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Abstract

This paper presents an application of Gaussian process regression (GPR) to estimate a state
of charge (SoC) of Lithium-ion (Li-ion) batteries with different kernel functions. One of the
practical advantages of using GPR is that uncertainties in the estimates can be quantified,
which enables reliability assessment of the SoC estimate. The inputs of GPR are voltage,
current and temperature measurements of the battery and the output is an estimate of SoC.
First, training is performed in which optimal hyperparameters of a kernel function are de-
termined to model data properties. Then, the battery SoC is estimated online based on the
trained model. The kernel function is the key element in the GPR model since it encodes the
prior assumptions about the properties of the function being modeled. Therefore, the impact
of kernel function selection on the estimation performance is analyzed using both simulated
data and experimental data collected from a LiMn204/hardcarbon battery with a nominal
capacity of 4.93Ah operating under constant charge and discharge currents.
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Abstract—This paper presents an application of Gaussian
process regression (GPR) to estimate a state of charge (SoC)
of Lithium-ion (Li-ion) batteries with different kernel functions.
One of the practical advantages of using GPR is that uncertainties
in the estimates can be quantified, which enables reliability
assessment of the SoC estimate. The inputs of GPR are voltage,
current and temperature measurements of the battery and the
output is an estimate of SoC. First, training is performed
in which optimal hyperparameters of a kernel function are
determined to model data properties. Then, the battery SoC
is estimated online based on the trained model. The kernel
function is the key element in the GPR model since it encodes
the prior assumptions about the properties of the function being
modeled. Therefore, the impact of kernel function selection on
the estimation performance is analyzed using both simulated
data and experimental data collected from a LiMn2O4/hard-
carbon battery with a nominal capacity of 4.93Ah operating
under constant charge and discharge currents.

Index Terms—Battery management system, Gaussian process
regression, Lithium-ion battery, state of charge estimation.

I. INTRODUCTION

Lithium-ion (Li-ion) batteries have been widely deployed
as a major energy storage component in numerous applica-
tions including consumer electronics, residential rooftop solar
photovoltaic systems, electric vehicles, smart grid systems and
etc. The main advantages of Li-ion batteries over other types
of batteries with different chemistries are low self-discharge
rate, high cell voltage, high energy density, lightweight, long
lifetime, and low maintenance [1]. One of the key parameters
for assessing battery’s state is the state of charge (SoC), which
is defined as the percentage of available charge remaining
in the battery. The SoC indicates when a battery should be
recharged. Hence, it enables battery management systems to
improve the battery life by protecting the battery from over-
discharge and over-charge events. Accurate SoC estimation of
a Li-ion battery is still a challenging task due to nonlinear
battery dynamics as well as variations of operating conditions
such as temperature.

There have been many studies addressing SoC estimation
of Li-ion batteries using equivalent circuit models of a battery.
For instance, the authors in [2] applied a Kalman filter (KF)
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to estimate the SoC of Li-ion batteries. The studies in [3], [4]
mainly focused on online SoC estimation using an extended
Kalman filter (EKF). In order to improve the accuracy, the
joint estimation of model parameters and the SoC based on
an iterated EKF was performed in [5]. The authors in [6]
estimated both the SoC of Li-ion batteries using the EKF and
the internal resistance which is directly correlated with the
batterys state-of-health (SoH). However, the EKF linearizes
the nonlinear dynamic system, which leads to inevitable lin-
earization error. To address this problem, the authors in [7], [8]
estimated SoC of Li-ion batteries using an unscented Kalman
filter (UKF), which avoids model linearization at the expense
of higher computational complexity.

Although aforementioned KF based SoC estimation meth-
ods provide acceptable performance, the estimation accuracy
strongly depends on the chosen battery model and parameters.
The authors in [9] showed the impact of parameter uncertain-
ties on the SoC estimation. In recent years, there has been
a growing interest in machine-learning based SoC estimation
methods, which do not require a detailed physical knowledge
of the battery and learn the nonlinear relationship between
the SoC and measurable battery quantities such as voltage,
current, temperature. Mainly, the authors in [10] proposed an
SoC estimation method for Li-ion batteries using a multi-layer
feedforward neural network (NN). The authors in [11] intro-
duced a hybrid SoC estimation method by combining a radial
basis function NN, an orthogonal least-squares algorithm and
an adaptive genetic algorithm. In [12], a fuzzy NN based SoC
estimation method was proposed. The authors in [13] applied
the NN to find the state-space model of the SoC, which is
then employed by the EKF for estimating the SoC of Li-
ion batteries. Moreover, SoC estimation methods based on a
support vector machine (SVM) were introduced in [14], [15].

Notably, none of the above mentioned machine-learning
based SoC estimation methods quantify estimation uncertainty
which is crucial for evaluating the reliability of SoC estimates.
On the other hand, an SoC estimation method based on the
GPR provides a particularly flexible and powerful framework
to obtain predictive probability distribution of the SoC rather
than just a point estimate of the SoC [16]. In particular,
the GPR is trained offline by using voltage, current and
temperature measurements of the battery, and then used to
infer the SoC values. One of the main advantages of the GPR
is analytically tractable inference with elegant closed-form
expressions. In addition, it is essentially a data-driven approach
and eliminates the need for knowledge of the physical model
of a battery. Therefore, it can be easily applied to estimate the



SoC of other types of batteries with different chemistries. In
this paper, we analyze the performance of the SoC estimation
method for Lithium-ion (Li-ion) batteries based on GPR
and identify the impact of kernel function selection on the
estimation performance.

The rest of the paper is organized as follows: Section
Il gives a brief overview of the theory of GPR. Section
IIT presents an SoC estimation method based on GPR. The
simulation and experimental results are provided and discussed
in Section IV. Finally, main conclusions are drawn in Section
V.

II. GAUSSIAN PROCESS REGRESSION

In this section, we briefly review the theory of GPR before
introducing an SoC estimation method based on a GPR
framework.

A. Fundamentals of Gaussian Process Regression

We have a training data set D = (X,y) comprising D-
dimensional N input vectors X = {x,,}_,, where x,, € R?,
and the corresponding outputs y = {y,}»_;, where y,, € R.
In this setting, the input-output relationship is written as

Yn = f(xn) + én, (1)

where f(.) is the underlying latent function and &,, denotes
zero-mean additive Gaussian noise with variance ai, i.€., &, ~
N(0,02). It is assumed that {&,, }2_; form an independent and
identically distributed (i.i.d) sequence. The main objective is
to model the underlying function f(.) which maps the inputs,
X to their corresponding output values, y. The key assumption
in GPR is that any set of function values follows a multivariate
Gaussian distribution [17]

p(flxlvx%"'axn) :N(OvK) 2

Above, f = [f(x1), f(X2),...,f(x,)]" and 0 is a N x 1
vector whose elements are all 0. In addition, K is a covariance
matrix, whose entries K;; = k(x;,x;) are the values of the
kernel function evaluated for all pairs of training inputs.

In Table I, we list the kernel functions that are adopted
in this work. More specifically, we consider the squared
exponential (SE), Matern, rational quadratic (RQ) and quasi-
periodic kernels. As it is seen from the table, the kernel
functions are characterized by hyperparameters, ©. In par-
ticular, ¥; for ¢ € {0,1,2} denotes the signal variance and
quantifies the variation of the underlying latent function from
its mean; and l4, pg and 74 represent the characteristic length
scale for each input dimension, which determines the relative
importance of each input variable in estimating the target
output. Smaller value of a characteristic length scale implies
that the corresponding input dimension has more impact on the
output, hence it is more relevant. For the quasi-periodic kernel,
Aq is the period length which determines the distance between
repetitions of the function. Additionally, v > 0 and o > 0
correspond to the smoothness parameter. As the smoothness
parameter increases, the function becomes more smooth. For
the Matern kernel, we consider a special case where the value

of v is not too high, i.e., ¥ = 3/2, such that the covariance is
given by

D
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where z,4 and x4 correspond to d-th element of vectors x;
and x;, respectively. The kernel function plays an important
role in GPR since they encode the prior assumptions about the
properties of the underlying latent function (i.e., smoothness,
periodicity and non-stationary) that we are trying to model.
More specifically, the SE and RQ kernels are appropriate
for modelling the function which exhibits a smooth behavior
whereas the Matern kernel allows less stringent prior assump-
tion about the smoothness or differentiability of the function to
be modeled [17]. In addition, a quasi-periodic kernel, which is
obtained by multiplying a periodic kernel with the SE kernel,
is capable of modeling a repeating structure that is not strictly
periodic.

Recall that the output in (1) is assumed to be corrupted by
an additive Gaussian noise with variance O'%. Therefore, we
incorporate this additive white Gaussian noise term into the
aforementioned kernel functions as follows:

k(Xi,Xj) = ks(Xi,X]’) + Uiéija

3

where d;; denotes the Kronecker delta, which takes value 1
if and only if ¢ = j and O otherwise. In this setting, the
distribution of y, given the latent function values f and the
input X, is written as

p(ylf.X) = N(£,071), @
where I is an NV x N identity matrix. By using (2) and (4),

the marginal distribution of y can be found to be

p51%) = [ BYIEXp(EX)E = NO.K + 2D, (5)
Based on (5), the marginal log-likelihood of y can be written

1 1 N
logp(y|X,0) = —2y" (K+oul) ™'y — 7 log [K+ 071 — —-log 2,
(6)

where |.| is the determinant of a matrix. The hyperparameters
are optimized by maximizing the marginal log-likelihood
function in (6). In this regard, the gradient of (6) with respect
to the ith element of © is calculated as

dlogp(y|X, ©) 1 o1 (K + 07211)
RSP YY) 2 - 122 T Tn)
2, 2tr (K+0.1) )

I(K + o21)

L 7 21\ —1

-y (K I
+5y (K+o,I) 20,
which allows the use of any gradient-based optimization
method to find the optimal values of the hyperparameters
that maximize the marginal log-likelihood function in (6). The
objective function is not necessarily convex so that the gradient

(K+o.0)"y,



Kernel Functions

Hyperparameters, ©

Squared exponential kernel:

lq

ks(x4,%x5) = 19% exp [, % ZdD:I (”id—mjd>2]

© =[o,l1,...,Ip]T
ﬂg:signal variance

lq: characteristic length scale

Matern Kkernel:

I'(.): Gamma function

D Tid—Tj v D Tid—Tja
ks(xi,%5) = ﬂ%ﬁ {V 203 (%)} Ky (V 2034 (%))

K, (.) : modified Bessel function of the second kind

©=[1,v,p1,...,pD]"
ﬂ%:signal variance, v: smoothness parameter

pq: characteristic length scale

Rational quadratic kernel:

L <D (zia—wja)2) "
ks(xi,%;) =19§(1+%Ed=1 (TJ) )

— T
O = [J2,a,m1,...,1D]
ﬁ%:signal variance, o smoothness parameter

nq: characteristic length scale

Quasi-periodic kernel:
Tid—Tjd)

.o 2
sin N
ko) = ey [ 255, (A v (]

© =[93, M, -, AD,s H1,---, D] T

ﬁg:signal variance, Aq4: period length

©d, bq: characteristic length scale

TABLE I: List of kernel functions used in the GPR model.

based method may converge to a local optimum. A possible ap-
proach to alleviate this problem would be to initialize multiple
gradient based searches and then to choose the optimal point
which yields the largest marginal log-likelihood. It should be
also noted that computation of the marginal log-likelihood
function and its gradient involves an inversion of a matrix,
K+021 with size N x N, which requires a computational time
of O(N3). Thus, a simple implementation of GPR is suitable
for data sets with up to a few thousands training examples. For
larger data sets, sparse approximations to regular GPR based
on choosing a small representative subset of training samples
can be efficiently applied [18].

After determining the optimal hyperparameters, we express
the joint distribution of y and y, as follows

0] [K+o21 k.
pvXoxee) =v( o] <5 K a]) @

where k., = [k(x1,%.), .., k(xn,x)]T and ke =
k(x«,%s). The main goal of GPR is to find the predic-
tive distribution for a new input vector, x,. In this regard,
by marginalizing the joint distribution (7) over the train-
ing data set output y, we obtain the predictive distribution
of test output, y,, which is a Gaussian distribution, i.e.,
P(y«|X, ¥, X4, ©) = N (px, X.) with the mean and covariance

e = kDK + 021ty (8)
Yy = 02 + by — kI (K 4 021) 7'k, ©)

It can be observed from (8) that the mean p.. of the predictive
distribution is obtained as a linear combination of the noisy
output y, and it is effectively the estimate of the test output.
Once the inversion of a matrix, K + 07211 is precomputed, the
computational complexity of the testing stage is relatively low,
that is O(IN'), which makes the GPR highly suitable for online
SoC estimation.

In addition, the variance of the predictive distribution in
(9) is a measure of the uncertainty. By using (8) and (9), the
100(1 — «)% confidence interval is computed as

(1 = 2(1—0) /2505 x + Z(1—a) /254], (10)

where o € [0, 1] represents the confidence level and z(;_) /2
is the critical value of the standard normal distribution. The
confidence interval provides a range of values which is likely
to contain the true value of the test output. In particular,
smaller variance results in a narrower confidence interval, and
hence indicates a more precise estimate of the test output.
Also, GPR gives a predictive probability distribution which is
one of the practical advantages of GPR over the SVM, NN
and other non-probabilistic machine learning methods.

III. SoC ESTIMATION METHOD BASED ON GPR

In this section, we present the details of the SoC estimation
method using GPR. The SoC of the battery is defined as
the ratio of the amount of energy presently stored in the
battery to its maximum capacity [19]. In particular, the fully
discharged battery has an SoC of 0% and SoC increases while
the battery is being charged. Consequently, the fully charged
battery reaches 100% SoC.

As shown in Fig. 1, the method mainly consists of two parts,
i.e., training and estimation. In training stage, the optimal
hyperparameters of the chosen kernel function are determined
by using conjugate gradient method based on a training data
set, D = ({x,})_,,y) where x,, includes the voltage, current
and temperature of the battery and y contains the correspond-
ing SoC values. It should be noted that the SoC values in
the training data set are normalized to have zero mean by
subtracting their sample mean. Then, online SoC estimation of
the battery is carried out based on present voltage, current and
temperature measurements of the battery. More specifically,
the mean of the predictive distribution corresponds to the SoC
estimate. The entire process is described in Algorithm 1.

IV. RESULTS AND DISCUSSION

In this section, we analyze the performance of the SoC
estimation method for Li-ion batteries based on GPR with
the simulation and experimental data obtained from testing
the battery under constant charge and discharge current. The
implementation of GPR was based on the GPML toolbox
[20]. Subsequently, we identify the impact of kernel function
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Fig. 1: Block diagram of the SoC estimation method using GPR.

selection on the estimation performance. The root mean square
error (RMSE) and maximum absolute error (MAE) are chosen
as the main performance metrics, which are respectively
defined as follows

Ny

1
RMSE = | == > (% — 95%) (11
=1
MAE = max |y — %], (12)

where N; denotes the size of test data, y™ is a 1 x N, vector
including SoC values of the test data and 5 is a 1 x NV
vector containing the estimated SoC values.

Algorithm 1 The flow chart of SoC estimation method

1: Traning part:

2: Step 1: Obtain the training data set, D = (X,y), where
X includes the voltage, current and temperature measure-
ments of the battery, and y contains the corresponding
SoC values.

3: Step 2: Initialize the hyperparameters of the given kernel
function.

4: Step 3: Find the optimal hyperparameters that minimize
the negative marginal log-likelihood function (equivalently
maximize the marginal log-likelihood function) by using
the conjugate gradient method.

5. Estimation part:

6: Obtain the mean and the variance of predictive distribution
given optimal hyperparameters, training dataset, D, and
test input x, (i.e., present voltage, current and temperature
measurement of the battery) as follows:

pe =k (K+o7D) 7y
Yy =02 + ke — kT (K 4 021) 'k,

where i, is the SoC estimate.

A. Simulation Results

1) Simulation Dataset: The simulated battery data was
generated by using a simple battery model based on equivalent

circuit model including thermal equation. The initial temper-
ature was set to 10°C and the initial SoC was 0.5.

g
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Fig. 2: Simulation dataset: temperature, voltage, current and
battery SoC vs. time.

Fig. 2 shows the simulation dataset, which corresponds
to a dynamic charging-discharging profile. In the figure, the
negative values of the current indicate that the battery is being
discharged. The GPR model is trained offline in which the
optimal hyperparameters are determined for a given kernel
function using the first 2000 samples of voltage, temperature
and current measurements. The remaining 1600 samples are
used to verify the performance of the SoC estimation method.
We initialize hyperparameters in the training stage with ones.

2) Performance of SoC Estimation Method Based on GPR:
In this subsection, we analyze the performance of SoC estima-
tion using GPR in terms of RMSE and MAE. Fig. 3 displays
the actual SoC, the estimated SoC values and 95% confidence
interval for SE, RQ, and Matern kernels. The shaded blue area
represents the 95% confidence interval. The corresponding
RMSE and MAE values are listed in Table II.

It is observed from Fig. 3 that the selection of a kernel
function has substantial impact on the estimation performance.
In particular, the SE and RQ kernels provide better fit to
the data compared to that attained with the Matern kernel
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since SoC varies smoothly over time. Therefore, SE and RQ Sz 0
kernels generally achieve higher accuracy with RMSE less SV_SO ‘ ‘
than 0.4% and MAE less than 1.82%. The Matérn kernel 1000 500 1000 1500 2000
allows a less stringent prior assumption about smoothness of B 5 ' ' '
the function. Therefore, the Matérn kernel yields slightly lower ;3 ANV N DV Y N
accuracy, where the RMSE and MAE are below 0.5% and % 500 1000 1500 2000

2.1%, respectively.

The optimal hyperparameters associated with each input
variable enable us to infer the relative importance of the
inputs. For example, in the case of GPR with the SE kernel,
smaller values of the characteristic length scales imply that
the corresponding input dimension is more important and
relevant. The optimal values of the characteristic length scales
for voltage, current and temperature are 1.1025, 278.27 and
109.76, respectively, which indicate that the voltage has more
impact than the temperature, and the temperature has more
impact than the current on the SoC estimate. The same relative
importance order is observed for other two kernel functions.

B. Experimental Results

1) Experimental Dataset: The dataset was collected from
a LiMn204/hard-carbon battery with a nominal capacity of
4.93 Ah in the Advanced Technology R&D Center, Mitsubishi
Electric Corporation. In particular, five consecutive cycles of
charging and discharging at 10 C-rates were performed using
a rechargeable battery test equipment produced by Fujitsu
Telecom Networks. Charging and discharging currents are
expressed in terms C-rate. In this case, 10 C-rate corresponds
to a current of 49.3 A and the battery will deliver its rated
capacity for 6 minutes. The reference (true) SoC was obtained
using the Coulomb counting method. The sampling period was
chosen to be 1 second.

In Fig. 4, we display the temperature, voltage, current and
SoC values as a function of time. The experimental dataset
corresponds to a constant charge-discharge current profile.

Time (sec)
Fig. 4: Experimental dataset: temperature, voltage, current and

battery SoC vs. time.

The first 1050 samples are used as training data to find the
optimal values of the hyperparameters while the remaining 950
samples are used as testing data to verify the performance of
the SoC estimation method.

2) Performance of SoC Estimation Method Based on GPR:
In Fig. 5, we display the actual SoC and the estimated SoC
values attained with the GPR for SE, RQ, quasi-periodic
kernels. The resulting RMSE and MAE values are listed in
Table III. In this case, the quasi-periodic kernel is well suited
to the simulated dataset since it can capture the increasing and
periodic trend but where the periods are not exactly identical.
Hence, GPR with the quasi-periodic kernel achieves the high-
est accuracy (namely, RMSE=1.0648%, MAE=2.7701%). On
the other hand, SE and RQ kernels still provide resonable SoC
estimates with RMSE below 1.54% and MAE below 4.9%.

Kernel Functions RMSE (%) MAE (%)
(a) SE 1.5383 4.8503
(b) RQ 1.1803 3.7641
(¢) Quasi-periodic 1.0648 2.7701

TABLE III: RMSE and MAE values of SoC estimation based
on GPR with SE, RQ, quasi-periodic kernels.

It is also observed that we have a higher uncertainty,
hence a larger confidence interval when the difference between
the actual and the estimated SoC values is higher whereas
accurate SoC estimates result in lower uncertainty, thus smaller
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Fig. 5: SoC estimation based on GPR with (a) SE, (b) RQ, (c) quasi-periodic kernels.

confidence interval. This uncertainty characterization is one
of the key advantages of the GPR-based methods over non-
probabilistic machine learning methods such as the SVM, NN.

Our method is compared on the experimental dataset with
finely tuned iterated EKF in [5] using third-order battery model
in [21], which is, to our knowledge, one of the most accu-
rate SoC estimation methods, and similar performance (i.e.,
RMSE=1.2% and MAE=2.16%) is observed. Nevertheless, we
emphasize that in comparison with the benchmark, our method
delivers one-time shot SoC estimates without accounting for
SoC correlation in time, the development of which is our next
research item.

V. CONCLUSION

In this paper, we have analyzed the performance of an
SoC estimation method for Li-ion batteries based on GPR
using different kernel functions. We have evaluated the impact
of kernel function selection on the estimation performance.
Simulation and experimental results reveal that the GPR
provides accurate SoC estimates with RMSE less than 0.4%
and MAE less than 1.82% when the SE kernel is used for
a dynamic charging-discharging profile, and RMSE is below
1.1% and MAE is below 2.8% when the quasi-periodic kernel
is used for a constant charge-discharge current profile. We
have also provided uncertainty representation through 95%
confidence interval, which enables us to evaluate the reliability
of the SoC estimation. Moreover, we have identified the
relative importance of the input variables on the estimation
performance. In the future work, we will address the impact of
battery aging by incorporating the battery capacity degradation
into the SoC estimation method based on GPR framework.
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