hysteresis effect. The estimated battery parameters can then be used for online
stage -of-charge, state-of-health, and SOP estimation for lithium-ion batteries. In addition,
based on the electrical circuit model with the identified parameters, a battery SOP prediction
algorithm is derived, which considers both the voltage and current limitations of the battery.
The proposed method is suitable for real operation of embedded battery management system
(BMS) due to its low complexity and numerical stability. Simulation results for lithium-ion
batteries are provided to validate the proposed parameter identification and SOP prediction
methods.
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Extremum Seeking-based Parameter Identification for
State-of-Power Prediction of Lithium-ion Batteries

Abstract—Accurate state-of-power (SOP) estimates are critical
for building battery systems with optimized performance and
longer life in electric vehicles (EVs) and hybrid electric vehicles
(HEVs). This paper proposes a novel parameter identification
method and its imple me ntation on SOP prediction for lithium-ion
batteries. The extremum seeking algorithm is developed for
identifying the parameters of batteries onthe basis ofan electrical
circuit model incorporating hysteresis effect. The estimated
battery parameters can then be used for online stage-of-charge,
state-of-health, and SOP estimation for lithium-ion batteries. In
addition, based on the electrical circuit model with the identified
parameters, a battery SOP prediction algorithm is derived, which
considers both the voltage and current limitations of the battery.
The proposed method is suitable for real operation of embedded
battery manage ment sys tem (BMS) due to its low complexity and
numerical stability. Simulation results for lithium-ion batteries
are provided to validate the proposed parameter identification
and SOP prediction methods.

Index Terms—Battery management system, e xtremum seeking,
lithium-ion battery, parameter identification, state-of-power.

L INTRODUCTION

Electric vehicle (EV) and hybrid electric vehicle (HEV) are
two promising solutions to relief the energy crisis and
environmental issues raised by the oil-dependent vehicles [1].
The core component of the EV and HEV is the battery system.
Lithium-ion batteries have been widely used in EVs and HEVs
due to their high energy and power densities and long cycle life
[2]. However, effective battery management system (BMS) is
still a remarkable challenge and necessity to guarantee the
reliable and safe battery operations. The critical function of the
BMS is to estimate the state-of-charge (SOC), state-of-health
(SOH), and state-of-power (SOP) ofthe battery system in real-
time. Due to the absence of sensors for direct measurements of
these quantities, battery models are used to estimate these states
based on model-based estimation methods. To improve the
SOC, SOH, and SOP estimation accuracy of lithium-ion
batteries, the parameters of the battery model should be
identified effectively.

Kalman filter (KF)-based methods and linear least square
regression-based methods are two main types of real-time
battery parameter identification methods. Various types of KF
have been proposed, such as linear KF [3], extended KF [4],
dual extended KF [5], to estimate the parameters and the states
of the battery model simultaneously. Although accurate
solutions can be obtained by using KF-based methods, they
cause high computational complexity and may be difficult to

implement in real-time embedded systems. Compared to the
KF-based methods, the least squares methods are more
computationally competitive without losing much accuracy.
Thus, they are most widely used methods to estimate
parameters of abattery model so far. Various least square-based
methods have beenproposed, suchas recursive least square [6],
and moving window least square [7], to perform online
estimation of battery parameters.

The estimation of the peak power capability of the battery
is essential to determine the maximum available power for
acceleration and regenerating braking of the EV and HEV, thus
avoiding over-charging or over-discharging the battery. SOP is
the parameter to describe the maximum charging and
discharging capabilities of the battery [8]. Accurate SOP
estimation can guarantee optimum performance and longer life
of the battery. A dynamic electrochemical polarization model
is proposedin [9], and the battery SOP for the next sampling
time is accurately estimated based on this model. An adaptive
extended KF is proposed to estimate the SOC and SOP
simultaneously in [10], which realizes a long term SOP
estimation. However, only the voltage limitation is considered
in the above researches when calculating the peak power
capability, the battery current limitation is ignored.

This paper proposes a novel parameter identification
method and its implementation on SOP prediction for lithium-
ion batteries. The extremum seeking (ES) algorithm [11]-[12]
is developed for identifyingthe parameters of the battery model
based on an electrical circuit model incorporating hysteresis
effect. The convergence of the ES algorithm for battery
parameter identification is proved. The estimated battery
parameters can then be used for online SOC, SOH, and SOP
estimation for lithium-ion batteries. In this paper, based on the
electrical circuit model with the identified parameters, a battery
SOP prediction algorithm is derived, which considers both the
voltage and current limitations of the battery. The proposed
method is suitable for real operation of embedded battery
management system (BMS) due to its low complexity and
numerical stability. Simulation results for lithium-ion batteries
are provided to validate the proposed parameter identification
and SOP prediction methods.

II. THE BATTERY MODEL

The battery model should be carefully chosen to ensure a
precise estimation of states and parameters. For real-time
application in embedded systems, a balance between the
accuracy and complexity of the battery model should be made.
Electrical circuit battery models are the most suitable for



embedded applications due to their low complexity and the
ability of characterizing the current-voltage (I-V) dynamics of
battery cells [13]. The voltage hysteresis effect between the
charging and discharging widely exists in Li-ion batteries,
especially for the LiFePOs-type. It is demonstrated that the
first-order resistor-capacitor (RC) model with one-state
hysteresis seems to be the best choice for LiFePO4 cells [14].
Therefore, the first-order RC model with a hysteresis, as shown
inFig. 1,is usedin this paper to provide a good balance between
model accuracy and complexity.
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Fig. 1. The first-order RC model with hysteresis.

As shown in Fig. 1, the open-circuit voltage (OCV)Voe
includes two parts. The first part, Vo.(SOC), represents the
equilibrium OCV as a function of the SOC. The second part V;,
is the hysteresis voltage to capture the hysteresisbehavior of the
OCYV curves. The RC circuit models the I-V characteristics and
the transient response of the battery cell. The series resistance,
R;, is used to describe the charge/discharge energy loss in the
cell; the charge transfer resistance, R., and double layer
capacitance, Cy, are used to characterize the charge transfer and
short-term diffusion voltage, Vau, of the cell; Vz represents the
terminal voltage of the cell.

The following voltage hysteresis model is used [15]:

ov, . L
—t= =iy = VS Ve + i8NGV,
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where p is the hysteresis parameter representing the
convergence rate, » is the Coulomb efficiency (assuming 7
=1), iz is the instantaneous current applied to the battery, v is
the self-discharge multiplier for hysteresis expression, Sp is the
self-discharge rate, and Vimax is the maximum hysteresis
voltage. The model (1) describes the dependency of the
hysteresis voltage V. on the current, self-discharge, and
hysteresis boundaries. The parameter p is chosento minimize
the voltage error between the Voc-SOC curves from simulation
and experiments, respectively.

A discrete-time battery model, including the electrical
circuit model and the hysteresis model, can be written as
follows

nT,
1 0 0 max .
X iy (k)
(k+D)=|0 7 0 |X()+|R.(1-y) 0 )
0 0 H 0 (H —1)sign(iy) |- "™

Y(k) =Vy(k) = Voo (SOC(k) =V, (k) = Ry (k) +V, (k)

V- (SOC) = b, exp(—b,SOC) + b, +b,SOC —b,SOC* +b,SOC* , (2)

where X (k+1)=[SOC(k+1) V,(k+1) V,(k+1)] is the state,

(k) is the measured output, & is the time index, Cmax denotes
the maximum capacity of the battery, 7 is the sampling period,

1_T‘) with 7=RC, , H(,)=exp(-pli,|T,) , and b; for

7 =exp(
0< j<5 are the coefficients used to parameterize the Voc-SOC
curve. Coefficients b; for 0< j<5 can be extracted by pulsed
current tests or constant charge and discharge current test using

a small current to minimally excite transient response of the
battery cell [16].

III. ES-BASED PARAMETER IDENTIFICATION OF LITHIUM-
IoN BATTERY

A. Basics of ES

The basic scheme for a single gradient-based ES algorithm
is shown in Fig. 2. The algorithm injects a sinusoidal
perturbationasinwt into the system, resultinginan output ofthe
costfunction g() . This output Qo) is subsequently multiplied
by asinwt. The resulting signal after multiplyinga gain /, £, is
an estimate of the gradient of the cost function with respect to
6, i.e., the optimization vector. The gradient estimate is then
passed through an integrator 1/s and added to the modulation
signal asinwt. The corresponding equations for the basic multi-
parameter ES algorithm are:

& =alsin(w)0(6),

6 =¢& +a;sin(wt),
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where w#w;, witwit wk, i, ], 1, € {1,2, n},and o> ", with
o’ large enough to ensure the convergence. If the parameters
ai, wi, and [ are properly selected, the cost function output Q(9)
will converge to an neighborhood of the optimal cost function
value Q") .

In order to implement the ES algorithm in the real-time
embedded system, a discrete version of the ES algorithm is
required. The discrete version of the ES algorithm is given:

i (k+1) =& () +alAT sin(0)O(0(k)) ,  (5)
O,(k+1)= & (k+1)+a,sin(e, () (6)

where £ is the time step and AT is the sampling time.

asin(wr) asin(wt)

Fig. 2. Block diagram of the basic gradient-based extremum seeking
algorithm.

B. ES for Parameter Ildentification

The multi-parameter ES algorithm, e.g., [12], is used to
identify the parameters of the battery model, i.e., Ry, R, Cu, and
Cmax in (2). The block diagram of ES-based parameter



identification method for lithium-ion battery is shown in Fig. 3.
At each time step, a battery terminal voltage V3 can be
measured under a specific operating current iz. The measured
Vs is compared with the estimated battery terminal voltage 7, ,
which is obtained from the battery model based on the
measured current iz using the estimated battery model
parameters. The error of Vzand ¥, is used to generate a cost
function, which represents the convergence of the battery
parameters. The battery parameters will then be updated by the
ES algorithm and used to generate a new ¥, in the next time
step. The parameter updating process will proceed until the cost
function reaches to a small criterion or the algorithm reaches
the maximum iteration number.
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Fig. 3. Extremum seeking-based parameteridentification method for lithium-
ion battery.

Using the estimated parameters§ = [ ®,, R,, C,, C,.. 17,
the battery model (2) can be written as

SOC(k +1) = SOC(k) — g—TyiB(k) ,

V,(k+1) = y(k)V, (k) + R (k)1 )iy (k)
V,(k+1)= HV, (k) +(H —)sign(i,(k))V,

max >

Vo (k) =V, (SOC(k)) =V, (k) = R (k)i (k) +V, (k) , (7)
where y(k)= exp(i) ,and 7(k) =R (k)C, (k) .
(k)

The following cost function is defined for each iteration:
0(0(k)) = Kp_[t:[VB(t) -V, (OFdt, )
where T- to represents the time interval over which the ES

learning cost function is evaluated, and K, is a gain.

The battery model parameters are updated in the following
form:

R(k+1)=R
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nominal initial values of the battery model parameters.
Following (5) and (6), the variations of the identified battery
model parameters are given by

& (k+1) =& (k) +alAT sin(ak)Q(0(k)) ,
SR (k) = & (k+1)+a sin(w; (k) ,

&, (k+1) = &, (k) + a,I AT sin(w,k)Q(6(k)) ,
SR (k) = &, (k +1) +a, sin(w, (k)) ,

& (k +1) = & (k) + a, AT sin(a,k) Q(O(k)) ,
5C, (k) = & (k+1)+a, sin(w,(k)) ,

&, (k+1) = &,(k) + a,IAT sin(,k)Q(0(k)) ,

5ém(k) =&, (k+1)+a,sin(w,(k)), (10)

where a1, a2, as, and a4 are positive and 0, *0,,0,+0, 0,

,D,q,re{l,2,3,4} ,for p=g=r.

C. Convergence Analysis

To be able to write a formal convergence analysis, we first
need to introduce the following assumptions.
Assumption 1: The ES cost function Q has a local minimum at

the true parameter values 8* = [ R, R,, C,, C,.. |7

Assumption 2: The original parameters estimates vector, i.e.,
the nominal parameters value, is close enough to the actual
parameters vector.

Assumption 3: The cost function is analytic and its variation
with respect to the uncertain variables is bounded in the
neighborhood of 6*.

We summarize the convergence of the ES estimation
algorithm in the following Lemma.

Lemma 1. The ES estimation algorithm (8), (9), and (10),
under assumptions 1, 2, 3, where the dither frequencies @, ,p

€1{1,2,3,4} are such that @, >@ , with o large enough,

asymptotically converges to the true values, with the
estimation upper-bound

) * 3 =
10-0" <2+ [Bita?

where £; > 0, and w, = max{wy, ..., W, }.

Proof. Due to space limitation, we refer the reader to [12]
where a proof of convergence for this type of ES algorithms
can be found.

IV.  SOP ESTIMATION

To guarantee the safe and durable operation, the working
current and voltage of the lithium-ion battery should be



restricted in a range so that the battery power will be limited
by the minimum value of the two restrictions given by

SOPdl scharge = nun[SOPdII/;ch arge SOPdisch arge ] >
SOPCharge = Inax[SOP(Za.rge SORZ arge] > ( 1 1 )
where SOP,,.,. and SOP, . are the maximum discharging

and charging capabilities of the battery, respectively,
sor;, and SOP”  are the battery SOPs under voltage

discharge charge
limitation, SOP; and SOP; __ are the battery SOPs under

discharge charge
current limitation.
A. SOP Based on Voltage Limitation

In order to predict the maximum power capability under
the voltage limitation, (7) is rewritten into

SOC(k +1) = SOC(k) — g—T“iB k),

V,(k+1) = yV,(k)+ R.(1- )iy (k) ,
V,(k+1) = HV, (k) +(H ~1)sign(i, (k) s »

1y (k +1) = (Vo (SOC(k +1)) =V, (k + 1) + ¥, (k +1) =V, (k +1)) / R,
(12)

where the battery model parameters Rs, Rc, Ca, and Cmax have
been identified by the ES algorithm. The estimated current for

the next time step i,(k+1) can be obtained with a given
Vy(k+1). According to (12), the maximum discharging and
charging current can be obtained by setting V,(k+1) to the

minimum and maximum limiting value. Then, the battery SOP
can be obtained by multiplying the maximum discharging and
charging current with the limiting voltage,

SOPgpae (k41 = Vi (k + D)V )
SOB:al'ge(k + 1) = V;inlaxfB (k + 1)(VBmax) > (13)
where SOF;,...(k+1) and SOP, . (k+1) are the maximum

discharging and charging capabilities for the next sampling
interval under the voltage limitation, V. and V., are the

'max Bmin

maximum and minimum voltage allowed for the battery
operation, respectively. With the updated i,(k) and V,(k), the

algorithmabove can periodically predict the SOP of'the battery
for the next time step.

B. SOP Based on Current Limitation

The maximum charging and discharging currents of the
battery are also limited and should be considered in the SOP
estimation. In order to predict the maximum power capability
under the current limitation, (7) is rewritten into

SOC(k +1) = SOC(k) — g—T ig(k),

V,(k+1) = yV,(k)+ R.(1- )iy (k) ,
V,(k +1) = HV, (k) + (H ~1)sign(i, (), s »

Vy(k +1) = Vo (SOCUk +1)) =V, (k +1) = Riy(k + 1)+ V,(k +1) (14)

where the battery model parameters Rs, Re, Cu, and Ciax have
been identified by the ES algorithm. The estimated voltage for

the next time step V,(k+1) can be obtained with a given
ig(k+1) .

According to (14), by setting i,(k+1) to the maximum
discharging current /max or maximum charging current /min,
V,(k+1) can be calculated. Then, the battery SOP can be

expressed as

SORJI[.VC}: arge(k + 1) = [Bmax I}B (k + 1)(13max) >

SO, g (b +1) = 1y Vy (k1)U ) (13)
where SOP;,...(k+1) and SOP; . .(k+1) are the maximum

discharging and charging capabilities for the next sampling
interval under the current limitation, /max and Imin are the
maximum discharging and charging currents allowed for the
battery operation, respectively. With the updated i,(k) and

V,(k) , the algorithmabove can periodicallypredict the SOP of
the battery under the current limitation for the next time step.
V. SIMULATION RESULTS

Simulations are carried out in Matlab to validate the
proposed ES-based parameter identification method and the
SOP prediction algorithm for a Li-ion battery. Two different
types of current profile are applied to test the battery model:
high pulse current cycle and the current profile which is
proportional to the speed profile in the standard Urban
Dynamometer Driving Schedule (UDDS). Due to space
limitation, we only report here the first set of tests. The battery
model is first tested under a high pulse current cycle (is=10C,
see Fig. 4(a)). This current profile leads to an output voltage
profile shown in Fig. 4(b) from the battery model. Table I lists
the values of the model parameters, which are based on a
polymer Li-ion battery cell [13] with the maximum capacity
scaled up to 10 Ah. The initial estimated states is
[SOC(0), 7, (0), ¥,(0)]" =[0.35,0,0]" . The initial values for the
battery model parameters Ry, Re, Cy4, and Ciax are 0.03, 0.06,
3000,and 5, respectively. The estimationalgorithm (8),(9),and
(10) was implemented with a;=10, a2=35, a3=16, a4=0.8, o,
=le-4, w, =5e-4, o, =10, o, =2e-4. Fig. 4(c)-(f) show the
results of the parameter identification by the proposed ES-based
method. The battery model parameters converge to their true
values well after a certain number of iterations. Fig. 4(g) shows
the cost function during this process. The cost function
decreases to a small value after the battery parameters
converge, which indicates the estimated terminal voltage 7,

from the battery model converges to the true value V.

After the estimated battery parameters converge, their final
values are used for the SOP prediction of the battery. Fig. 5
shows the results of the SOP prediction, in which positive
power means discharging and negative power means charging,
Three curves are provided in Fig. 5, which are the SOP
prediction using the initial, final and true values of the battery
model parameters, respectively. It can be clearly observed that
by using the estimated battery parameters obtained from the
ES-based method, the predicted SOP overlaps with the true
SOP of the battery well. SOP prediction using the estimated



parameters shows a high accuracy. Fig. 5 also shows that even
a small divergence of the battery parameters will cause a large
error of the predicted SOP, which indicates the importance of
the battery parameter identification with high accuracy.

TABLE L SIMULATED BATTERY MODEL PARAMETERS
Cinax 10 Ah Cy 4000F R 0.06Q R. 0.02Q
Vimse 001V » 247¢-4  a,  -0.852 a1 63.867
@ 3.692 a 0.559 a 051 as 0.508
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Fig. 4. Simulation results of ES-based parameter identification of for a Li-ion
battery under high pulse current cycle: (a) input current profile; (b) cell voltage;
(c) estimated R; (d) estimated R,; (e) estimated Cy; (f) estimated C,,,;and (g)
cost function.
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Fig. 5. SOP estimation: (a) for discharge; and (b) for charge (red-line: before
estimation, blue-line: after estimation, green-line: true value).

VI.  CONCLUSION

We have proposed a novel parameter identification method and
its application to SOP prediction for lithium-ion batteries. The ES
algorithm has been developed for identifying the parameters of
batteries on the basis of an electrical circuit model incorporating
hysteresis effect. Based on the electrical circuit model with the
identified parameters, a battery SOP prediction algorithm has been
developed, which considers voltage and current limitations of the
battery. Simulation results for lithum-ion batteries have been
provided to validate the proposed approach.
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